李景海,劉清霞,翟國(guó)亮,蔡九茂,張文正
?
基于顆粒流理論的微灌砂濾層反沖洗過(guò)程砂粒速度場(chǎng)模擬
李景海1,劉清霞1,翟國(guó)亮2※,蔡九茂2,張文正2
(1.安陽(yáng)工學(xué)院土木與建筑工程學(xué)院,安陽(yáng) 455000; 2. 中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所,新鄉(xiāng) 453002)
砂顆粒流在石英砂濾層反沖洗流場(chǎng)中的速度分布,對(duì)濾層流化狀態(tài)的穩(wěn)定性和反沖洗效果起決定性作用。為了對(duì)濾層反沖洗過(guò)程砂顆粒的速度場(chǎng)進(jìn)行分析,并確定最佳反沖洗速度,該文以厚度為400 mm,粒徑范圍為1.0~1.18 mm的石英砂濾層為研究對(duì)象,基于顆粒流運(yùn)動(dòng)理論,采用Eulerian-Eulerian模型對(duì)濾層反沖洗過(guò)程砂粒的速度場(chǎng)進(jìn)行3維動(dòng)態(tài)模擬。為了驗(yàn)證模擬結(jié)果的準(zhǔn)確性,作者開展了室內(nèi)模型試驗(yàn),并將模擬結(jié)果與試驗(yàn)結(jié)果進(jìn)行對(duì)比,結(jié)果顯示,濾層膨脹高度的最大模擬誤差為9.8%,能夠控制在10%以內(nèi),說(shuō)明數(shù)值模擬結(jié)果是可信的。在此基礎(chǔ)上,分析了反沖洗流化倍數(shù)為1.3、1.5、1.7和1.9時(shí),濾層高度分別為15、25和35 cm 3個(gè)橫截面上,在不同的反沖洗時(shí)間,砂粒的軸向速度沿橫坐標(biāo)的分布規(guī)律。根據(jù)砂粒在3個(gè)橫截面上運(yùn)動(dòng)速度的大小和方向,判斷砂濾層是否達(dá)到完全流化;根據(jù)砂粒在3個(gè)橫截面上運(yùn)動(dòng)趨勢(shì)是否一致,砂粒的上升區(qū)是否保持穩(wěn)定,判斷濾層流化狀態(tài)是否穩(wěn)定。結(jié)果顯示,當(dāng)反沖洗流化倍數(shù)不小于1.7時(shí),濾層才能達(dá)到穩(wěn)定的流化狀態(tài),從而達(dá)到比較理想的反沖洗效果,并得出濾層最佳反沖洗流化倍數(shù)為1.7。研究結(jié)論為砂過(guò)濾器的反沖洗研究提供了理論基礎(chǔ)和技術(shù)支撐,為反沖洗性能參數(shù)的確定提供了參考。
模型;計(jì)算機(jī)仿真;灌溉;石英砂濾層;反沖洗;多相流
砂過(guò)濾器是微灌系統(tǒng)最常用的過(guò)濾功能最佳的水處理設(shè)備。對(duì)砂過(guò)濾器過(guò)濾性能的研究無(wú)疑十分必要,但為了實(shí)現(xiàn)濾料的再生,砂濾層的反沖洗也至關(guān)重要。目前對(duì)砂濾層反沖洗的研究主要以試驗(yàn)為主。翟國(guó)亮等[1-3]研究了砂濾層反沖洗速度與反沖洗時(shí)間的關(guān)系,測(cè)定了砂過(guò)濾器反沖洗參數(shù)。鄧忠等[4-5]研究了反沖洗水顆粒粒徑的變化規(guī)律。馮俊杰等[6-7]對(duì)以水壓為驅(qū)動(dòng)力的砂過(guò)濾器三向閥進(jìn)行了力學(xué)計(jì)算。張文正等[8-9]對(duì)砂濾層加氣反沖洗進(jìn)行了研究,得出了氣水合理比例與反沖洗時(shí)間。
試驗(yàn)研究主要從宏觀層面對(duì)砂濾層性能進(jìn)行了分析,而數(shù)值模擬方法在大量減少試驗(yàn)工作量的同時(shí),可以得到與試驗(yàn)研究相同的效果,同時(shí)更側(cè)重于微觀尺度的研究,通過(guò)對(duì)濾層流場(chǎng)的分析,可以得到濾層壓力、濾層高度、孔隙率、顆粒速度等參數(shù)的分布特性,為砂過(guò)濾器研究提供基礎(chǔ)理論。在砂過(guò)濾器數(shù)值模擬方面,劉文娟[10]對(duì)砂過(guò)濾器反沖洗進(jìn)行了二維穩(wěn)態(tài)模擬,但沒(méi)有將砂濾層的反沖洗做為一個(gè)動(dòng)態(tài)平衡過(guò)程。Bové等[11-12]等研制了一種新型濾帽,減少了過(guò)濾的壓降損失,并采用CFD模擬軟件對(duì)過(guò)濾器水頭損失進(jìn)行了模擬,但沒(méi)有研究砂濾層的特性。作者對(duì)石英砂濾層反沖洗過(guò)程進(jìn)行了多相流動(dòng)態(tài)模擬,研究了濾層壓降、密度和水體積分?jǐn)?shù)的變化規(guī)律,并得出了反沖洗速度的合理范圍[13-14],但目前沒(méi)有對(duì)造成濾層參數(shù)變化的動(dòng)力學(xué)原因進(jìn)行研究。
砂顆粒在濾層中的運(yùn)動(dòng)特性,是造成濾層壓降、密度和水的體積分?jǐn)?shù)等參數(shù)變化的直接原因。為了從動(dòng)力學(xué)的角度對(duì)砂濾層運(yùn)動(dòng)特性進(jìn)行分析,本文在前期研究的基礎(chǔ)上[15-17],將顆粒流理論與Eulerian-Eulerian模型相結(jié)合,建立了砂濾層反沖洗數(shù)學(xué)模型,采用Ansys14.5模擬軟件,對(duì)石英砂濾層反沖洗過(guò)程進(jìn)行多相流動(dòng)態(tài)模擬,并根據(jù)試驗(yàn)數(shù)據(jù)驗(yàn)證模擬結(jié)果的可靠性。在此基礎(chǔ)上,選取濾層上中下3個(gè)典型過(guò)濾截面,繪制3個(gè)截面上砂粒的速度分布圖,對(duì)砂顆粒運(yùn)動(dòng)速度的分布情況進(jìn)行分析,根據(jù)3個(gè)截面上砂顆粒運(yùn)動(dòng)速度是否一致,判斷濾層是否達(dá)到穩(wěn)定流化狀態(tài),并找出濾層達(dá)到穩(wěn)定流化狀態(tài)所對(duì)應(yīng)的反沖洗速度,最終得出最佳反沖洗速度。為砂過(guò)濾器的研究提供基礎(chǔ)理論與研究方法,為反沖洗性能參數(shù)的確定提供參考數(shù)據(jù)。
試驗(yàn)在中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)田灌溉研究所進(jìn)行,為室內(nèi)模型試驗(yàn),試驗(yàn)?zāi)P鸵妶D1。過(guò)濾器采用透明有機(jī)玻璃管制作,管內(nèi)徑200 mm、高1 200 mm,玻管下端安裝3個(gè)濾帽,用于防止濾料從過(guò)濾器漏出,并均勻分布反沖洗水。以石英砂為濾料,砂粒徑范圍為1.0~1.18 mm,當(dāng)量粒徑為1.06 mm。石英砂濾料放置于過(guò)濾器內(nèi)部,濾層厚度為400 mm。試驗(yàn)時(shí),利用水泵將清水從反沖洗進(jìn)水口注入過(guò)濾器模型,采用渦輪流量計(jì)(LWGY-25,精度為0.5級(jí))測(cè)反沖洗流量,根據(jù)反沖洗流量,計(jì)算反沖洗速度。測(cè)量并記錄各反沖洗速度對(duì)應(yīng)的濾層膨脹高度。
圖1 試驗(yàn)裝置示意圖
微灌石英砂濾層的反沖洗過(guò)程是由水和石英砂組成的固液兩相流體系,采用Eulerian-Eulerian模型[18-20]能夠較準(zhǔn)確的模擬其內(nèi)部流場(chǎng)。由于石英砂在反沖洗過(guò)程中,形成了流化的顆粒群,在對(duì)石英砂顆粒的速度場(chǎng)進(jìn)行模擬時(shí),為了準(zhǔn)確描述顆粒的受力和運(yùn)動(dòng)情況,將顆粒流運(yùn)動(dòng)理論與Eulerian-Eulerian模型相結(jié)合,得到反沖洗模擬模型。
連續(xù)性方程和動(dòng)量方程分別根據(jù)質(zhì)量守恒和動(dòng)量守恒定理得到[21]。
連續(xù)性方程:
對(duì)液相和固相分別建立動(dòng)量方程,液相的動(dòng)量方程為
固相的動(dòng)量方程為
壓力應(yīng)變張量的表達(dá)式為
石英砂的粘度系數(shù)為
μ=μ,c+μ,k+μ,f(5)
式中μ,c為碰撞粘度系數(shù)(Pa·s);μ,k為動(dòng)力粘度系數(shù)(Pa·s);μ,f為摩擦粘度系數(shù)(Pa·s)。
當(dāng)石英砂處于流化狀態(tài)時(shí),顆粒之間的摩擦系數(shù)μ,f可不考慮,即
μ,f=0 (6)
碰撞粘度系數(shù)μ,c見式(7)[22]
式中d為石英砂顆粒的平均粒徑,m;Θ為顆粒溫度,℃;e為顆粒碰撞的歸還系數(shù);0為徑向分布函數(shù)[23],表達(dá)式為
式中α為固相體積分?jǐn)?shù)的最大值,因?yàn)樵谇蛐晤w粒緊密堆積時(shí),體積分?jǐn)?shù)最大,為0.63。
動(dòng)力粘度系數(shù)μ,k見式(9)[24]。
固相壓力為
顆粒溫度計(jì)算方程見式(11)[25]。
式中Θ為能量擴(kuò)散系數(shù)。
Ω為液相波動(dòng)能量與固相波動(dòng)能量之間的交換量[22],其表達(dá)式見式(12)
Ω=?3kΘ(12)
液固交換系數(shù)k見式(13)[26]。
γ為顆粒流波動(dòng)能量的耗散項(xiàng)[27],表達(dá)式見式(14)。
采用Gambit軟件建立幾何模型,過(guò)濾器幾何模型與細(xì)部結(jié)構(gòu)見圖2。
以Eulerian-Eulerian模型為多相流模擬模型,進(jìn)行瞬態(tài)求解。定義液相為水,固相為砂。選用Gidaspow曳力函數(shù),顆粒溫度設(shè)為常溫,壓力速度耦合方程采用PC-SIMPLE算法求解。選用每一相的湍流模型,采用Green-Gauss方程進(jìn)行空間離散化,動(dòng)量、湍動(dòng)能、湍流耗散率和體積分?jǐn)?shù)方程均采用一階迎風(fēng)格式。進(jìn)口邊界設(shè)為速度進(jìn)口,為模擬時(shí)采用的反沖洗速度;出口邊界設(shè)為壓力出口,壓力為一個(gè)大氣壓。以速度進(jìn)口對(duì)流場(chǎng)進(jìn)行初始化。采用模擬軟件Ansys14.5進(jìn)行數(shù)值計(jì)算,參數(shù)設(shè)置如表1所示。
圖2 過(guò)濾器幾何模型
表1 數(shù)值模擬參數(shù)
由于濾層砂粒的軸向速度直接影響到濾層反沖洗膨脹高度,因此,采用濾層膨脹高度的試驗(yàn)值對(duì)模擬結(jié)果進(jìn)行驗(yàn)證。根據(jù)入口的反沖洗流速,由CFD軟件對(duì)反沖洗過(guò)程進(jìn)行模擬,得到濾層的膨脹高度。繪出濾層膨脹高度隨反沖洗速度的變化關(guān)系圖并與試驗(yàn)值進(jìn)行對(duì)比(圖3)。
圖3 濾層膨脹高度模擬值與試驗(yàn)值對(duì)比
將濾層膨脹高度的試驗(yàn)值與模擬值對(duì)比可知,濾層膨脹高度的最大誤差為9.8%,因?yàn)闉V層最大膨脹高度的模擬值為10 cm,9.8%的誤差對(duì)應(yīng)的絕對(duì)誤差只有0.98 cm,誤差在可以接受的范圍。結(jié)果說(shuō)明,濾層膨脹高度試驗(yàn)值與模擬值能夠較好地吻合,模擬結(jié)果準(zhǔn)確可信。
以v表示濾層最小反沖洗流化速度。選取1.3v、1.5v、1.7v、1.9v共4個(gè)反沖洗速度對(duì)濾層砂粒的時(shí)均軸向速度分布規(guī)律進(jìn)行分析。根據(jù)試驗(yàn)觀察,這4個(gè)反沖洗速度代表了濾層從流化狀態(tài)不穩(wěn)定到逐步穩(wěn)定的過(guò)程,具有較強(qiáng)的代表性。
在濾層中依次選取高度為15、25和35 cm的3個(gè)橫截面,分別代表了濾層的底部、中部和上部位置,在不同的反沖洗時(shí)間,繪制4個(gè)反沖洗速度對(duì)應(yīng)的砂顆粒的時(shí)均軸向速度在截面沿橫坐標(biāo)的分布圖(圖4)。
當(dāng)反沖洗水流通過(guò)濾層時(shí),在水流作用下,砂粒逐漸松動(dòng),顆粒間空隙增大,濾層體積開始膨脹。隨著水流的持續(xù)反沖洗,濾層將不能維持固定狀態(tài),顆粒全部懸浮于流體中,顯示出不規(guī)則的運(yùn)動(dòng)。隨著反沖洗流速的增加,顆粒的運(yùn)動(dòng)加劇,濾層的膨脹也隨之增大,濾層的這種狀態(tài)稱為流化狀態(tài)。在圖4中,當(dāng)砂粒有了明顯的運(yùn)動(dòng)速度時(shí),就可以判定為濾層產(chǎn)生了流化現(xiàn)象。
對(duì)于所選的4個(gè)反沖洗速度,作者分別考查了濾層在5、10、15、20、25、30、35和40 s時(shí),15、25、35 cm 3個(gè)截面上砂粒速度沿橫軸的分布規(guī)律,并找出了濾層達(dá)到完全流化的臨界時(shí)間。
在圖4a中,即反沖洗流化倍數(shù)為1.3時(shí),當(dāng)反沖洗時(shí)間達(dá)到30 s時(shí),上部的砂粒開始有了明顯的上升運(yùn)動(dòng),運(yùn)動(dòng)速度位于?0.3~0.1 m/s之間,可以判斷整個(gè)濾層達(dá)到了完全流化狀態(tài)。濾層流化后,以反沖洗時(shí)間為40 s為例,可以看出,在同一個(gè)反沖洗時(shí)間,砂粒在3個(gè)橫截面上軸向速度的運(yùn)動(dòng)趨勢(shì)不同步,底部顆粒在向上運(yùn)動(dòng)的過(guò)程中,最大運(yùn)動(dòng)速度在橫軸上的位置不斷變化,由此可知,砂顆粒在運(yùn)動(dòng)過(guò)程中遇到了阻力,運(yùn)動(dòng)方向發(fā)生了變化,也說(shuō)明砂粒的運(yùn)動(dòng)沒(méi)有穩(wěn)定的路線,濾層處于不穩(wěn)定流化狀態(tài);在圖4b中,即反沖洗流化倍數(shù)為1.5時(shí),當(dāng)反沖洗時(shí)間達(dá)到25 s時(shí),在=35 cm的截面上,砂粒開始有了明顯的上升運(yùn)動(dòng),運(yùn)動(dòng)速度位于?0.14~0.1 m/s之間,可以判斷整個(gè)濾層達(dá)到了完全流化狀態(tài)。同時(shí),濾層完全流化后,上升顆粒在橫軸位置仍然不穩(wěn)定,最大速度向邊壁發(fā)生轉(zhuǎn)移,說(shuō)明濾層的流化狀態(tài)仍不穩(wěn)定;在圖4c中,即反沖洗流化倍數(shù)為1.7時(shí),當(dāng)反沖洗時(shí)間達(dá)到20 s時(shí),在=35 cm的截面上,砂粒開始有了明顯的上升運(yùn)動(dòng),運(yùn)動(dòng)速度位于?0.26~0.3 m/s之間,可以判斷整個(gè)濾層達(dá)到了完全流化狀態(tài)。同時(shí),由反沖洗時(shí)間為20與25 s圖的對(duì)比可知,3條曲線的變化趨勢(shì)基本一致,說(shuō)明濾層在3個(gè)橫截面上砂粒的運(yùn)動(dòng)趨勢(shì)基本相同,濾層達(dá)到了穩(wěn)定的流化狀態(tài)。流化穩(wěn)定后的濾層,右側(cè)的顆粒形成上升區(qū),左側(cè)的顆粒形成下降區(qū),整個(gè)濾層形成一個(gè)逆時(shí)針?lè)较虻沫h(huán)流區(qū),砂粒在環(huán)流區(qū)中循環(huán)往復(fù),形成了穩(wěn)定的運(yùn)動(dòng)路徑;在圖4d中,即反沖洗流化倍數(shù)為1.9時(shí),當(dāng)反沖洗時(shí)間達(dá)到15 s時(shí),上部的砂粒開始有了明顯的上升運(yùn)動(dòng),運(yùn)動(dòng)速度位于?0.17~0.69 m/s之間,說(shuō)明整個(gè)濾層達(dá)到了完全流化狀態(tài)。3個(gè)橫截面上砂粒的運(yùn)動(dòng)趨勢(shì)基本相同,在整個(gè)的反沖洗過(guò)程中,砂粒的上升區(qū)處于濾層的右半部,顆粒的下降區(qū)位于左側(cè),整個(gè)濾層形成一個(gè)穩(wěn)定的環(huán)流區(qū),砂粒在環(huán)流區(qū)中循環(huán)往復(fù),形成了穩(wěn)定的運(yùn)動(dòng)路徑。
注:T為反沖洗時(shí)間;橫坐標(biāo)原點(diǎn)為截面圓心。 Note: T is backwashing time; Origin of the transverse coordinate is center of cross section.
由以上分析知,當(dāng)濾層達(dá)到穩(wěn)定的流化狀態(tài)后,砂顆粒會(huì)形成一個(gè)穩(wěn)定的環(huán)流區(qū),并在環(huán)流區(qū)中循環(huán)往復(fù),砂粒在反復(fù)的循環(huán)過(guò)程中得到?jīng)_洗。形成環(huán)流區(qū)的原因在于,反沖洗水在上升過(guò)程中,受到砂濾層的阻力而改變方向,當(dāng)水流到達(dá)邊壁時(shí),又受到邊壁的阻力,從而又向上運(yùn)動(dòng)并最終到達(dá)濾層頂部。水流在運(yùn)動(dòng)過(guò)程中,攜帶砂粒一起運(yùn)動(dòng),當(dāng)砂粒隨水流到達(dá)濾層頂部后,水流速度變緩,砂粒在重力作用下開始下降,從而形成砂粒環(huán)流區(qū)。
當(dāng)濾層達(dá)到穩(wěn)定的流化狀態(tài)后,才會(huì)有較好的反沖洗效果,根據(jù)前期研究知,砂濾層臨界反沖洗流化倍數(shù)為1.7[14],流化倍數(shù)超過(guò)1.7時(shí),反沖洗效果也會(huì)變差,因此最佳反沖洗速度為1.7v,最佳反沖洗流化倍數(shù)為1.7。
擬合濾層達(dá)到完全流化狀態(tài)的時(shí)間與反沖洗流化倍數(shù)的關(guān)系曲線如圖5所示,其表達(dá)式見式(15)。
?2562.5 (15)
式中濾層達(dá)到完全流化狀態(tài)的時(shí)間與反沖洗流化倍數(shù)的決定系數(shù)2為1,說(shuō)明濾層達(dá)到完全流化狀態(tài)的時(shí)間與反沖洗流化倍數(shù)呈負(fù)線性關(guān)系,即反沖洗速度越大,濾層達(dá)到完全流化所用的時(shí)間越短。
圖5 流化穩(wěn)定時(shí)間與反沖洗流化倍數(shù)關(guān)系
本文以Eulerian-Eulerian模型為基本方程,結(jié)合水和石英砂所組成的兩相流的特征,建立了水砂分別為液相和固相的液固兩相流模擬模型。采用顆粒流運(yùn)動(dòng)理論進(jìn)行封閉,封閉方程有壓力應(yīng)變張量方程、石英砂的粘度系數(shù)方程、徑向分布函數(shù)、固相壓力方程、顆粒溫度計(jì)算方程、液固交換系數(shù)方程和能量的耗散方程等。通過(guò)對(duì)模擬結(jié)果分析,得到以下結(jié)論:
1)對(duì)砂顆粒沿橫軸的分布規(guī)律進(jìn)行了動(dòng)態(tài)模擬,并且通過(guò)室內(nèi)試驗(yàn)對(duì)模擬結(jié)果進(jìn)行了驗(yàn)證,模擬值與試驗(yàn)值誤差為9.8%,表明數(shù)值模擬結(jié)果準(zhǔn)確可信;
2)濾層達(dá)到穩(wěn)定的流化狀態(tài)后,砂顆粒會(huì)形成一個(gè)穩(wěn)定的環(huán)流區(qū),并在環(huán)流區(qū)中循環(huán)往復(fù)。并得到濾層最佳反沖洗流化倍數(shù)為1.7;
3)濾層達(dá)到完全流化狀態(tài)的時(shí)間與反沖洗流化倍數(shù)呈負(fù)線性關(guān)系,即,在砂顆粒不被水流沖出過(guò)濾器的前提下,反沖洗速度越大,濾層達(dá)到完全流化所用的時(shí)間越短。
采用Eulerian-Eulerian模型模擬砂濾層的反沖洗過(guò)程,需要選用合適的封閉方程。對(duì)不同流場(chǎng)的瞬態(tài)模擬,所需要增加的源項(xiàng)不同。本文對(duì)速度流場(chǎng)進(jìn)行模擬,所選用的封閉方程,與前期研究所選用的封閉方程有所不同,因而對(duì)壓降、密度等的模擬結(jié)果誤差可能會(huì)偏大。因而需要對(duì)Eulerian-Eulerian模型進(jìn)行修正,使該模型能夠比較全面的模擬砂濾層的反沖洗過(guò)程。在后期研究中,作者將對(duì)模擬模型中固液交換系數(shù)進(jìn)行修正,使模型能夠更好的適用于微灌砂濾層的反沖洗模擬。
[1] 翟國(guó)亮,陳剛,趙武,等. 微灌用石英砂濾料的過(guò)濾與反沖洗試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(12):46-50.
Zhai Guoliang, Chen Gang, Zhao Wu, et al. Experimental study on filtrating and backwashing of quartz sand media in micro-irrigation filter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(12): 46-50. ( in Chinese w ith English abstract )
[2] 翟國(guó)亮,馮俊杰,鄧忠,等. 微灌用砂石過(guò)濾器反沖洗參數(shù)試驗(yàn)[J]. 水資源與水工程學(xué)報(bào),2007,18(1):24-28.
Zhai Guoliang, Feng Junjie, Deng Zhong, et al. Parameters experiment of backwashing on sandy filter in micro-irrigation[J]. Journal of Water Resources & Water Engineering, 2007, 18(1): 24-28. (in Chinese w ith English abstract)
[3] 趙紅書. 微灌用石英砂濾料的過(guò)濾與反沖洗性能研究[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2010.
Zhao Hongshu. Performance of Filtration and Flushing of Quartz Sand Media for Micro-Irrigation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010. (in Chinese with English abstract)
[4] 鄧忠,翟國(guó)亮,仵峰,等. 微灌過(guò)濾器石英砂濾料過(guò)濾與反沖洗研究[J]. 水資源與水工程學(xué)報(bào),2008,19(2):34-37.
Deng Zhong, Zhai Guoliang, Wu Feng, et al. Study on the filtration and backwashing for the quartz filter in micro-irrigation[J]. Journal of Water Resources & Water Engineering, 2008, 19(2): 34-37. (in Chinese with English abstract)
[5] 鄧忠,翟國(guó)亮,宗潔,等. 渾水質(zhì)量分?jǐn)?shù)對(duì)石英砂濾料過(guò)濾性能的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2013,31(11):1007-1012.
Deng Zhong, Zhai Guoliang, Zong Jie, et al. Influence of muddy water mass fraction on performance of packed quartz sand bed[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(11): 1007-1012. (in Chinese with English abstract)
[6] 馮俊杰,翟國(guó)亮,鄧忠,等. 微灌過(guò)濾器用水壓驅(qū)動(dòng)反沖洗閥啟閉機(jī)構(gòu)的力學(xué)計(jì)算[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2007,38(12):212-214.
Feng Junjie, Zhai Guoliang, Deng Zhong, et al. Mechanical calculation of opening and closing mechanism of back flushing valve driven by hydraulic pressure[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(12): 212-214. (in Chinese with English abstract)
[7] 蔡九茂,李莉,翟國(guó)亮,等. 3種微灌砂過(guò)濾器水動(dòng)三向閥性能比較試驗(yàn)研究[J]. 排灌機(jī)械工程學(xué)報(bào),2017,35(7):596-601.
Cai Jiumao, Li Li, Zhai Guoliang, et al. Comparative experiment on performance of three hydrodynamic three-way valves in microirrigation sand filter[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(7): 596-601. (in Chinese with English abstract)
[8] 張文正,翟國(guó)亮,鄧忠,等. 微灌砂濾料的表層過(guò)濾和氣水反沖洗試驗(yàn)研究[J]. 灌溉排水學(xué)報(bào),2013,30(1):86-90.
Zhang Wenzheng, Zhai Guoliang, Deng Zhong, et al. Surface filtration and air-water backwashing for sandy filter media in micro-irrigation[J]. Journal of Irrigation and Drainage, 2013, 30(1): 86-90. (in Chinese with English abstract)
[9] 張文正. 微灌砂濾層氣水反沖洗與過(guò)濾的試驗(yàn)研究[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2013.
Zhang Wenzheng. Experiment Research of Air Water Backwashing and Filtration of Sand Layer in Micro-Irrigation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese with English abstract)
[10] 劉文娟. 石英砂過(guò)濾器過(guò)濾及反沖洗特性的實(shí)驗(yàn)研究與數(shù)值模擬[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2014.
Liu Wenjuan. Experimental Study and Numerical Simulation of Filtration and Backwashing Characteristics of Quartz Sand Filter[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese with English abstract)
[11] Bové J, Puig-Bargues J, Arbat G, et al. Development of a new underdrain for improving the efficiency of microirrigation sand media filters[J]. Agricultural Water Management, 2017, 179: 296-305.
[12] Bové J, Arbat G, Pujol T, et al. Reducing energy requirements for sand filtration in microirrigation: Improving the underdrain and packing[J]. Biosystems Engineering, 2015, 140: 67-78.
[13] 李景海,翟國(guó)亮,黃修橋,等. 微灌石英砂過(guò)濾器反沖洗數(shù)值模擬與流場(chǎng)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):74-82.
Li Jinghai, Zhai Guoliang, Huang Xiuqiao, et al. Numerical simulation and flow field analysis of backwashing of Quartz sand filter in micro irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 74-82. (in Chinese with English abstract)
[14] 李景海,蔡九茂,翟國(guó)亮,等. 基于砂濾層內(nèi)水體積分?jǐn)?shù)瞬態(tài)模擬的反沖洗速度優(yōu)選[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):83-89.
Li Jinghai, Cai Jiumao, Zhai Guoliang, et al. Optimization of backwashing speed based on transient simulation of the volume fraction of water in the sand filter layer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 83-89. (in Chinese with English abstract)
[15] 李景海. 微灌石英砂濾層清潔壓降分形阻力模型與反沖洗數(shù)值模擬[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2016.
Li Jinghai. Fractal Resistance Model of Clean Pressure Drop and Numerical Simulation of Backwashing Process of Quartz Sand Filter Layer in Micro-Irrigation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese with English abstract).
[16] 李景海,劉清霞,黃修橋,等. 微灌石英砂濾層流態(tài)特性與分形阻力模型參數(shù)確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(13):113-119.
Li Jinghai, Liu Qingxia, Huang Xiuqiao, et al. Flow state characteristics and fractal model parameters determination of quartz sand filter layer used in micro-irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(13): 113-119. (in Chinese with English abstract).
[17] 李景海,劉清霞,黃修橋,等. 微灌石英砂濾層清潔壓降計(jì)算參數(shù)確定與分析[J]. 灌溉排水學(xué)報(bào),2016,35(11):24-28.
Li Jinghai, Liu Qingxia, Huang Xiuqiao, et al. Determination and analysis of the calculation parameters for the cleaning pressure drop of quartz sand filter layer used in micro-irrigation[J]. Journal of Irrigation and Drainage, 2016, 35(11): 24-28. (in Chinese with English abstract)
[18] 賀靖峰. 基于歐拉-歐拉模型的空氣重介質(zhì)流化床多相流體動(dòng)力學(xué)的數(shù)值模擬[D]. 北京:中國(guó)礦業(yè)大學(xué),2012.
He Jingfeng. Numerical Simulation of Multiphase Fluid Dynamic in Air Dense Medium Fluidized Bed Based on Euler-Euler Model[D]. Beijing: China University of Mining and Technology, 2012. (in Chinese with English abstract)
[19] 賀靖峰,趙躍民,何亞群,等. 基于Euler-Euler模型的空氣重介質(zhì)流化床密度分布特性[J]. 煤炭學(xué)報(bào),2013,38(7):1277-1282.
He Jingfeng,Zhao Yuemin,He Yaqun,et al. Distribution characteristic of bed density in air dense medium fluidized bed based on the Euler-Euler model[J]. Journal of Coal Science & Engineering, 2013, 38(7): 1277-1282. (in Chinese with English abstract)
[20] He Jingfeng, He Yaqun, Zhao Yuemin, et al. Numerical simulation of the pulsing air separation field based on CFD[J]. International Journal of Mining Science and Technology, 2012, 22(2): 201-207.
[21] Ansys Inc. Ansys Fluent User’s Guide[M]. Pittsburgh: AnsysInc, 2011.
[22] Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M].California: Academic Press Inc, 1994.
[23] Ogawa S, Umemura A, Oshima N. On the equation of fully fluidized granular materials[J]. Journal of Applied Mathematics and Physic,1980, 31(4): 483-493.
[24] Ansys Inc. Ansys Fluent Theory Guide[M]. Pittsburgh: AnsysInc, 2011.
[25] Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J]. Aiche Journal, 1990, 36(4): 523-538.
[26] Gidaspow D. Hydrodynamics of fluidization and heat transfer supercomputer modeling[J]. Applied Mechanics Reviews, 1986, 39(1): 1-22.
[27] Llun C K K, Savage S B, Jeffrey D J, et al. Kinetic theory of granular flow: Inelastic particles in couette flow and slightly inelastic particles in a general flow field[J]. Journal of Fluid Mechanics, 1984, 140(6): 223-256.
Numerical simulation of velocity field of sand grains in backwashing process of sand filter layer in micro-irrigation based on granular flows theory
Li Jinghai1, Liu Qingxia1, Zhai Guoliang2※, Cai Jiumao2, Zhang Wenzheng2
(1.,,455000,; 2.,,453002)
The velocity distribution of sand grains in the backwashing flow field is key to the backwashing performance of sand filter layer, such as the expansion height, distribution uniformity and the stability of fluidized state. To analyze the velocity distribution of sand grains in the backwashing process and find out the optimal backwashing speed, numerical simulation was used in this paper. Moreover, a geometric model of sand filter was established and the mesh division of the geometric model was carried out through Gambit software. Because the backwashing process of quartz sand filter layer is a solid-liquid multiphase flow system composed of water and quartz sand, we can conclude that the Eulerian model is suitable for the numerical simulation of the velocity field of sand grains by comparing the applicability of the current multiphaseflownumericalsimulationmodels such as Eulerian model, Mixture model and VOF(volume of fluid) model. At the same time, because the backwashing process of quartz sand filter layer is both a dynamic and a stable process, the transient simulation solver was adopted. Additionally, the granular flow theory was used to seal the momentum equation of the model, because of the formation of granular flows in the backwashing process. The simulation objects was the quartz sand filter layer whose thickness was 400 mm, and the equivalent grain diameter was 1.06 mm. In order to verify the reliability of simulation results, laboratory experiments of backwashing were conducted in Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China. The parameters such as the backwashing speed and the total height of the filter layer were measured during the experiments. And the simulation results were compared with the experimental results. Comparison results showed that the maximum simulation error of the sand grains velocity was 9.8%. So the numerical simulation results were proved to be reliable. On this basis, three cross-sections, with the height of 15, 25 and 35 cm, were selected in the filter layer and the axial velocity distribution of sand grains was analyzed. The fluidization ratio of backwashing for this simulation was 1.3, 1.5, 1.7 and 1.9 respectively. Based on the magnitude and direction of the velocity of sand grains in the three cross-sections, we can figure out whether the sand filter layer is completely fluidized or not. The stability of the fluidization state of the filter layer can be estimated by the consistency of the movement trend of sand grains in the three cross-sections and the stability of the rising zone of granular flows. The results showed that the bigger the fluidization ratio of backwashing is, the less time needed for completely fluidizing the filter layer. As a consequence, only if the fluidization ratio of backwashing is not less than 1.7, the filter layer might reach a stable state of fluidization. In a stable flow, the rising zone and the descending zone formed a stable circulation in the filter layer. As the grains swarm moved along a relatively fixed path, the ideal backwashing effect was achieved. It can be seen from the above that the optimal fluidization ratio of backwashing of the filter layer is 1.7. The research provide not only a theoretical basis and technical support for the study of the sand filter but also a reference for the determination of performance parameters for the backwashing.
models; computer simulation; irrigation; quartz sand filter layer; backwashing; multiphase flow
李景海,劉清霞,翟國(guó)亮,蔡九茂,張文正. 基于顆粒流理論的微灌砂濾層反沖洗過(guò)程砂粒速度場(chǎng)模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(22):78-83. doi:10.11975/j.issn.1002-6819.2018.22.010 http://www.tcsae.org
Li Jinghai, Liu Qingxia, Zhai Guoliang, Cai Jiumao, Zhang Wenzheng. Numerical simulation of velocity field of sand grains in backwashing process of sand filter layer in micro-irrigation based on granular flows theory [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 78-83. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.22.010 http://www.tcsae.org
2018-05-11
2018-10-01
“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC0400202)
李景海,博士,高級(jí)工程師,主要從事微灌過(guò)濾器及水資源配置研究。Email:649923670@qq.com
翟國(guó)亮,研究員,博導(dǎo),主要從事節(jié)水灌溉設(shè)備研究。 Email:275580557@qq.com
10.11975/j.issn.1002-6819.2018.22.010
S275.6
A
1002-6819(2018)-22-0078-06