王英琪,楊宏志,孟海波,馮 晶,魏程程
?
沼液預(yù)處理玉米秸稈產(chǎn)沼氣工藝參數(shù)優(yōu)化
王英琪1,2,楊宏志1※,孟海波2,馮 晶2,魏程程1
(1. 黑龍江八一農(nóng)墾大學(xué)食品學(xué)院,大慶 163319;2. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院,農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)廢棄物能源化利用重點(diǎn)實(shí)驗(yàn)室,北京 100125)
沼液作為厭氧發(fā)酵的廢棄物處理存在困難,但沼液可以對(duì)秸稈類原料進(jìn)行預(yù)處理,為沼液的綜合利用提供可能。為優(yōu)化沼液預(yù)處理玉米秸稈的條件,提高玉米秸稈厭氧消化產(chǎn)氣量,該文以沼液預(yù)處理前后的纖維素、半纖維素、木質(zhì)素含量以及產(chǎn)氣量為指標(biāo),根據(jù)CCD(central composite design)試驗(yàn)設(shè)計(jì)原理,選取沼液添加比例、溫度和時(shí)間為因素,建立三者之間的模型。試驗(yàn)結(jié)果表明:隨著預(yù)處理TS(total solid)的降低,時(shí)間的延長(zhǎng),木質(zhì)纖維素的降解率越高,而溫度在30 ℃時(shí)木質(zhì)纖維素的降解率達(dá)到最大。從產(chǎn)氣量來(lái)看木質(zhì)纖維素降解率并不是越高越好,過(guò)分的追求木質(zhì)纖維素的降解會(huì)對(duì)產(chǎn)氣量產(chǎn)生影響,經(jīng)過(guò)響應(yīng)面法優(yōu)化產(chǎn)氣量后得出最佳的預(yù)處理工藝為:沼液添加比例19.08%、預(yù)處理溫度(30±1)℃、預(yù)處理時(shí)間為5 d,總產(chǎn)氣量可提高30.76%。
沼氣;消化;秸稈;沼液預(yù)處理;響應(yīng)面;木質(zhì)纖維素降解;產(chǎn)氣量
中國(guó)農(nóng)作物秸稈資源豐富且種類多樣,根據(jù)農(nóng)業(yè)部最新數(shù)據(jù)顯示,2016年全國(guó)主要農(nóng)作物秸稈總產(chǎn)量為9.84億t,秸稈可收集資源量為8.24億t,利用量為6.7億t[1]。在秸稈的利用方面,生物處理制沼氣因其環(huán)境友好及經(jīng)濟(jì)節(jié)約的特點(diǎn)得到廣泛的應(yīng)用[2]。但由于其特殊的結(jié)構(gòu),表面的硅氧蠟質(zhì)層,纖維素多以結(jié)晶態(tài)存在,不易被厭氧微生物所降解和利用,成為制約秸稈類原料生產(chǎn)沼氣的瓶頸[3-4]。因此需要對(duì)秸稈類原料進(jìn)行預(yù)處理。
目前常用的預(yù)處理方法主要包括物理、化學(xué)和生物3大類[5-8]。然而由于其存在對(duì)設(shè)備要求高,高能耗以及酸堿廢水的產(chǎn)生等缺點(diǎn),現(xiàn)有的預(yù)處理方法尚未在工業(yè)上得到應(yīng)用[9]。生物預(yù)處理的方法則是篩選一些細(xì)菌、真菌、放線菌等,或采用復(fù)合菌劑,例如黑曲霉()、草酸青霉 ()、木霉 ()和白腐真菌組成的HK-4[10]及白腐菌和木霉[11]),利用微生物分泌多種生物酶協(xié)同作用下發(fā)生的酶催化反應(yīng),破壞秸稈的大分子物質(zhì)[12-13]。生物預(yù)處理因其化學(xué)及能源的使用量低,環(huán)境友好得到更多的關(guān)注,但目前集中于在各種特定微生物菌劑對(duì)木質(zhì)纖維素降解和產(chǎn)氣量的影響[14]。沼液作為來(lái)自厭氧發(fā)酵體系中的物質(zhì)本身帶有大量的微生物其中不乏可降解木質(zhì)纖維素的微生物,張瑞[15]從沼液中分離出可降解木質(zhì)纖維素的微生物經(jīng)鑒定為米根霉、白腐菌、黃曲霉和螺孢菌。但當(dāng)前沼液作為厭氧發(fā)酵后的廢物其處理也有一定的難度,若可將沼液作為厭氧發(fā)酵預(yù)處理的原料可減少其排放同時(shí)降低預(yù)處理的成本。楚莉莉等[16]以小麥秸稈為原料經(jīng)沼液預(yù)處理6 d后VS產(chǎn)氣量可達(dá)到149.4 mL/g。Hu等[14]用玉米秸稈味原料對(duì)沼液預(yù)處理對(duì)預(yù)處理時(shí)間和沼液TS含量進(jìn)行優(yōu)化,得到結(jié)果為經(jīng)30.5 g/L的沼液預(yù)處理3 d,達(dá)到80%累積產(chǎn)氣量(t)的時(shí)間可縮短33.3%。李平等[17]經(jīng)研究發(fā)現(xiàn),經(jīng)沼液預(yù)處理水稻秸稈其TS 產(chǎn)氣率達(dá)到 333.9 mL/g,TS 產(chǎn)甲烷率達(dá)到 180.7 mL/g,可較空白提高 27.9%和 21.2%,同時(shí)產(chǎn)氣周期縮短至 19 d。
目前大部分研究?jī)H集中在確定沼液預(yù)處理可提高產(chǎn)氣量,并未進(jìn)行其預(yù)處理?xiàng)l件的優(yōu)化。本研究采用的原料為玉米秸稈,對(duì)其進(jìn)行厭氧發(fā)酵產(chǎn)沼氣的預(yù)處理,采取沼液堆漚的方法,選取TS、處理溫度和處理時(shí)間為因素進(jìn)行響應(yīng)面試驗(yàn),從而優(yōu)化出玉米秸稈沼液預(yù)處理制取沼氣的最佳工藝。
本次試驗(yàn)預(yù)處理所用沼液為實(shí)驗(yàn)室以玉米秸稈為主要原料進(jìn)行厭氧干發(fā)酵所產(chǎn)生的沼液,其pH值為7.2,接種物為穩(wěn)定產(chǎn)氣CSTR(continuous stirred tank reactor)裝置中經(jīng)靜置后不產(chǎn)氣的沼液,pH值為7.1,試驗(yàn)采用玉米秸稈采自北京郊區(qū)。玉米秸稈與沼液特性如表1所示。
表1 試驗(yàn)用玉米秸稈和沼液特性
1.2.1 試驗(yàn)設(shè)計(jì)
將玉米秸稈粉碎至3 mm,單因素試驗(yàn)選取溫度為20、25、30、35和40℃;沼液添加比例以添加沼液后整個(gè)體系TS計(jì)算,下同。10%、15%、20%、25%和30%;時(shí)間為2、4、6、8和10 d, 單因素試驗(yàn)時(shí),固定條件(預(yù)試驗(yàn)確定)為溫度30℃、處理時(shí)間6 d、沼液添加比例20%。
首先將干玉米秸稈過(guò)3 mm篩,按照不同的處理?xiàng)l件加入沼液,混合均勻,分別放入不同溫度的恒溫箱中。初時(shí)放入存在秸稈漂浮現(xiàn)象待秸稈吸水后自然沉積在底部可與沼液完全接觸。按照不同的處理時(shí)間進(jìn)行預(yù)處理后取出,取部分秸稈物料檢測(cè)其預(yù)處理后半纖維素、纖維素和木質(zhì)素含量,而后將剩余物料烘干作為下一步產(chǎn)氣潛力測(cè)試的原料。
采用批式厭氧消化,試驗(yàn)分為試驗(yàn)組和對(duì)照組,其中試驗(yàn)組中發(fā)酵原料為不同條件預(yù)處理后玉米秸稈45 g與接種物200 g添加水至0.9 L的混合物料; 對(duì)照組中發(fā)酵原料為未經(jīng)預(yù)處理的玉米秸稈45 g與接種物200 g添加水至900 mL混合物料。物料充分混合均勻后投入1 L藍(lán)蓋試劑瓶中,試劑瓶瓶密封后置于(35±1)℃恒溫條件下進(jìn)行產(chǎn)氣潛力試驗(yàn),利用排水法逐日記錄產(chǎn)氣量。
根據(jù)單因素試驗(yàn)結(jié)果進(jìn)行響應(yīng)面CCD試驗(yàn)設(shè)計(jì),其因素水平編碼表如表2,試驗(yàn)結(jié)果分析采用Design- Expert8.0.6軟件。
1.2.2 沼液預(yù)處理前后木質(zhì)纖維素降解率的計(jì)算
以沼液預(yù)處理前后的木質(zhì)纖維素降解率為指標(biāo),降解率率越高表明預(yù)處理效果越好。木質(zhì)纖維素降解率計(jì)算公式(1)[18]。
式中0為秸稈中木質(zhì)纖維素的含量,%,1為預(yù)處理后秸稈中木質(zhì)纖維素含量,%。
圖1 產(chǎn)氣與預(yù)處理試驗(yàn)裝置示意圖
表2 因素水平及編碼表
1.2.3 測(cè)試方法
纖維素、半纖維素及木質(zhì)素的測(cè)定,根據(jù)Van Soest纖維素測(cè)定原理[19],將樣品粉碎后過(guò)40目篩,用Foss纖維素測(cè)定儀(FT350)對(duì)玉米秸稈中纖維素、半纖維素及木質(zhì)素的含量進(jìn)行測(cè)定。TS、VS的測(cè)定采用差質(zhì)量 法[20],將玉米秸稈置于105℃下烘干至恒質(zhì)量,計(jì)算得到TS含量;置于馬弗爐中在550℃下燒至恒質(zhì)量,差質(zhì)量法計(jì)算得VS含量。pH值的測(cè)定,采用SX-610筆式pH計(jì)(上海三信)對(duì)pH值進(jìn)行測(cè)定。
2.1.1 溫度對(duì)木質(zhì)纖維素降解及產(chǎn)氣量的影響
不同溫度下預(yù)處理木質(zhì)纖維素含量及產(chǎn)氣量如圖2所示。
從圖2中可知,經(jīng)過(guò)不同溫度預(yù)處理的纖維素降解率在3.82%~9.27%,30和35 ℃用沼液對(duì)玉米秸稈進(jìn)行預(yù)處理可得到較好的結(jié)果。經(jīng)沼液預(yù)處理在不同溫度下半纖維素的降解率在13.05%~18.66%,降解效果明顯。木質(zhì)素降解率在5.10%~7.44%,在30 ℃下木質(zhì)纖維素的含量從72.41%下降至63.44%,其降解率達(dá)到了12.39%。隨著溫度的升高,木質(zhì)纖維素的降解率升高,在30 ℃達(dá)到最大值。厭氧干發(fā)酵沼液中存在大量的腐殖酸和微生物,溫度對(duì)微生物的活性有很大的影響,微生物在其最適溫度下活性最佳,產(chǎn)酶效率最高,因此溫度的改變對(duì)其降解的效果會(huì)產(chǎn)生差異。
從產(chǎn)氣量來(lái)看,預(yù)處理溫度為30 ℃時(shí)產(chǎn)氣量最大,而溫度在20 ℃時(shí)產(chǎn)氣量最低。在預(yù)處理時(shí)間和沼液添加比例相同的情況下,不同溫度下的木質(zhì)纖維素降解率不同,產(chǎn)氣量也不同,在其最適溫度條件下其降解率最大。與此同時(shí),在預(yù)處理時(shí)對(duì)原料預(yù)先進(jìn)行了升溫,在接種后可快速達(dá)到其最適溫度,使產(chǎn)甲烷菌的數(shù)量得以快速增加,提高厭氧消化的效率。
注:沼液添加比例20%,時(shí)間 6 d。
2.1.2 處理時(shí)間對(duì)木質(zhì)纖維素降解及產(chǎn)氣量的影響
按照不同的處理時(shí)間,處理前后木質(zhì)纖維素含量及產(chǎn)氣量如圖3所示。
從圖3中可知,預(yù)處理2~10 d,木質(zhì)纖維素總量降解率在8.19%~13.44%。經(jīng)過(guò)10 d預(yù)處理后,纖維素降解率達(dá)到10.22%,半纖維素含量從26.52%降解至21.26%,木質(zhì)素的降解率達(dá)7.86%。從降解率來(lái)看,半纖維素的降解率最大,而木質(zhì)素的降解率很小。隨著預(yù)處理時(shí)間的延長(zhǎng),經(jīng)過(guò)沼液浸潤(rùn)的秸稈木質(zhì)纖維素組分膨脹,木質(zhì)纖維素中各成分降解率不斷升高,但從6 d后降解率變化幅度減小,即降解趨于平緩。預(yù)處理時(shí)間越長(zhǎng),木質(zhì)纖維素降解率越高。結(jié)合產(chǎn)氣量來(lái)看,產(chǎn)氣量提高率在16.78%~29.85%之間。雖然經(jīng)過(guò)預(yù)處理的組產(chǎn)氣量在4 000 mL以上大于未經(jīng)預(yù)處理組的3 318 mL,預(yù)處理時(shí)間8 d組的產(chǎn)氣量低于預(yù)處理6 d組的產(chǎn)氣量。這可能是由于在預(yù)處理過(guò)程中可溶性有機(jī)物質(zhì)部分被消耗[20],可溶性有機(jī)物質(zhì)由水解微生物分解產(chǎn)生同時(shí)被沼液體系中厭氧微生物所利用,導(dǎo)致厭氧發(fā)酵產(chǎn)沼氣的底物減少,致使產(chǎn)氣量減少。因此應(yīng)該控制預(yù)處理時(shí)間,使其在預(yù)處理期間木質(zhì)纖維素降解率合理并且消耗的有機(jī)物質(zhì)最少,以利于后期厭氧發(fā)酵制沼。
注:沼液添加比例20%,溫度30 ℃。
2.1.3 沼液添加比例對(duì)木質(zhì)纖維素降解及產(chǎn)氣量的影響
按照不同的沼液添加比例(以TS計(jì))進(jìn)行單因素試驗(yàn),處理前后木質(zhì)纖維素含量以及產(chǎn)氣量試驗(yàn)結(jié)果如圖4所示。
由圖4可知,隨著沼液添加比例的升高木質(zhì)纖維素各成分的降解率逐漸降低。纖維素降解率在6.72%~9.68%,木質(zhì)素的降解率在1.91%~7.75%,而半纖維素的降解效果明顯,在8.26%~20.55%。按沼液添加比例為10%和15%的量處理得到的纖維素含量與空白對(duì)照相比差異顯著。從半纖維素的降解效果來(lái)看,選取的這5個(gè)水平對(duì)其降解的影響均顯著,而在采用沼液添加比例30%時(shí),木質(zhì)纖維素各組分含量降解效果不明顯,可能由于沼液與秸稈類原料接觸不完全,導(dǎo)致其降解效果不佳。從沼液的用量而言,從試驗(yàn)結(jié)果看,對(duì)于降解效果來(lái)看選擇沼液添加比例為10%降解率最佳,但用沼液處理最好可以讓玉米秸稈完全吸收而沒(méi)有沼液流出,過(guò)量的沼液會(huì)增加厭氧系統(tǒng)的有機(jī)負(fù)荷,對(duì)后續(xù)的厭氧消化產(chǎn)生負(fù)面的影響[14]。產(chǎn)氣量的試驗(yàn)佐證了這一結(jié)果,沼液添加比例在20%時(shí)得到最高的產(chǎn)氣量為4 730 mL,沼液添加比例為10%時(shí)木質(zhì)纖維素降解率最高但產(chǎn)氣量為4 233 mL,而在沼液添加比例為30%時(shí)木質(zhì)纖維素降解率最低,但是由于存在大量大分子物質(zhì)微生物不能完全利用產(chǎn)氣量也不高。
注:溫度30 ℃, 時(shí)間 6 d。
經(jīng)過(guò)單因素試驗(yàn)的分析,各處理組木質(zhì)素的降解率最高在7%~8%左右,與趙玲等[21]的研究結(jié)果(用沼液預(yù)處理秸稈類原料木質(zhì)素降解7.73%)基本一致。利用沼液對(duì)玉米秸稈進(jìn)行預(yù)處理可提高其厭氧消化性,大幅提高產(chǎn)氣量。預(yù)處理后的玉米秸稈木質(zhì)纖維素各組分都下降,這是由于沼液中含有大量的微生物,復(fù)雜的微生物群落體系中含有可產(chǎn)生木質(zhì)纖維素各組分降解酶的微生物種類,酶作用于玉米秸稈各組分,使其得以降解[10],此復(fù)合酶系可將屬于非水溶性難降解物質(zhì)的復(fù)雜芳香族高聚體的木質(zhì)素降解7%左右,同時(shí)也可降解由木質(zhì)素包裹著的具有高結(jié)晶度和聚合度的纖維素以及由木糖、甘露糖和半乳糖構(gòu)成的半纖維素[22-23],且纖維素降解率最高達(dá)到10.22%,半纖維素達(dá)到19.83%。根據(jù)文獻(xiàn)正文報(bào)道,可降解木質(zhì)纖維素類物質(zhì)的微生物適宜生長(zhǎng)溫度在28 ℃上下。隨著預(yù)處理時(shí)間的延長(zhǎng),其降解率逐漸升高,但這些可溶性有機(jī)物又被體系中的微生物代謝使用,而用于厭氧發(fā)酵時(shí)導(dǎo)致底物減少,從而影響沼氣的產(chǎn)量。此外沼液中還含有大量的NH4+-N,可以作為氮源來(lái)調(diào)整C/N比,進(jìn)而使其達(dá)到最佳的產(chǎn)氣條件[14]。從單因素試驗(yàn)結(jié)果可看出,不同的處理?xiàng)l件對(duì)木質(zhì)纖維素降解和產(chǎn)氣量的影響很大,根據(jù)本次試驗(yàn)結(jié)果,選取沼液添加比例20%,溫度30 ℃,時(shí)間為6 d,在此條件下產(chǎn)氣量最高,可提高29.85%。
根據(jù)前期單因素試驗(yàn)得出的結(jié)果,將各個(gè)單因素中的產(chǎn)氣量最大點(diǎn)設(shè)置為中心點(diǎn)。將預(yù)處理?xiàng)l件進(jìn)行響應(yīng)面試驗(yàn)設(shè)計(jì),得到試驗(yàn)因素水平編碼表如表2,進(jìn)行產(chǎn)氣潛力測(cè)試,結(jié)果如表3。
在單因素試驗(yàn)確定的條件范圍基礎(chǔ)上,選擇沼液添加比例、處理溫度和處理時(shí)間3個(gè)因素為自變量,分別以、、表示,以產(chǎn)氣量為響應(yīng)值,運(yùn)用Design-Expert 8.0.6其中的CCD設(shè)計(jì)原則,因素水平編碼如表2,依據(jù)實(shí)際情況進(jìn)行調(diào)整,試驗(yàn)方案及結(jié)果見表3。由表可知,在20組試驗(yàn)數(shù)據(jù)中產(chǎn)氣量在3 975~4 853 mL之間,產(chǎn)氣量在4 500 mL以上的組合有10組,其中產(chǎn)氣量最高的為4 853 mL。而未經(jīng)處理的對(duì)照組產(chǎn)氣量為3 318 mL。
表3 響應(yīng)面試驗(yàn)設(shè)計(jì)及結(jié)果
從方差分析表4的值所反映出的各因素對(duì)產(chǎn)氣量的影響大小,得出如下結(jié)論:各試驗(yàn)因素對(duì)產(chǎn)氣量影響的主次順序?yàn)椋海荆?,即時(shí)間>沼液添加比例>溫度。這與李建等[24-25]的研究結(jié)果一致。
得出的編碼方程見式(2)。
=4766.02-82.44+24.27+91.68+74.00-16.00+58.00-218.772-67.792-158.852(2)
其中模型決定系數(shù)2=0.958 2,校正的2=0.920 6。預(yù)測(cè)2和信噪比均在合理范圍內(nèi),模型的方差分析見表4。從表中可以得出模型的=25.48,對(duì)應(yīng)的<0.000 1,達(dá)到極顯著水平,失擬項(xiàng)的=0.350 3>0.05不顯著,說(shuō)明該模型擬合程度較好,試驗(yàn)誤差小,可以用于模型分析。
在交互項(xiàng)中,交互項(xiàng)和達(dá)到顯著(<0.05),交互項(xiàng)均不顯著。即沼液添加比例與溫度及溫度與時(shí)間的交互作用顯著,交互項(xiàng)對(duì)應(yīng)響應(yīng)值的影響如圖5、圖6所示。由圖可知,沼液添加比例和溫度的交互作用顯著,沼液添加比例越低、處理溫度較低均可得到沼氣產(chǎn)量的增高;但沼液添加比例減少到一定程度和溫度提高到一定值時(shí),沼氣的產(chǎn)量會(huì)產(chǎn)生降低的現(xiàn)象。溫度和時(shí)間的交互作用趨勢(shì)與溫度與沼液添加比例一致。
表4 二次模型方差分析表
圖5 沼液添加比例和溫度對(duì)沼氣產(chǎn)量影響的等高線及響應(yīng)面
圖6 溫度和時(shí)間對(duì)沼氣產(chǎn)量影響的等高線及響應(yīng)面
根據(jù)方差分析表所給出的各顯著性數(shù)值,利用此模型進(jìn)行沼液預(yù)處理參數(shù)的優(yōu)化分析,得到玉米秸稈厭氧制沼的預(yù)處理最佳工藝為沼液添加比例19.08%,溫度29.78 ℃,處理時(shí)間5.42 d,理論產(chǎn)氣量為4 786.3 mL。為了驗(yàn)證優(yōu)化后的工藝條件的可靠性,采用理論預(yù)測(cè)的提取條件進(jìn)行產(chǎn)氣量試驗(yàn),考慮到操作的實(shí)際情況,將預(yù)處理?xiàng)l件設(shè)為沼液添加比例19.08%,溫度為(30±1)℃,處理時(shí)間為5 d,在此工藝條件下進(jìn)行3次平行試驗(yàn),經(jīng)測(cè)定木質(zhì)纖維素降解率為11.95%±0.58%,得到產(chǎn)氣量為(4 792±48) mL,與預(yù)測(cè)值非常接近。
采用此種方法進(jìn)行預(yù)處理的日產(chǎn)氣量最高可達(dá) 420 mL,而對(duì)照組的產(chǎn)氣高峰值僅為255 mL。經(jīng)過(guò)沼液預(yù)處理組的最大產(chǎn)氣量為4 792 mL,達(dá)到80%最大產(chǎn)氣量的時(shí)間為24±1 d,而未經(jīng)預(yù)處理的對(duì)照組產(chǎn)氣量?jī)H為 3 318 mL,達(dá)到80%最大產(chǎn)氣量的時(shí)間為(33±1) d??偖a(chǎn)氣量可提高30.76%。達(dá)到80%產(chǎn)氣量所用的時(shí)間減少了9 d,時(shí)間縮短達(dá)到27.27%,這一結(jié)果與魏域芳等[26]用沼液處理玉米秸稈與牛糞混合發(fā)酵的縮短33.3%的結(jié)果相差不大。經(jīng)過(guò)沼液預(yù)處理的玉米秸稈在第11~15天日產(chǎn)氣量均在250 mL以上,而未經(jīng)預(yù)處理的組僅在第1天產(chǎn)氣量為255 mL達(dá)到最大值,但前期產(chǎn)氣CO2為主要成分。而從總產(chǎn)氣量來(lái)看,對(duì)照組較預(yù)處理組產(chǎn)氣速率增長(zhǎng)緩慢且秸稈的利用效率不高[27]。由此可見沼液預(yù)處理可明顯提高產(chǎn)氣量并減少厭氧消化的時(shí)間。
圖7 驗(yàn)證試驗(yàn)日產(chǎn)氣量
從所產(chǎn)氣體的甲烷含量來(lái)看,如圖8所示,經(jīng)過(guò)預(yù)處理組的所產(chǎn)沼氣中甲烷體積分?jǐn)?shù)在第18天達(dá)到最高,其體積分?jǐn)?shù)為60.1%,從第12天開始至第30天甲烷的體積分?jǐn)?shù)均在50%以上。而未經(jīng)處理組則在第18至第30天甲烷體積分?jǐn)?shù)達(dá)到40%以上,第27天達(dá)到最大值為48.1%。從圖8中也可看出經(jīng)過(guò)沼液預(yù)處理組的甲烷體積分?jǐn)?shù)始終較未處理組的甲烷體積分?jǐn)?shù)高。
圖8 驗(yàn)證試驗(yàn)甲烷含量動(dòng)態(tài)
沼液預(yù)處理可以有效降解木質(zhì)纖維素,使其厭氧消化能力提高,進(jìn)而提高產(chǎn)氣量。為沼液的綜合利用提供了一種可能性。
1)從木質(zhì)纖維素降解的角度看,沼液添加比例越多,時(shí)間越長(zhǎng),木質(zhì)纖維素降解率越高。但是沼液添加比例過(guò)多會(huì)給加重厭氧發(fā)酵系統(tǒng)的有機(jī)負(fù)荷,不利于產(chǎn)氣。預(yù)處理2~10 d,木質(zhì)纖維素總量降解率在8.19%~13.44%,產(chǎn)氣量提高率在16.78%~29.85%,預(yù)處理6 d產(chǎn)氣量提高最多,時(shí)間過(guò)長(zhǎng)會(huì)消耗可溶性有機(jī)物質(zhì),造成產(chǎn)氣量下降。溫度對(duì)微生物活性影響很大,因此其對(duì)木質(zhì)纖維素率的影響與微生物活性相同呈先上升后下降的趨勢(shì),溫度在30℃左右時(shí)木質(zhì)纖維素降解率最高,木質(zhì)纖維素降解率達(dá)12.39%。
2)從產(chǎn)氣量方面來(lái)看,試驗(yàn)選取的3個(gè)因素對(duì)產(chǎn)氣量影響的主次順序?yàn)椋簳r(shí)間>沼液添加比例>溫度。進(jìn)行響應(yīng)面分析結(jié)合實(shí)際值確定玉米秸稈沼液預(yù)處理產(chǎn)沼氣的最佳工藝條件為沼液添加比例19.08%,處理時(shí)間5 d 、處理溫度(30±1)℃。產(chǎn)氣值可較對(duì)照組提高30.76%以上。
[1] 段樹軍. 我國(guó)“秸稈制油”產(chǎn)業(yè)化邁出關(guān)鍵一步[N]. 中國(guó)經(jīng)濟(jì)時(shí)報(bào),2018-06-29(006).
[2] Hu Z H, Yue Z B, Yu H Q, et al. Mechanisms of microwave irradiation pretreatment for enhancing anaerobic digestion of cattail by rumen microorganisms[J]. Applied Energy, 2012,93(1): 229-236.
[3] Wang J K, Liu J X, Li J Y, et al. Histological and rumen degradation changes of rice straw stern epidermis as influenced by chemical pretreatment[J]. Animal Feed Science and Technology, 2007,136(1): 51-62.
[4] Neshat S A, Mohammadi M, Najafpour G D, et al. Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production[J]. Renewable & Sustainable Energy Reviews, 2017, 79: 308-322.
[5] 劉研萍,方剛,黨鋒,等. NaOH和H2O2預(yù)處理對(duì)玉米秸稈厭氧消化的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(12):260-263. Liu Yanping, Fang Gang, Dang Feng, et al. Effect of NaOH+H2O2pretreatment on corn straw anaerobic digestion [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(12): 260-263. (in Chinese with English abstract)
[6] Li Y, Zhang R, He Y, et al. Thermophilic Solid-State Anaerobic Digestion of Alkaline-Pretreated Corn Stover[J]. Energy & Fuels, 2014, 28(6): 3759-3765.
[7] Paudel S R, Banjara S P, Choi O K, et al. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges[J]. Bioresource Technology, 2017, 245(1): 1194-1205.
[8] 黎雪. 聯(lián)合預(yù)處理對(duì)小麥秸稈混合厭氧發(fā)酵的影響研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2016. Li Xue. Influence of Combined Pretreatment on Performance of Wheat Stalk Anaerobic Digestion [D]. Yangling: Northwest A&F University, 2016. (in Chinese with English abstract)
[9] Wang F Q, Xie H, Chen W, et al. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis[J]. Bioresour Technol, 2013, 144(3): 572–578.
[10] 黃開明,趙立欣,馮晶,等. 復(fù)合微生物預(yù)處理玉米秸稈提高其厭氧消化產(chǎn)甲烷性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(16):184-189. Huang Kaiming, Zhao Lixin, Feng Jing, et al. Pretreatment of corn stalk by composite microbial strain improving its methane production performance by anaerobic digestion[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(16): 184-189. (in Chinese with English abstract)
[11] 李硯飛,黃亞麗,代樹智,等. 復(fù)合微生物預(yù)處理玉米秸稈產(chǎn)沼氣的試驗(yàn)研究[J]. 可再生能源,2013,31(5):80-83. Li Yanfei, Huang Yali, Dai Shuzhi, et al. Experimental study of compound microoriganism pre-treatment to enhance straw anaerobic digestion[J]. Renewable Energy Resources, 2013, 31(5): 80-83. (in Chinese with English abstract)
[12] Wang M, Zhou J, Yuan Y X, et al. Methane production characteristics and microbial community dynamics of mono-digestion and co-digestion using corn stalk and pig manure[J]. International Journal of Hydrogen Energy, 2017, 42(8): 4893-4901.
[13] 趙玲. 生物預(yù)處理玉米秸稈厭氧干發(fā)酵特性及沼渣機(jī)制的研究[D]. 沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2011. Zhao Ling. Study on the Characteristics of Corn stalk Dry Anaerobic Fermentation Based on Bio-pretreatment and the Utilization of Residue Media[D]. Shenyang: Shenyang Agricultural University, 2011. (in Chinese with English abstract)
[14] Hu Y, Pang Y Z, Yuan H R, et al. Promoting anaerobic biogasification of corn stover through biological pretreatment by liquid fraction of digestate (LFD)[J]. Bioresour Technol, 2015, 175: 167-173.
[15] 張瑞. 秸稈沼氣發(fā)酵預(yù)處理微生物菌劑的制備與應(yīng)用研究[D]. 南京:南京林業(yè)大學(xué),2014. Zhang Rui. Preparation and Application of Novel Biogas Fermentation Microbial Agent[D]. Nanjing: Nanjing Forestry University, 2014. (in Chinese with English abstract)
[16] 楚莉莉,李軼冰,馮永忠,等. 沼液預(yù)處理對(duì)小麥秸稈厭氧發(fā)酵產(chǎn)氣特性的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2011,29(1):247-251. Chulili, Li Yibing, Feng Yongzhong, et al. Effect of biogas slurry pretreatment on biogas production characteristics of anaerobic fermentation of wheat straw[J]. Agricultural Research in the Arid Areas, 2011, 29(1): 247-251. (in Chinese with English abstract)
[17] 李平,龍翰威,高立洪,等. 不同預(yù)處理方式下水稻秸稈厭氧消化性能比較[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):200-205. Li Ping, Long Hanwei, Gao Lihong, et al. Comparison of anaerobic digestion capability of rice straw with different pretreatment methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 200-205. (in Chinese with English abstract)
[18] 羅娟,張玉華,陳羚,等. CaO預(yù)處理提高玉米秸稈厭氧消化產(chǎn)沼氣性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(15):192-199. Luo Juan, Zhang Yuhua, Chen Ling, et al. CaO pretreatment improve biogas production performance of corn straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 192-199. (in Chinese with English abstract)
[19] Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition.[J]. Journal of Dairy Science, 1991, 74(10):3583-3597.
[20] Yuan X, Cao Y, Li J, et al. Effect of pretreatment by a microbial consortium on methane production of waste paper and cardboard[J]. Bioresource Technology, 2012, 118: 281-288.
[21] 趙玲,李森,王聰,等. 不同預(yù)處理對(duì)秸稈木質(zhì)纖維組分特性的影響[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,48(2):244-249.Zhao Ling, Li Sen, Wang Cong, et al. Effects of different pretreatments on fiber component characteristics of corn straw[J]. Journal of Shenyang Agricultural University, 2017, 48(2): 244-249. (in Chinese with English abstract)
[22] 李海紅,王巧,袁月,等. 一組高溫混合菌對(duì)木質(zhì)素纖維素的降解[J]. 西安工程大學(xué)學(xué)報(bào),2013,27(1):83-87. Li Haihong, Wang Qiao, Yuan Yue, et al. A high-temperature composite microbe for degrading of lignin and cellulose[J]. Journal of Xi’an Polytechnic University, 2013, 27(1): 83-87. (in Chinese with English abstract)
[23] Dolly K, Radhika S. Pretreatment of lignocellulosic wastes for biofuel production: A critical review[J]. Renewable and Sustainable Energy Reviews, 2018(90): 877-891.
[24] 李建,劉慶玉,郎咸明,等. 響應(yīng)面法優(yōu)化沼液預(yù)處理玉米秸稈條件的研究[J]. 可再生能源,2016,34(2):292-297.Li Jian, Liu Qingyu, Lang Xianming, et al. Process parameters optimization of maize straw pretreated by biogas slurry using response surface methodology[J]. Renewable Energy Resources, 2016, 34(2): 292-297. (in Chinese with English abstract)
[25] 彭翔,李秀金,袁海榮,等. 沼液原位生化預(yù)處理玉米秸與豬糞混合厭氧消化性能分析[J]. 北京化工大學(xué)學(xué)報(bào)自然科學(xué)版,2016,43(6):71-77. Peng Xiang, Li Xiujin, Yuan Hairong, et al. Anaerobic co-digestion of corn stalk and swine manure with situ biogas slurry pretreatment[J]. Journal of Beijing University of Chemical Technology Natural Science, 2016, 43(6):71-77. (in Chinese with English abstract)
[26] 魏域芳,李秀金,袁海榮. 沼液預(yù)處理玉米秸稈與牛糞混合厭氧消化產(chǎn)氣性能的研究[J]. 中國(guó)沼氣,2018,36(1):39-46. Wei Yufang, Li Xiujin, Yuan Hairong. Anaerobic co-digestion of cattle manure and corn stalk pretreated by digestate slurry[J]. China Biogas, 2018, 36(1): 39-46. (in Chinese with English abstract)
[27] 魏域芳,李秀金,劉研萍,等. 不同預(yù)處理玉米秸稈與牛糞混合厭氧消化產(chǎn)氣性能比較[J]. 中國(guó)沼氣,2016,34(2):36-40. Wei Yufang, Li Xiujin, Liu Yanping, et al. Comparison of biogas production performance of anaerobic digestion of corn straw and cow manure with different pretreatment[J]. China Biogas, 2016, 34(2): 36-40. (in Chinese with English abstract)
Parameter optimization of corn staw anaerobic digestibility pretreated by biogas slurry
Wang Yingqi1,2, Yang Hongzhi1※, Meng Haibo2, Feng Jing2, Wei Chengcheng1
(1.,,163319,;2.,,,100125,)
Under natural conditions, corn staw take a long time to start anaerobic digestion and decomposition due to its compact structure. Therefore, many studies have focused on the pretreatment of corn straws. At present, biogas slurry is difficult to treat after anaerobic fermentation. Pretreatment of corn straws with biogas slurry can reduce pollution and reduce the cost of pretreatment. The biogas slurry contains a large number of microorganisms, among which there are many degradable lignocellulose components. Pretreatment of corn straws with biogas slurry has become a research hotspot. This study aimed to optimize the parameter of pretreatment of corn straw with biogas slurry and to improve its anaerobic digestion gas production. The cellulose, hemicellulose, lignin content before and after pretreatment of biogas slurry and gas production were selected as indicators. According to the design principle of CCD (central composite design) experiment, the biogas slurry addation ratio (TS%), temperature and time were selected as factors. When the temperature was from 20 to 40 ℃, the biogas slurry addition ratio was 20% (based on total solid content) and the pretreatment time was 6 d, the cellulose degradation rate was 3.82%-9.27%, and the hemicellulose degradation rate was 13.05%-18.66%. At the same time, the lignin degradation rate was between 5.10% and 7.44%. The content of lignocellulose decreased from 72.41% to 63.44% at 30 ℃, and the degradation rate was 12.39%. When the temperature was set to 30 ℃ and the pretreatment time was 6 d, the addition of biogas slurry was set between 10% and 30%(based on TS content). The cellulose degradation rate was from 6.72% to 9.68%, and the lignin degradation rate was between 1.91% and 7.75%. The degradation effect of hemicellulose was most obvious, ranging from 8.26% to 20.55%. The degradation rate of lignocellulose was ranged from 6.67% to 13.41%. Similarly, when the pretreatment time was between 2 and 10 d the temperature was 30 ℃, the biogas slurry addition ratio is 20%, the total degradation rate of lignocellulose is 8.19% to 13.44%.The test results showed that with the decrease of pretreatment TS and the prolongation of pretreatment time, the degradation rate of lignocellulose is higher. But the degradation rate of lignocellulose reached the maximum at 30℃. From the gas production, the higher the degradation rate of lignocellulose does not mean that the gas production is higher, and the excessive pursuit of degradation of lignocellulose will affect the gas production. After optimizing the gas production by the response surface method, the optimal pretreatment process were: Biogas slurry addition (TS) 19.08%, pretreatment temperature (30±1) ℃, pretreatment time was 5 d, and total gas production can be increased by 30.76%. Pretreatment of corn straws with biogas slurry can effectively hydrolyze cellulose and hemicellulose. Meanwhile, it could reduce the lag time of corn straw anaerobic fermentation digestion and increase gas production. This economical and effective pretreatment method can improve the gas production efficiency of corn straw and provide a comprehensive utilization of biogas slurry.
biogas; digestion; straw; pretreatment with biogas slurry; response surface methodology; lignocellulose degradation; gas production
王英琪,楊宏志,孟海波,馮晶,魏程程. 沼液預(yù)處理玉米秸稈產(chǎn)沼氣工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(23):239-245. doi:10.11975/j.issn.1002-6819.2018.23.031 http://www.tcsae.org
Wang Yingqi, Yang Hongzhi, Meng Haibo, Feng Jing, Wei Chengcheng. Parameter optimization of corn staw anaerobic digestibility pretreated by biogas slurry [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 239-245. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.23.031 http://www.tcsae.org
2018-09-27
2018-10-30
“十三五”國(guó)家重點(diǎn)研發(fā)項(xiàng)目“農(nóng)業(yè)廢棄物厭氧發(fā)酵及資源化成套技術(shù)與設(shè)備研發(fā)”子課題“農(nóng)業(yè)廢棄物混合原料預(yù)處理技術(shù)研發(fā)”(2017YFD0800802-03)
王英琪,研究方向?yàn)檗r(nóng)產(chǎn)品加工及貯藏工程。Email:765571010@qq.com
楊宏志,教授,博士,研究方向:農(nóng)產(chǎn)品加工及貯藏工程,Email:yhz5070679@163.com
10.11975/j.issn.1002-6819.2018.23.031
TK6
A
1002-6819(2018)-23-0239-07