• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Shape Optimization of a Modified Centrifugal Compressor Using the Adjoint Method*

    2018-11-21 08:56:52
    風(fēng)機(jī)技術(shù) 2018年5期

    (BeijingInstituteof Technology,Beijing,China,E-mail:jilc@bit.edu.cn)

    Abstract:Centrifugal compressors can realize a high pressure ratio within a relatively small spatial space,therefore largely used in aviation impeller machinery.Pursuing less size and weight while no penalty of efficiency and aerodynamic loading is the development trend,while both the complex geometry and tough flow conditions bring challenges on the flow calculation and aerodynamic shape optimization. Considering the Adjoint method is an efficient local optimization algorithm,this paper uses the continuous Adjoint method to optimize the geometry of a modified Krain impeller. The results show that the isentropic efficient is improved 0.53%point at near peak-efficiency operating condition,while the mass flow rate and total pressure ratio keep relatively constant.Besides,the whole characteristic line shows a positive improvement, indicating the significance of the Adjoint optimization method

    Keywords:Optimization,Adjoint Method,Centrifugal Compressor,Krain Impeller,Entropy Generation Rate;Isentropic Efficiency

    Nomenclature

    Symbols

    Superscripts and Subscripts

    1 Introuduction

    Centrifugal compressors are important components in turbocharges and turboshaft engines as they can facilitate a high pressure ratio within small spatial requirements.Compared with axial compressor,centrifugal compressor is more complex because of the complex internal flow field. Nowadays, improving the efficiency while reducing the size and weight is the trend of centrifugal compressor,which determines the important status of optimization.Considering most optimization methods have a characteristic that the calculation amount is severely influenced by the number of design parameters,for de-tailed optimization,which means the design parameters’number is usually large, the computational cost is a factor that can’t be ignored.

    The most significant characteristic of the Adjoint method is that its calculation cost has nearly no relationship with the number of design parameters,which makes the Adjoint method a popular optimization method in both external and internal flows[1-17].The Adjoint method is a kind of gradient-based algorithm,which mainly uses the sensitivity information to determine the optimization direction.

    The derivation of the Adjoint equation can expressed as follows:Introducing the adjoint stateλas a Lagrange multiplier to enforce the flow governing equation,the objective function becomes:

    HereIis the objective function.Ris he flow governing equation andαis the design parameter.Then the gradient of the new objective function can be written as:

    Considering the linearization of flow governing equation,the sensitivity can be expressed as:

    So a conclusion can be got that:

    If a properλexists to make that:

    then the sensitivity can be computed through:

    So if a proper distribution ofλcan be obtained to satisfy Equation(4),the expression of sensitivity will be independent ofUα,which makes the sensitivity calculation greatly simplified since it doesn’t need to compute the gradients of flow terms.

    Replacing the flow governing equation with the thin layer RANS equation,and fulfilling the derivation process in equation(1)-(5),the specific expression of the Adjoint equation is that:

    And the gradient of the objective function to design parameters can be expressed as[16]:

    According to the Adjoint method described in equation(6)and(7),our team developed an Adjoint optimization system to optimize the geometry of turbomachine and the existing optimization results showed good properties. In this paper, the optimization system is adopted to optimize a modified centrifugal compressor.

    2 Geometry Description

    In this paper,a centrifugal compressor setup by Krain et al[18],which is based on the experiment with a high pressure ratio,is chosen as the geometric model. The design parameters of impeller are shown in Table(1).And further details can be taken from[1].

    Tab.1 Impeller design data SRV2-O

    However,when the original Krain impeller was calculated by our flow solver in the Adjoint optimization system,the numerical errors are relatively larger,and the poor characteristic of flow is not suitable for optimization process.Therefore,the geometry of Krain impeller is modified to satisfy the whole optimization solver. Changes are concentrated on the area of leading and tailing edge and the flow path. For the former, the structure of leading and tailing edge are modified into rounded,as shown in Figure (1).As for the latter, the flow path is shorted artificially,as shown in Figure (2).

    Now we call the original Krain impeller with rounded leading and tailing edge as the original geometric model.And the Krain impeller with shorted flow path and rounded leading and tailing edge as the new original geometric model. Calculated by Numeca software, the performances of original and new original models are shown in Figure (3).

    Fig.1 Modified structure of leading edge(left)and trailing edge(right)

    Fig.2 Modified flow path of Krain impeller

    Fig.3 Performance of the original model(left)and new original model(right)impeller.

    In Figure(3),the mass flow rate is normalized by its choked values.The maximum stage pressure ratio is 6.8 with a corresponding isentropic efficiencyηof about 78%in the original geometric model.In the new original geometric model,the maximum stage pressure ratio is 7.3 with a corresponding isentropic efficiencyηof about88%.From the point of geometry,the new original model has much shorter inlet and no vaneless diffuser, and therefore less loss is occurred in the latter model and the isentropic efficiency is much higher. At the same time,although the calculation settings of inlet boundary conditions are the same,the defined inlet positions are not the same,so actually the real inlet boundary conditions are different,which can explain the phenomenon of different stage pressure ratio.

    The optimization process in this paper aims at changing the geometry of the main blade and splitter to get an adjusted geometry with higher efficiency.Considering the optimization space and the correspondence between two original models,the new original geometric model is chosen as the starting point of the Adjoint optimization.

    3 Optimization Settings

    3.1 Parametric model

    The parametric model defines the changing pattern of optimization space when perturbations are added to the design parameters.In this paper,Hicks-Henne bump function[19]used to explore the design space composes of blade circumferential bowing and blade suction surface.

    The Hicks-Henne function used in this paper can be expressed as:

    wherexle,xteare the axial coordinates of the leading and trailing edges;rhubandrtipare radial coordinates of hub and casing section.

    The geometry of blades is described inr-θ-xcoordinates.According to equation(20),once one design variable has a perturbation,geometry at its position has a maximum change compared to other positions.At the same time,the geometry of other positions has changes too,which is decided by the relative distance to the perturbed design variable.

    3.2 Objective function

    Generally,the expression of isentropic efficiency is too complex to be used as objective function in optimization process.Considering the corresponding relationship between aerodynamic efficiency and entropy generation rate, and the expression of the latter is much simpler[20],in this paper,entropy generation rate is chosen as the objective function for the optimization process,which can be expressed as:

    The definition of the entropy generation rateΔsis given by:

    where the subscript“in it”denotes initial values of the new original geometric model.

    3.3 Cost function and constrains

    In essence,the Adjoint optimization method belongs to a mathematical way.The control of optimizer mainly reflects on the optimization function and parametric method.To get a better optimization direction,usually we need to add some constrains to the objective function,which means the cost function.Generally,such constrains include the mass flow rate,total pressure ratio and flow angle. In this paper, the cost function is chosen as equation(11)to prevent the changes of the flow characteristic point.

    Wherem˙and πare the ratios of mass flow rate and total pressure ratio,respectively.σ1andσ2are weighting factors,which describe the control ability of each constraint.

    So the final objective function used in this optimization is:

    4 Results and Analysis

    The design optimization is carried out at near peak-efficiency operating point,whose performance is listed in Table(1).Total 242 design variables are used to describe the shape perturbations of the blades,including 11 design variables describing the stacking line of the blade.

    The evolution of the entropy generation rate with design cycles is shown in Figure(4).From the viewpoint of the changing trend of the entropy generation rate,the optimization system realizes the target of decreasing the entropy generation rate.As the same time,shown in Figure(5),the isentropic efficiency calculated by flow solver in the Adjoint optimization system achieves the growth as a whole.The constrains of flow mass rate and total pressure ratio in equation(11)are used to keep the operating conditions constant,whose evolution is shown in Figure(6).Although the value of mass flow rate and total pressure ratio keep changing with cycles,the maximum change during the whole optimization is 1.40%of total pressure ratio and 2.50%of mass flow rate.At the fourteenth optimization step,the changes of constraints are 0.49%of pressure ratio and 1.99%of mass flow rate,which are all in the acceptable ranges.

    Fig.4 Evolution of the entropy generation rate

    Fig.5 Evolution of the efficiency

    Fig.6 Evolution of the constraint of mass flow rate and total pressure ratio

    Choosing the fourteenth optimization step as the final optimization result, which is the last point before the entropy generation rate starting shaking. The difference of geometric structure between the new original model and the optimization result is shown in Figure(7)and(8).As we can see from the figures,at the region of hub and tip,the changes at leading edge are bigger than tailing edge. The profiles of the splitter move to the pressure surface while the profiles of main blade move to the suction surface.The changes of the splitter are larger than the main blade.At the mid span,changes are the most obvious.On the whole,the changes of profiles increase the area of flow path between the main blade and its upper splitter.

    Fig.7 Comparison of blade geometry(x-rθ)between original and optimal at hub and tip span

    Fig.8 Comparison of blade geometry(x-rθ)between original and optimal at mid span

    After calibrating the flow by Numeca software,the changed geometry makes the flow field getting a better performance,as shown in Figure(9)and(10).The relative Mach number near the leading edge of the main blade is decreased, reducing the strength of shock at that region at mid span.Besides,the area of low Mach number near tailing edge is decreased at both the mid span and the 90%span.Though the changes are not big enough,the isentropic efficiency still improves 0.53%point.In another word,the Adjoint optimization improves the flow structure on detail but didn’t change the nature of the flow.

    Fig.9 Contours of relative Mach number on blade to blade at mid span

    Fig.10 Contours of relative Mach number on blade to blade at 90%span

    Considering the performance at a single operating point can’t represent the working ability of the centrifugal compressor,the comparison is with the impeller global data,i.e.pressure ratio and efficiency vs.mass flow rate,as shown in Figure(11).It is clear that the performance of the optimized impeller near the choked point is the same as the new original model.However,both the efficiency and total pressure ratio have a significant increase at the non-choked conditions.And the maximum increase of efficiency calculated from the characteristic line is about 0.6%, showing the positive function of the Adjoint optimization system.

    Fig.11 Efficiency and pressure ratio over mass flow rate

    5 Conclusions

    In this paper,a constrained gradient evaluation is used for centrifugal impeller,and a continuous Adjoint method for the thin shear-layer N-S equations in a cylindrical-coordinate system is developed.With the Adjoint-based gradient evaluation,perturbation-based shape representation,and the steepest descent method,an efficient integrated shape optimization loop is constructed.

    The proposed method is used to optimize the shape of the Krain impeller.The optimization is able to raise the isentropic efficiency of the blade by 0.6%while maintaining nearly the same mass flow rate and total pressure ratio.Though the improvement of the isentropic efficiency is not such significant, it provides a new way to improve the centrifugal impeller.

    6 Acknowledgments

    The authors would like to express their deep appreciations to the National Natural Science Foundation of China for funding this work,Project No.51676015.

    观看免费一级毛片| 精品一区二区三区av网在线观看| 国产探花在线观看一区二区| 亚洲国产欧美网| 三级男女做爰猛烈吃奶摸视频| 欧美日韩黄片免| 久久久国产欧美日韩av| 中文字幕人妻丝袜一区二区| 国产成人精品久久二区二区91| 性色avwww在线观看| 男人的好看免费观看在线视频| 欧美黄色片欧美黄色片| 国产伦人伦偷精品视频| 成人性生交大片免费视频hd| 欧美xxxx黑人xx丫x性爽| 在线观看舔阴道视频| 麻豆成人av在线观看| 嫩草影视91久久| 国产精品,欧美在线| 欧美zozozo另类| 国产三级中文精品| 国产成人影院久久av| 亚洲熟女毛片儿| 一a级毛片在线观看| 狂野欧美激情性xxxx| 日日干狠狠操夜夜爽| 美女免费视频网站| 岛国在线观看网站| 高潮久久久久久久久久久不卡| 午夜激情欧美在线| 91久久精品国产一区二区成人 | 一级作爱视频免费观看| 久久精品国产99精品国产亚洲性色| 国产探花在线观看一区二区| 国产极品精品免费视频能看的| 亚洲国产精品sss在线观看| 免费高清视频大片| 一本一本综合久久| 一卡2卡三卡四卡精品乱码亚洲| 国产精品野战在线观看| 日韩人妻高清精品专区| 成人特级av手机在线观看| 久久九九热精品免费| 欧美中文综合在线视频| 国产精品一区二区精品视频观看| 久久婷婷人人爽人人干人人爱| 淫秽高清视频在线观看| x7x7x7水蜜桃| 国产亚洲精品av在线| 99久久久亚洲精品蜜臀av| 国产91精品成人一区二区三区| 最近最新中文字幕大全免费视频| 91麻豆av在线| 人人妻人人看人人澡| 悠悠久久av| 亚洲,欧美精品.| a级毛片在线看网站| 色综合欧美亚洲国产小说| 色综合婷婷激情| 国产精品综合久久久久久久免费| 亚洲精品粉嫩美女一区| 美女 人体艺术 gogo| 午夜精品一区二区三区免费看| 在线a可以看的网站| 午夜福利欧美成人| 亚洲性夜色夜夜综合| 日韩有码中文字幕| 波多野结衣巨乳人妻| 女同久久另类99精品国产91| 日韩欧美一区二区三区在线观看| 又大又爽又粗| 国产又黄又爽又无遮挡在线| 精品一区二区三区视频在线观看免费| 久久精品影院6| 男人和女人高潮做爰伦理| 级片在线观看| 国产免费男女视频| 亚洲国产精品999在线| 噜噜噜噜噜久久久久久91| 9191精品国产免费久久| 成人国产一区最新在线观看| 久久精品综合一区二区三区| 成年免费大片在线观看| 在线十欧美十亚洲十日本专区| 亚洲av成人不卡在线观看播放网| 国内毛片毛片毛片毛片毛片| 99久久综合精品五月天人人| av福利片在线观看| 99精品欧美一区二区三区四区| 国产成人影院久久av| av黄色大香蕉| 九九在线视频观看精品| 一二三四社区在线视频社区8| 黄片大片在线免费观看| 成人欧美大片| 日本与韩国留学比较| 听说在线观看完整版免费高清| bbb黄色大片| 美女被艹到高潮喷水动态| 身体一侧抽搐| 噜噜噜噜噜久久久久久91| 亚洲人成伊人成综合网2020| 亚洲自偷自拍图片 自拍| 国产三级在线视频| 啪啪无遮挡十八禁网站| 制服人妻中文乱码| 国产高潮美女av| 99在线人妻在线中文字幕| 国产真实乱freesex| 亚洲欧美日韩高清在线视频| 久久久久久九九精品二区国产| 一二三四社区在线视频社区8| 久9热在线精品视频| 啦啦啦观看免费观看视频高清| 女同久久另类99精品国产91| 国产一区二区激情短视频| 可以在线观看的亚洲视频| 看片在线看免费视频| 久久久久久九九精品二区国产| 国产黄a三级三级三级人| 成人性生交大片免费视频hd| 欧美日本视频| 美女午夜性视频免费| 亚洲国产精品成人综合色| 精品99又大又爽又粗少妇毛片 | 嫁个100分男人电影在线观看| 久久国产精品人妻蜜桃| 国产爱豆传媒在线观看| 我要搜黄色片| svipshipincom国产片| 一级黄色大片毛片| 成年女人永久免费观看视频| 欧美黄色淫秽网站| 欧美日韩综合久久久久久 | 中出人妻视频一区二区| 国产精品99久久99久久久不卡| 久久精品国产亚洲av香蕉五月| 99riav亚洲国产免费| 观看免费一级毛片| 伊人久久大香线蕉亚洲五| 露出奶头的视频| 最新在线观看一区二区三区| 少妇熟女aⅴ在线视频| 亚洲国产看品久久| 给我免费播放毛片高清在线观看| 亚洲中文日韩欧美视频| 国产一区在线观看成人免费| 丝袜人妻中文字幕| 波多野结衣巨乳人妻| 精品不卡国产一区二区三区| aaaaa片日本免费| 日韩三级视频一区二区三区| 综合色av麻豆| 午夜福利成人在线免费观看| 成年女人看的毛片在线观看| or卡值多少钱| 欧美国产日韩亚洲一区| 亚洲成人久久性| 视频区欧美日本亚洲| 国产欧美日韩一区二区精品| 国产精品99久久久久久久久| 免费av毛片视频| 久久久色成人| 亚洲一区二区三区不卡视频| 国产一区二区在线观看日韩 | 亚洲精华国产精华精| 观看免费一级毛片| 欧美+亚洲+日韩+国产| 露出奶头的视频| 婷婷丁香在线五月| 久久精品91蜜桃| 国产精品日韩av在线免费观看| 老司机午夜十八禁免费视频| 手机成人av网站| 国产精品一及| 美女高潮的动态| 婷婷精品国产亚洲av| 亚洲av免费在线观看| 国产精品美女特级片免费视频播放器 | 国产精品久久电影中文字幕| 悠悠久久av| 极品教师在线免费播放| 九色国产91popny在线| 久久久久久人人人人人| 天天躁日日操中文字幕| 午夜日韩欧美国产| 国产精品久久久人人做人人爽| 麻豆国产av国片精品| 黑人操中国人逼视频| 五月伊人婷婷丁香| 可以在线观看的亚洲视频| 欧美绝顶高潮抽搐喷水| 日韩三级视频一区二区三区| 精品日产1卡2卡| 精品国产超薄肉色丝袜足j| 黄色视频,在线免费观看| 亚洲欧洲精品一区二区精品久久久| ponron亚洲| 色播亚洲综合网| 脱女人内裤的视频| 亚洲美女视频黄频| 亚洲成人久久爱视频| 99久久精品一区二区三区| 亚洲精品一区av在线观看| 又大又爽又粗| 成人国产综合亚洲| 日韩三级视频一区二区三区| 国产精品 欧美亚洲| 又粗又爽又猛毛片免费看| 亚洲av第一区精品v没综合| 最近最新中文字幕大全电影3| 波多野结衣高清无吗| 亚洲国产欧美一区二区综合| 色综合婷婷激情| 亚洲国产欧洲综合997久久,| 日韩欧美在线二视频| 成人国产一区最新在线观看| 俺也久久电影网| 欧美日本视频| 亚洲国产欧洲综合997久久,| 伦理电影免费视频| 色噜噜av男人的天堂激情| 操出白浆在线播放| 国产午夜福利久久久久久| 国产伦人伦偷精品视频| 麻豆一二三区av精品| avwww免费| 亚洲人与动物交配视频| 国产午夜福利久久久久久| 亚洲欧美一区二区三区黑人| 中文字幕av在线有码专区| 一进一出好大好爽视频| 久久草成人影院| 日韩欧美 国产精品| 天天躁日日操中文字幕| 欧美日本视频| 国产精品日韩av在线免费观看| 色尼玛亚洲综合影院| 男人舔奶头视频| 性色avwww在线观看| 久久久久免费精品人妻一区二区| 亚洲精品国产精品久久久不卡| 亚洲精品乱码久久久v下载方式 | 国产伦人伦偷精品视频| 国产亚洲精品综合一区在线观看| 久久久久久久久久黄片| 特大巨黑吊av在线直播| 国产精品影院久久| 国产淫片久久久久久久久 | 黄色丝袜av网址大全| 精品人妻1区二区| a在线观看视频网站| 无限看片的www在线观看| www.999成人在线观看| 色av中文字幕| 国产三级在线视频| 欧美日韩福利视频一区二区| 一区二区三区激情视频| 长腿黑丝高跟| aaaaa片日本免费| 日本成人三级电影网站| 一个人免费在线观看电影 | 亚洲欧美日韩卡通动漫| 国产成+人综合+亚洲专区| 亚洲,欧美精品.| 色综合欧美亚洲国产小说| 男人舔奶头视频| 久久九九热精品免费| 欧美日韩精品网址| 日本a在线网址| 少妇的逼水好多| 18禁国产床啪视频网站| svipshipincom国产片| 亚洲美女黄片视频| 国产真实乱freesex| 欧美日韩综合久久久久久 | 亚洲国产色片| 国产亚洲精品一区二区www| 国产欧美日韩一区二区三| 黄色片一级片一级黄色片| 成年版毛片免费区| 久久精品国产亚洲av香蕉五月| 男插女下体视频免费在线播放| 国产精品野战在线观看| 久久久水蜜桃国产精品网| 久久伊人香网站| 国产三级在线视频| 亚洲人成伊人成综合网2020| 此物有八面人人有两片| 99精品久久久久人妻精品| 亚洲熟女毛片儿| 日韩av在线大香蕉| 亚洲最大成人中文| 国产伦人伦偷精品视频| 亚洲国产日韩欧美精品在线观看 | 两性夫妻黄色片| 老熟妇乱子伦视频在线观看| 国产成人精品无人区| 香蕉久久夜色| 最近视频中文字幕2019在线8| 中文字幕久久专区| 老汉色av国产亚洲站长工具| 久久热在线av| 国产91精品成人一区二区三区| 美女扒开内裤让男人捅视频| 在线视频色国产色| e午夜精品久久久久久久| 免费在线观看影片大全网站| 日本一二三区视频观看| 国产亚洲精品久久久久久毛片| 制服丝袜大香蕉在线| 国产精品野战在线观看| 国产精品一区二区三区四区久久| 精品久久久久久久久久久久久| 18禁黄网站禁片免费观看直播| bbb黄色大片| av在线蜜桃| 18美女黄网站色大片免费观看| 少妇熟女aⅴ在线视频| 偷拍熟女少妇极品色| 可以在线观看毛片的网站| 美女黄网站色视频| 亚洲欧洲精品一区二区精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久这里只有精品19| 两个人的视频大全免费| 男人和女人高潮做爰伦理| 全区人妻精品视频| 男女视频在线观看网站免费| 亚洲国产精品合色在线| 日日干狠狠操夜夜爽| 无限看片的www在线观看| 亚洲性夜色夜夜综合| 少妇的逼水好多| 国产午夜精品久久久久久| 久久热在线av| 十八禁网站免费在线| 国产成人啪精品午夜网站| 国产又色又爽无遮挡免费看| 欧美中文日本在线观看视频| 在线视频色国产色| 人妻久久中文字幕网| 午夜福利18| 夜夜夜夜夜久久久久| 成人国产一区最新在线观看| 亚洲人成伊人成综合网2020| 欧美日本亚洲视频在线播放| 欧美中文日本在线观看视频| 无遮挡黄片免费观看| 很黄的视频免费| 久久久久久九九精品二区国产| 久久久国产成人免费| 身体一侧抽搐| 国产成人aa在线观看| 99久久久亚洲精品蜜臀av| 麻豆国产av国片精品| 我的老师免费观看完整版| 久久久久九九精品影院| 欧美日韩黄片免| 两性夫妻黄色片| 999久久久精品免费观看国产| 毛片女人毛片| 国产极品精品免费视频能看的| 性色avwww在线观看| 国产精品亚洲一级av第二区| 午夜免费激情av| 手机成人av网站| 色播亚洲综合网| 网址你懂的国产日韩在线| 18禁美女被吸乳视频| 亚洲欧美日韩东京热| 在线观看美女被高潮喷水网站 | 人妻久久中文字幕网| 国产一区二区在线观看日韩 | 免费在线观看日本一区| 琪琪午夜伦伦电影理论片6080| 一级毛片高清免费大全| 久久久精品欧美日韩精品| 久久精品国产综合久久久| 露出奶头的视频| 在线观看舔阴道视频| 听说在线观看完整版免费高清| 午夜福利免费观看在线| 级片在线观看| 久久天堂一区二区三区四区| av黄色大香蕉| 亚洲av成人av| 亚洲av片天天在线观看| 黄频高清免费视频| 老司机在亚洲福利影院| 欧美xxxx黑人xx丫x性爽| 在线a可以看的网站| 高清毛片免费观看视频网站| 三级国产精品欧美在线观看 | 精华霜和精华液先用哪个| 午夜福利成人在线免费观看| 国产欧美日韩一区二区三| 久久热在线av| 亚洲国产欧美人成| 一本综合久久免费| 99国产精品一区二区蜜桃av| 又紧又爽又黄一区二区| 美女cb高潮喷水在线观看 | 女人被狂操c到高潮| 亚洲国产精品999在线| 成人亚洲精品av一区二区| 婷婷六月久久综合丁香| 最近最新中文字幕大全电影3| 国产高清视频在线观看网站| 精品久久久久久久人妻蜜臀av| 天天添夜夜摸| 婷婷亚洲欧美| 国产亚洲av嫩草精品影院| 国产亚洲av高清不卡| 给我免费播放毛片高清在线观看| 亚洲专区中文字幕在线| 久久久国产成人精品二区| 午夜福利欧美成人| 最新美女视频免费是黄的| 亚洲熟妇中文字幕五十中出| 国产亚洲精品综合一区在线观看| 少妇裸体淫交视频免费看高清| 国内精品一区二区在线观看| 成人无遮挡网站| 亚洲中文字幕一区二区三区有码在线看 | 国产伦一二天堂av在线观看| 久久久久久久精品吃奶| 成人特级黄色片久久久久久久| 亚洲精品久久国产高清桃花| 三级国产精品欧美在线观看 | 最新中文字幕久久久久 | 村上凉子中文字幕在线| 熟女人妻精品中文字幕| 少妇熟女aⅴ在线视频| 欧美日韩中文字幕国产精品一区二区三区| 精品99又大又爽又粗少妇毛片 | 叶爱在线成人免费视频播放| 中文在线观看免费www的网站| 久久精品aⅴ一区二区三区四区| 免费在线观看成人毛片| 午夜福利在线观看免费完整高清在 | 一个人看视频在线观看www免费 | 中国美女看黄片| 人人妻人人看人人澡| 免费观看人在逋| 一个人看的www免费观看视频| a在线观看视频网站| 一区二区三区高清视频在线| 欧美3d第一页| 精品国产美女av久久久久小说| 久久久精品大字幕| 99国产综合亚洲精品| 国产精品国产高清国产av| 久久天躁狠狠躁夜夜2o2o| 亚洲电影在线观看av| 18禁黄网站禁片午夜丰满| 男女午夜视频在线观看| 亚洲精品乱码久久久v下载方式 | 女警被强在线播放| 五月伊人婷婷丁香| 日本一本二区三区精品| 亚洲精品国产精品久久久不卡| 一本综合久久免费| 在线观看午夜福利视频| 男人舔女人的私密视频| 成年女人毛片免费观看观看9| 国产精品香港三级国产av潘金莲| 天堂网av新在线| 嫩草影院精品99| 少妇熟女aⅴ在线视频| 18禁裸乳无遮挡免费网站照片| 老熟妇仑乱视频hdxx| 成人鲁丝片一二三区免费| 国产伦精品一区二区三区视频9 | 亚洲国产精品合色在线| 两性夫妻黄色片| 婷婷精品国产亚洲av在线| 亚洲欧美精品综合久久99| 色吧在线观看| netflix在线观看网站| 免费人成视频x8x8入口观看| 免费在线观看影片大全网站| 亚洲精品456在线播放app | 成人精品一区二区免费| 日日干狠狠操夜夜爽| 全区人妻精品视频| 在线看三级毛片| 少妇丰满av| 高潮久久久久久久久久久不卡| 俄罗斯特黄特色一大片| 欧美日韩综合久久久久久 | 亚洲成人久久性| 亚洲一区高清亚洲精品| 黄色女人牲交| 中文字幕av在线有码专区| 欧美激情在线99| 不卡一级毛片| 精品无人区乱码1区二区| av欧美777| 人妻丰满熟妇av一区二区三区| 黄色视频,在线免费观看| 免费av不卡在线播放| 可以在线观看的亚洲视频| 欧美在线黄色| 精品一区二区三区av网在线观看| 免费观看人在逋| 全区人妻精品视频| xxxwww97欧美| 免费电影在线观看免费观看| 看黄色毛片网站| 欧美zozozo另类| 1000部很黄的大片| 精品午夜福利视频在线观看一区| 亚洲精品美女久久久久99蜜臀| 亚洲专区字幕在线| 性色avwww在线观看| 国产精品影院久久| 亚洲欧洲精品一区二区精品久久久| 久久久国产精品麻豆| 欧美日韩精品网址| 亚洲人与动物交配视频| 婷婷六月久久综合丁香| 成人精品一区二区免费| 亚洲精华国产精华精| 91字幕亚洲| 成人亚洲精品av一区二区| 久久精品影院6| 成人高潮视频无遮挡免费网站| 美女cb高潮喷水在线观看 | 级片在线观看| 欧美性猛交╳xxx乱大交人| 99视频精品全部免费 在线 | 亚洲激情在线av| 亚洲中文日韩欧美视频| 国模一区二区三区四区视频 | www.熟女人妻精品国产| 视频区欧美日本亚洲| 一个人看的www免费观看视频| 国产麻豆成人av免费视频| 在线观看一区二区三区| 亚洲av中文字字幕乱码综合| 久久亚洲真实| 成年女人看的毛片在线观看| 精品久久蜜臀av无| 国产成人福利小说| 免费看光身美女| 99在线视频只有这里精品首页| 少妇人妻一区二区三区视频| 啦啦啦观看免费观看视频高清| 亚洲av熟女| 不卡一级毛片| 欧美极品一区二区三区四区| 哪里可以看免费的av片| 曰老女人黄片| 久99久视频精品免费| 蜜桃久久精品国产亚洲av| 成年女人永久免费观看视频| 国产毛片a区久久久久| 国产精品美女特级片免费视频播放器 | 精品一区二区三区四区五区乱码| 香蕉av资源在线| 国产伦一二天堂av在线观看| 两性夫妻黄色片| 成人三级黄色视频| 亚洲av成人精品一区久久| 九九热线精品视视频播放| h日本视频在线播放| 国产日本99.免费观看| 午夜免费观看网址| 欧美绝顶高潮抽搐喷水| 麻豆成人午夜福利视频| 一a级毛片在线观看| 亚洲中文日韩欧美视频| 黄片大片在线免费观看| 美女免费视频网站| 国产激情偷乱视频一区二区| 亚洲五月天丁香| 国产精品影院久久| 精品久久久久久久久久免费视频| 欧美日韩乱码在线| 久久久久久人人人人人| 黄色丝袜av网址大全| 欧美日韩乱码在线| 久久久久久九九精品二区国产| www.熟女人妻精品国产| 在线观看美女被高潮喷水网站 | 国产激情偷乱视频一区二区| 一边摸一边抽搐一进一小说| 在线视频色国产色| 99热精品在线国产| 国产精品久久久久久人妻精品电影| 国产精品久久久久久亚洲av鲁大| 日本三级黄在线观看| 久久中文字幕一级| 每晚都被弄得嗷嗷叫到高潮| www.熟女人妻精品国产| 一个人免费在线观看电影 | 亚洲avbb在线观看| 国产三级黄色录像| 夜夜看夜夜爽夜夜摸| 色av中文字幕| 天天添夜夜摸| 1000部很黄的大片| 亚洲第一电影网av| 国产黄色小视频在线观看| 亚洲 国产 在线| 久久久久久久久免费视频了| 欧美成人性av电影在线观看| 国内少妇人妻偷人精品xxx网站 | 久久久国产精品麻豆| 动漫黄色视频在线观看| 国产精品久久电影中文字幕| 九九热线精品视视频播放| 欧美三级亚洲精品| 欧美中文综合在线视频|