• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Design of Non-axisymmetric Endwall with Variable-fidelity CFD Model*

    2018-11-21 08:56:50LiuChenXuyangZhangRenDaiChengxiongPanMeibaoZhang
    風(fēng)機(jī)技術(shù) 2018年5期

    Liu ChenXu-yang ZhangRen DaiCheng-xiong PanMei-bao Zhang

    (1.University of Shanghai for Science and Technology,Shanghai,China;2.Shanghai Electric Gas Turbine Company,Shanghai,China)

    Abstract:Non-axisymmetric endwall is numerically investigated to suppress the secondary endwall flow in a HP turbine suction surface.The endwall contour is represented by a non-uniform rational B-spline surface.Two solution spaces are designed by the rule of hypercube sampling through variation of nodal radial extension. Final most effective endwall contour is obtained through screening all available samples with surrogate-based model. Results show that non axisymmetric endwall reduces the turbulence kinetic energy of the passage vortex by 5.5%and the total pressure loss 1.6%.Local heat transfer coefficient is lowered on the afore passage endwall surface with a certain increment on the aft passage endwall. Overall averaged heat transfer coefficient is reduced.

    Keywords:Non-axisymmetric Endwall,Optimal Design,Turbine Rotor,Variable-Fidelity CFD Model

    NomenclatureCaxAxial chord length

    Second kinetic energy

    VnNormal velocity

    VzVelocity inzdirection

    HHeight of the contoured endwall

    Total pressure coefficient

    pt,inTotal pressure at inlet

    pt,inStatic pressure at inlet

    ptLocal total pressure

    Static pressure coefficient

    psLocal static pressure

    1 Introduction

    The second flow in a turbine cascade is of interest to both designers and researchers. The flow in turbine rotor passages is strongly three dimensional due to the complex existence of secondary vortical flows. Close to the endwall, flow separation, a horseshoe vortex, a passage vortex, and some small but very intense corner vortices at the junction of the endwall and blade may affect the aerodynamic performance of a turbine and increase the heat transfer from the hot fluid to the blades and endwall surface(Wang et al,1997)[1].Thus,second flows have been studied for a number of decades and seminal works related to turbomachinery are presented by Langston(Langston et al,1977)[2],Sieverding(Sieverding,1983)[3]and Sharma(Sharma and Butler 1987)[4].When an endwall boundary layer approaches a row of turbine airfoils,due to a strong pressure gradient,it gradually collapses to two single vortices (a suction leg and pressure leg),which pair with oscillating motion extending downstream.The pressure leg of the horseshoe vortex travels across the passage toward the suction surface,becoming a major part of the passage vortex,which is also the major part of the secondary flow.The second flow is responsible for much of the pressure loss across the cascade and high heat transfer to the blade and endwall.

    Today, as I approach that edge, as I am the one with the teenage daughter, I look at my mother through different eyes. And I sometimes wish I could halt the years and stop her from growing older, stop her from repeating herself.,,,。,,,。

    For low aspect ratio and high loaded blade of gas turbine,secondary flow losses account for 1/3 of total entropy increase in turbine stages (Denton, 1993)[5]. One of the important technical ways to improve the turbine efficiency is fully understanding of the mechanism of secondary flow losses and geometry of 3D surface to change the curvature of the endwall streamline and the transverse pressure gradient in passage,as a consequence,secondary loss is reduced effectively.

    Harvey(Hartland et al,1999)[6]showed the perspective of three-dimensional non-axisymmetric endwall to reduce the passage transverse pressure gradient and the secondary loss was reduced by 30%.At the same time,a sharp corner vortex develops near the suction side trailing edge.Brennan(Brennan et al,2001)[7]and Rose(Rose and Harvey,2001)[8]used the same method on aTRENT500 high pressure turbine stage and demonstrated 0.59%stage efficiency improvement.Germain(Germain et al,2010)[9]and Schuepbach(Schuepbach et al,2010)[10]succeeded to use non-axisymmetric endwall contours for a stator and rotor in a 1.5 stage turbine and got an increase of overall stage efficiency by 1.0%±0.4%.Praisner(Praisner et al,2007)[11]compared the aerodynamic characteristics of three low pressure turbine contoured endwall with different load factors.Results showed both total pressure loss and turbulence kinetic energy were reduced,and front-loaded airfoil was the best because of 12%total pressure loss decreasing.

    It is known that endwall thermal load is significantly affected by the secondary flow.9 different endwall geometries were designed by Saha(Saha and Acharya,2006)[12]to estimate their heat transfer level.It was discovered that 8%reduction of endwall heat transfer can be done by the optimized endwall comparing to cylindrical endwall.Mahmood(Mahmood and Acharya,2007)[13]also tested the optimized endwall and results showed that the Nusselt number was lower than cylinder endwall,especially at the upstream zone.Lynch(Lynch et al,2009)[14]studied the heat transfer coefficient on Praisner’s contoured endwall and discovered that heat transfer coefficient was reduced by 20%at the high heat transfer corner of pressure side and the effect of Reynolds number on endwall heat transfer displayed unapparent.

    Non-axisymmetric endwall surfaces are usually constructed by the methods of orthogonal decomposition and the combination of axial and circumferential shape function modeling.Fourier series methods have larger design space for the complex relationship between input parameters and endwall shapes while the non-axisymmetric surfaces will be extended outside the passages.Trigonometric function method(Guojun,2006)[15]and the attenuation function method(Nagel et al,2001)[16]can also construct concave and convex endwall shapes intuitively but lack of design space.NURBS method has large design space and is easy to adjust the endwall shape and input parameters are intuitively related to endwall shapes at the same time.

    Design of experimental methodology(DOE)is used to search for the optimal endwall design for a HP turbine rotor because limited number of design candidates have to be CFD evaluated.And satisfactory and effective endwall design may be selected among those samples when properly evaluating criteria is prescribed.Computation time and cost are definitely cheaper than any direct search or gradient based optimization solver.

    Thus,in this paper,non-uniform rational B-spline(NURB)surface is adopted to represent endwall contour.DOE is used to search for the proper endwall design.And the flow mechanism and heat transfer characteristics on non-axisymmetric endwall are studied.

    2 Methodology

    The incompressible flow computations are performed for a rotor blade passage in gas turbine,as shown in Fig 1.The rotor blades have a constant axial chord length of 109 mm and an aspect ratio of 1.606.In the prototype,the shroud and hub surface is cylindrical.

    Fig.1 Turbine Blade Model

    The inlet of the computational domain is placed at about 1.5axial chord from the leading edge while the outlet is located at 2 times the axial chord from the trailing edge.At the inlet,a temperature and total pressure with the turbulence intensity are specified.At the outlet,outflow boundary conditions are employed.No-slip velocity boundary conditions are used for all solid walls.An uniform heat flux(1 000W/m2-K)conditions are applied along the bottom endwall and the blade surface with the shroud is insulated.The rotor blade rotation speed is 120 m/s.And the periodic boundary condition is employed at the circumferential edge. The working fluid is air.

    All the calculations are carried out with the commercial code CFX.The three-dimensional incompressible Reynolds averaged Navior-Stokes equations are solved using a finite volume formulation to discretize these equations.Grid generation is done employing NUMECA autogrid 5 that produces a structured mesh.Atypical grid along the confining surfaces and also on the contoured endwall is presented in Fig 2.And the details of the blade-endwall junction are also presented in the enlarged partial views.H form of meshes are used both in the inlet zone and the outlet zone.Along the passage,the form of meshes is O4H,in order to obtain fine mesh quality.The boundary layer meshes are also used along the junction of blade and endwall,as well as the blade surface.SST turbulence model is applied Advection term in the conservation equation and turbulent transport equation are second-order difference scheme of CFX.In all the simulations,theY+values of the first grid point away from the wall are maintained below 2.0.

    Fig.2 Mesh Details

    Grid independence is carried out by comparing solutions of cylinder endwall using four different meshes having 1000000,150000,2 000000and300000cells.For all cases,the grid is clustered near the bottom end wall and blade surfaces.Though the number of grid points is increased in the whole domain,the bottom end-wall and blade wall regions are refined the most.They+value for the coarse and fine grids near the bottom end wall are 1.94,1.63,1.07 and 1.04,respectively,while keeping the corresponding values on the blade wall below the permissible limits(y+≈1 for fine mesh).Fig.3 shows the span wise variation of the relative total pressure coefficient at the outlet surface.There is no significant difference for 2 000 000 and 3 000 000 cells.Therefore,calculations with 2 000 000 cells appear to be grid independent.

    Fig.3 Distribution of Relative Total Pressure Coefficients

    3 Endwall Parameterization

    The profile shape of the endwall is defined by using shape function. Simple shape functions, such as sinusoidal curve,imply a preconceived notion of what the resulting geometry should look like,but the allowable design space is limited to these shapes.More complicated shape functions,such as those involving Fourier components,allow more intricate geometries to be defined,but the relationship between the input parameters and the contoured geometry become less clear.Thus,in this paper,non-uniform rational B-spline(NURB)surface is adopted to represent endwall contour because of the large design space and clear relationship between the input parameters and the endwall geometries.

    NURBS surface is a bivariate piecewise rational function withporders inudirection andqorders invdirection:

    Pi,jis represent of the control point,and the number of points are(m+1)and(n+1)inuandvdirection respectively.{Wi,j}is a weight factor,{Ni,p(u)}and{Nj,q(v)}are the basic functions of non-rational B spline based on the vector U and V.

    The contour shape of the endwall can be modulated by adjustingWi,andPi.

    The splines are controlled by a matrix of control points distributed along the endwall of interest within a given upstream and downstream limit,as shown in Fig 4.In order to guarantee the periodic boundary condition,the camber line of adjacent blades is defined as the boundary.The inlet and outlet are placed at 0.5 axial chord from the leading edge and trailing edge.Thus,the endwall surface is controlled by 11×7 points,and actually,NURB surface representing endwall contour is constructed by 25 node points,as shown in red points in Fig 4.Each control point is given a certain variation range only normal to the endwall with intentions as indicated in available open literature to avoid an unreasonable design.The non-axisymmetric endwall contourSis the superposition of cylinder endwallS0and the radial variation?Z(u,v).Asense of the contour shape can be obtained simply through inspection of the control point values,and one can make quick changes to the contour by defining different values of ?Z.

    Fig.4 Distribution of Control Points

    4 Design of Non-axisymmetric Endwall

    Profiling of the endwall is done in such a way to have convex curvature in the pressure side and concave curvature on the suction side. From the open literatures, and the static pressure distribution on the flap endwall, shown in figure 5, three design guidelines can be obtained:(1)the radial variations in the passages are limited in 10%of the blade height,both in the pressure side and the suction side;(2)close to the leading edge,the maximum amplitude in the pressure side is 6%of the blade height;(3)near the trailing edge,the suction side allows±3%of blade height variations.

    Fig.5 Static Pressure Contour on the Flap Endwall

    For the designing process,there are too many solutions to be chosen and the design of experimental methodology(DOE)is used to search for the optimal endwall design.In this paper,the Optimal Latin Hypercube Design is adopted for its good space filling and balance characteristics.Design space of 40 knowledge-based samples is organized by the rule of hypercube sampling through varying each node radial coordinate.Then the numerical analysis is carried out to obtain the relationship between design parameter and the objective.In generally,the loss coefficient of total pressure and kinetic energy of the secondary flow are regarded as objective functions.The secondary velocity is defined based on the circumferentially-averaged velocity in the middle span surface,which is not affected by the secondary flow.

    Where,U,V,Wrespectively is thex,y,zaxis component of velocity in the cartesian coordinates system and the secondary kinetic energy(SKE)is defined byVnandVz.So,

    The result of the 40 candidates is presented in Figure 6.Compared to cylinder endwall,the secondary kinetic energy is reduced by 4.55%and the relative total pressure coefficients is reduced by 1.51%among the 40 designs.And the best one is NAEW15.

    Fig.6 Results of 40 Candidates

    In order to analyze the influence of factors on response better,a sensitivity analysis is carried out among all results of DOE while the objection is the minimum values of average secondary kinetic energy at the outlet surface,by using the software Isight.25 control points are taken into consideration and the sensitivity of all the factors in percentage is illuminated in Fig 7.The factors,whose sensitivity is larger than 4%,is chosen for next round of design.

    Fig.7 Sensitivity of All Factors on SKE

    Table 1.shows the factors and the levels in the final design.And the result is presented in Figure 8.Compared to the cylindrical endwall in the secondary kinetic energy and relative total pressure coefficients,it can be found that all the results are better except NAEW42 and NAEW54.The area averaged secondary kinetic energy is reduced by 5.48%and relative total pressure coefficients is reduced by 1.63%.Thus,the best design is obtained after iterations, as shown in Figure 9.

    The contour generally consisted of a depression near the suction side and a peak near the pressure side.And the highest point on the endwall is approximately 0.05 of blade span above the cylinder endwall height while the lowest point is approximately 0.09 of blade span below the cylinder endwall.There is a peak approximately 2mm near pressure side trailing edge.

    Tab.1 Final Design Factors and Level Range

    Fig.8 Results of the Final Iteration

    Fig.9 Geometric Parameter and Shape for Non-axisymmetric Endwall

    5 Results and Discussion

    Comparison of the mass flow rate of the rotor blade with and without non-axisymmetric endwall is carried out.The results show that the mass flow rate of the non-axisymmetric endwall is 1.754 5kg/s, and the mass flow rate of the flat endwall is 1.748 9 kg/s.It implies that the difference of the mass flow rate is about 0.32%,and it can be seemed as no change.Figure10 shows the radial distribution of circumferential averaged relative total pressure coefficients at blade outlet.There is a peak loss zone approximately at Normal span=0.2 near blade outlet with the influence of passage vortex and the peak value represents intensity of passage vortex.Apparently,the peak value is reduced by 11.9%from 0.47 to 0.42 because of application of optimized contoured endwall.At the same time,the total pressure coefficient(Cpt)is lower than cylinder endwall at the position of 0.05~0.5 blade span.While the loss has a little increase near endwall,which demonstrates nonaxisymmetric endwall can accelerate the fluid mixture and disturbance near endwall.

    Fig.10 Radial distribution of pitch wise averaged total pressure coefficients

    Blade static pressure coefficients at 5%span is shown in Figure11.At the range fromx/cax=0.3 to 0.7,blade static pressure coefficients decrease apparently,while static pressure on suction side almost no changes. Cross pressure in passage is reduced and this will inhibit the development of secondary flow.As we can see in Fig 11,static pressure of the pressure side at 20%span is decreased slightly and there is almost no change on suction side. Cross pressure is also diminished.

    Figure 12.shows the contours of endwall static pressure.The black contour lines denote the iso-pressure levels. For cylinder endwall, high static pressure zone appears in the pressure side and low static pressure zone appears in the suction side.The large pressure difference leads the secondary vortex system generated from the leading edge,immediately to move toward the suction side,which causes a bigger secondary flow loss in the whole passage.After using the non-axisymmetric endwall,a high value of difference of static pressure zone appear in the suction side,which reduces the pressure difference between the pressure surface and the suction surface.The loss of the secondary flow decrease as well.

    Figure 13 shows the main vortex structure of the secondary flow. When an endwall boundary layer approaches a row of turbine airfoils,it will be separated by the cross-stream-dis-crete adverse pressure gradient imparted by each airfoil and reorganized into a horseshoe vortex. The leg of the horseshoe vortex adjacent to the pressure side of the airfoil,often referred to as the pressure-side leg, entrains a majority of the low-momentum,high-vorticity endwall boundary layer fluid and subsequently grows to form the passage vortex(PV)inx/Cax=0.4,a dominant loss core in the endwall region. From the comparison in different sites, the non-axisymmetric endwall can decrease the cross pressure difference and weak the strength of the vortex.

    As showed in Figure 14 both the strength of horseshoe vortex and passage vortex and the secondary flow loss are decreased.

    Figure 15 shows the contours of secondary kinetic energy at outlet.There are high secondary kinetic energy zones near hub and shroud by the effect of passage vortex.Compared with cylinder endwall,there is almost no change near shroud while secondary kinetic energy peak is reduced near hub,which is demonstrated that the strength of passage vortex core region is weakened.At the same time,SKE is also reduced on the right of periodic passage.While SKE is increased slightly near hub.This also demonstrates nonaxisymmetric endwall increase the loss and disturbance near endwall too.

    Fig.11 Blade Static Pressure Distribution

    Fig.12 Static Pressure Contour at the Endwall Surface

    Fig.13 Vortex Structure of the Secondary Flow

    Fig.14 The Strength of the Vortex

    Figure 16 shows the contour of endwall stanton number.The black contour lines denote the iso-pressure levels.For cylinder endwall,high heat transfer zone extends from leading edge pressure side to passage with the effect of horseshoe vortex.This demonstrates contoured endwall weakens the intensity of horseshoe vortex.As mall high heat transfer zone appears near pressure side in the forward portion of the passage.There is a little decrease in the forward portion of passage and apparently increase in the aft portion of passage.At the same time,the heat transfer in trailing edge zone is increased.To make its difference more clearly,the Stanton map of contoured endwall is deducted from the asymmetric and is presented in Figure 16(c).Except blue regions indicating enhanced heat transfer,central channel displays reduction of heat transfer on the path of passage vortex.

    Fig.15 SKE Contour at Exit Surface

    Fig.16 Stanton Number Contour on Endwall

    6 Conclusions

    The non-axisymmetric endwall is parameterized by the method of NURBS and the optimized non-axisymmetric endwall is obtained.The optimized contoured endwall is regard as research objects to study the influence of non-axisymmetric endwall on endwall flow and heat transfer. The results show the secondary kinetic energy is reduced by 5.48%and the relative total pressure coefficients is reduced by 1.63%at the exit surface for the contoured endwall.

    1)Non-axisymmetric endwall can decrease the cross pressure by adjust static pressure contour and weaken the horseshoe vortex and passage vortex.

    2)Non-axisymmetric endwall can reduce the secondary kinetic energy and total pressure loss though the flow performance near endwall is not improved.

    3)Effective non-axisymmetric endwall can improve the endwall heat transfer performance locally.As mall zone of high heat transfer appears near pressure side in the forward portion of the passage.Heat transfer is slightly decreased in the forward portion of passage while increased in the aft portion of passage.At the same time,the Stanton number near the trailing edge is increased.

    7 Acknowledgments

    The first author is grateful for financial support from the Chinese National Nature Science Funds(No.51276116)and Shanghai Electric Gas Turbine Company.The authors are also thankful for useful discussions with Mr. Jian.Zhang.

    a级毛片在线看网站| 午夜福利,免费看| 999精品在线视频| 亚洲成人免费电影在线观看| 色婷婷av一区二区三区视频| 99香蕉大伊视频| 久久精品国产亚洲av高清一级| 亚洲,欧美精品.| 欧美在线黄色| av线在线观看网站| 少妇粗大呻吟视频| 亚洲精品在线美女| 国产视频一区二区在线看| 国产精品久久久久久精品电影小说| 我要看黄色一级片免费的| 久久 成人 亚洲| 人人妻人人添人人爽欧美一区卜| 亚洲国产欧美在线一区| 首页视频小说图片口味搜索| 亚洲人成电影免费在线| 亚洲精品中文字幕一二三四区 | 午夜免费成人在线视频| 午夜精品国产一区二区电影| 亚洲专区国产一区二区| 国产精品熟女久久久久浪| 无限看片的www在线观看| 黄色毛片三级朝国网站| 久久影院123| 中文字幕最新亚洲高清| www.熟女人妻精品国产| 亚洲精品国产一区二区精华液| 亚洲成国产人片在线观看| 别揉我奶头~嗯~啊~动态视频 | 秋霞在线观看毛片| 国产精品久久久久久精品电影小说| 国产精品久久久久久精品电影小说| 女性被躁到高潮视频| 丰满少妇做爰视频| 人妻人人澡人人爽人人| 午夜91福利影院| av电影中文网址| 国产精品久久久久成人av| www日本在线高清视频| 一本大道久久a久久精品| 国产免费一区二区三区四区乱码| av在线播放精品| 国产99久久九九免费精品| 精品少妇久久久久久888优播| 天堂8中文在线网| 久久ye,这里只有精品| 亚洲 欧美一区二区三区| 窝窝影院91人妻| 久久国产亚洲av麻豆专区| 亚洲va日本ⅴa欧美va伊人久久 | 国产视频一区二区在线看| 国产精品一二三区在线看| 久热爱精品视频在线9| 亚洲欧美精品综合一区二区三区| 精品福利观看| 国产亚洲精品一区二区www | 精品福利永久在线观看| 一级,二级,三级黄色视频| 中文字幕人妻丝袜制服| 永久免费av网站大全| 嫁个100分男人电影在线观看| 久久免费观看电影| 啪啪无遮挡十八禁网站| 男女之事视频高清在线观看| 51午夜福利影视在线观看| 国产成人精品在线电影| 国产精品九九99| 91成年电影在线观看| 91av网站免费观看| 高清黄色对白视频在线免费看| 男女边摸边吃奶| 国产黄频视频在线观看| 久9热在线精品视频| 女警被强在线播放| 国产国语露脸激情在线看| 两人在一起打扑克的视频| 国产97色在线日韩免费| 十分钟在线观看高清视频www| 欧美黄色淫秽网站| 日韩中文字幕视频在线看片| 女人精品久久久久毛片| 国产男女内射视频| 高清av免费在线| 91大片在线观看| av天堂久久9| 黄色毛片三级朝国网站| 丝袜美足系列| 性色av一级| 亚洲精品在线美女| 亚洲三区欧美一区| 动漫黄色视频在线观看| 精品国产超薄肉色丝袜足j| 国产一级毛片在线| 国产亚洲精品第一综合不卡| 亚洲成人免费av在线播放| 少妇精品久久久久久久| 啦啦啦免费观看视频1| 久久中文看片网| 久久久水蜜桃国产精品网| 亚洲av日韩精品久久久久久密| 黄色视频,在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区三区在线臀色熟女 | 亚洲av日韩精品久久久久久密| 十八禁网站免费在线| 欧美日韩中文字幕国产精品一区二区三区 | 下体分泌物呈黄色| 777久久人妻少妇嫩草av网站| 国产精品免费大片| 一二三四在线观看免费中文在| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久久人人做人人爽| 高清黄色对白视频在线免费看| 两个人免费观看高清视频| 欧美成人午夜精品| 侵犯人妻中文字幕一二三四区| 精品少妇一区二区三区视频日本电影| 妹子高潮喷水视频| 丝瓜视频免费看黄片| 成年av动漫网址| 亚洲国产毛片av蜜桃av| tube8黄色片| 午夜福利一区二区在线看| 午夜免费观看性视频| 久久亚洲精品不卡| 亚洲视频免费观看视频| 一本一本久久a久久精品综合妖精| 欧美日韩中文字幕国产精品一区二区三区 | 国产免费av片在线观看野外av| 91麻豆精品激情在线观看国产 | 搡老岳熟女国产| 新久久久久国产一级毛片| 国产亚洲av片在线观看秒播厂| 色婷婷av一区二区三区视频| 久久性视频一级片| 桃红色精品国产亚洲av| 免费人妻精品一区二区三区视频| 午夜精品久久久久久毛片777| 国产av又大| 老司机午夜十八禁免费视频| 多毛熟女@视频| 国产免费视频播放在线视频| 午夜福利影视在线免费观看| 一本久久精品| 日韩一区二区三区影片| www.自偷自拍.com| 午夜福利乱码中文字幕| 国产在线免费精品| 色94色欧美一区二区| 人成视频在线观看免费观看| 美女主播在线视频| 亚洲国产欧美在线一区| 啦啦啦在线免费观看视频4| 欧美 亚洲 国产 日韩一| 韩国高清视频一区二区三区| 国产精品影院久久| 精品一品国产午夜福利视频| 久久女婷五月综合色啪小说| 欧美日韩黄片免| 午夜久久久在线观看| 淫妇啪啪啪对白视频 | 老熟妇仑乱视频hdxx| 日韩视频在线欧美| 俄罗斯特黄特色一大片| 大香蕉久久成人网| 一本—道久久a久久精品蜜桃钙片| 50天的宝宝边吃奶边哭怎么回事| 热99国产精品久久久久久7| 午夜视频精品福利| 一区福利在线观看| 成人免费观看视频高清| av超薄肉色丝袜交足视频| 一区二区av电影网| 国产精品一区二区免费欧美 | 精品久久久久久久毛片微露脸 | 久久国产精品人妻蜜桃| 日韩免费高清中文字幕av| 老司机靠b影院| 精品人妻在线不人妻| 精品国产乱码久久久久久男人| 日韩人妻精品一区2区三区| 日本wwww免费看| 亚洲色图综合在线观看| 国产精品一区二区精品视频观看| 纯流量卡能插随身wifi吗| 91麻豆精品激情在线观看国产 | 高清黄色对白视频在线免费看| 国产欧美日韩综合在线一区二区| 正在播放国产对白刺激| 美女国产高潮福利片在线看| 丝瓜视频免费看黄片| 亚洲成av片中文字幕在线观看| 亚洲精华国产精华精| 国产欧美日韩一区二区精品| 各种免费的搞黄视频| 午夜免费鲁丝| 女性被躁到高潮视频| 在线亚洲精品国产二区图片欧美| 考比视频在线观看| 最新的欧美精品一区二区| 欧美国产精品一级二级三级| 不卡av一区二区三区| 精品国产一区二区三区四区第35| 肉色欧美久久久久久久蜜桃| 久久久久国产一级毛片高清牌| av电影中文网址| 激情视频va一区二区三区| 少妇精品久久久久久久| 五月开心婷婷网| 两性夫妻黄色片| 亚洲欧洲日产国产| 亚洲va日本ⅴa欧美va伊人久久 | 高清视频免费观看一区二区| 亚洲国产欧美一区二区综合| 精品久久久久久电影网| 高潮久久久久久久久久久不卡| av免费在线观看网站| 精品视频人人做人人爽| 亚洲一区二区三区欧美精品| 久久久国产一区二区| 欧美性长视频在线观看| 天天躁夜夜躁狠狠躁躁| www.999成人在线观看| 久久精品成人免费网站| 成年女人毛片免费观看观看9 | 日本五十路高清| 日本黄色日本黄色录像| 最新的欧美精品一区二区| 国产精品自产拍在线观看55亚洲 | 午夜激情av网站| 成年av动漫网址| 国产精品九九99| 桃红色精品国产亚洲av| 亚洲国产中文字幕在线视频| 精品卡一卡二卡四卡免费| 欧美日韩亚洲高清精品| 国产伦理片在线播放av一区| 人成视频在线观看免费观看| 人妻久久中文字幕网| 免费在线观看视频国产中文字幕亚洲 | 亚洲少妇的诱惑av| 亚洲久久久国产精品| 久久精品亚洲av国产电影网| 久久综合国产亚洲精品| 一本大道久久a久久精品| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久av网站| 国产黄色免费在线视频| 中文字幕色久视频| 女人爽到高潮嗷嗷叫在线视频| 久久国产精品影院| 日韩欧美一区二区三区在线观看 | 日韩有码中文字幕| 免费在线观看日本一区| 亚洲精品国产区一区二| 午夜福利乱码中文字幕| 永久免费av网站大全| 精品久久蜜臀av无| netflix在线观看网站| 久久人人97超碰香蕉20202| 捣出白浆h1v1| 最新的欧美精品一区二区| svipshipincom国产片| 热99国产精品久久久久久7| 丝袜喷水一区| 男女之事视频高清在线观看| 极品人妻少妇av视频| 啦啦啦在线免费观看视频4| 欧美日韩黄片免| 久久亚洲国产成人精品v| 18在线观看网站| 国产人伦9x9x在线观看| 手机成人av网站| 国产成人系列免费观看| 久久人妻福利社区极品人妻图片| a在线观看视频网站| 久久久久国产一级毛片高清牌| 欧美性长视频在线观看| 国产淫语在线视频| 满18在线观看网站| 老司机午夜福利在线观看视频 | 亚洲成国产人片在线观看| 丝袜美足系列| 黑人巨大精品欧美一区二区蜜桃| 性高湖久久久久久久久免费观看| av福利片在线| 中文字幕av电影在线播放| 丝瓜视频免费看黄片| 一个人免费在线观看的高清视频 | 亚洲av成人一区二区三| 老汉色∧v一级毛片| 色94色欧美一区二区| 老司机福利观看| 激情视频va一区二区三区| 少妇裸体淫交视频免费看高清 | 精品久久蜜臀av无| 亚洲熟女毛片儿| 叶爱在线成人免费视频播放| 亚洲国产欧美在线一区| 国产高清视频在线播放一区 | 亚洲一区中文字幕在线| 国产亚洲欧美在线一区二区| 亚洲avbb在线观看| 天天躁夜夜躁狠狠躁躁| 电影成人av| av国产精品久久久久影院| 日韩电影二区| 99精品久久久久人妻精品| 欧美日韩国产mv在线观看视频| 国产欧美日韩一区二区三 | 丝袜美足系列| 日韩欧美一区二区三区在线观看 | 亚洲中文字幕日韩| 两个人免费观看高清视频| 麻豆av在线久日| 人人澡人人妻人| 国产一级毛片在线| 色94色欧美一区二区| 各种免费的搞黄视频| 色婷婷久久久亚洲欧美| 精品亚洲成a人片在线观看| 国内毛片毛片毛片毛片毛片| 两人在一起打扑克的视频| netflix在线观看网站| 亚洲成人免费av在线播放| 久久精品国产亚洲av高清一级| 高清av免费在线| 久久久久国产精品人妻一区二区| 久热这里只有精品99| 69av精品久久久久久 | 老司机午夜福利在线观看视频 | 欧美日韩福利视频一区二区| 色视频在线一区二区三区| 一级黄色大片毛片| 亚洲久久久国产精品| 欧美日韩一级在线毛片| 日日爽夜夜爽网站| av天堂在线播放| 狠狠狠狠99中文字幕| 国产日韩一区二区三区精品不卡| 性色av一级| 一本一本久久a久久精品综合妖精| 久久香蕉激情| 韩国高清视频一区二区三区| 美女高潮喷水抽搐中文字幕| 久久久国产成人免费| 亚洲av成人一区二区三| 国产又爽黄色视频| 视频在线观看一区二区三区| 人人澡人人妻人| 成年av动漫网址| 国产av精品麻豆| 成年女人毛片免费观看观看9 | 在线观看人妻少妇| 肉色欧美久久久久久久蜜桃| 免费av中文字幕在线| 热re99久久精品国产66热6| 亚洲精品美女久久久久99蜜臀| 别揉我奶头~嗯~啊~动态视频 | 精品国产一区二区三区久久久樱花| 大码成人一级视频| 欧美+亚洲+日韩+国产| 男女免费视频国产| 日日夜夜操网爽| 精品人妻1区二区| 精品国产一区二区三区久久久樱花| 国产精品亚洲av一区麻豆| av不卡在线播放| avwww免费| 国产成人影院久久av| 9色porny在线观看| 日韩欧美国产一区二区入口| 国产免费福利视频在线观看| 欧美国产精品一级二级三级| 美女视频免费永久观看网站| 视频区欧美日本亚洲| 操美女的视频在线观看| 99国产精品99久久久久| 久久久国产欧美日韩av| 电影成人av| 丝袜美足系列| 巨乳人妻的诱惑在线观看| 麻豆国产av国片精品| 免费在线观看视频国产中文字幕亚洲 | 久久av网站| 久久精品久久久久久噜噜老黄| 老司机亚洲免费影院| 亚洲第一青青草原| 国产成人一区二区三区免费视频网站| 国产成+人综合+亚洲专区| 日韩欧美一区二区三区在线观看 | 中文字幕高清在线视频| 美女中出高潮动态图| 久久精品亚洲av国产电影网| 欧美日韩国产mv在线观看视频| 在线永久观看黄色视频| 亚洲国产av影院在线观看| 激情视频va一区二区三区| 黑丝袜美女国产一区| 777米奇影视久久| 激情视频va一区二区三区| 久久久国产精品麻豆| 国产97色在线日韩免费| 久久人人爽人人片av| 俄罗斯特黄特色一大片| 男女国产视频网站| 精品亚洲乱码少妇综合久久| 久久久久国内视频| 亚洲欧美一区二区三区久久| 国产91精品成人一区二区三区 | 亚洲色图 男人天堂 中文字幕| 我要看黄色一级片免费的| 午夜福利,免费看| 色综合欧美亚洲国产小说| 老司机靠b影院| 欧美xxⅹ黑人| 久久久久久久精品精品| 日韩视频在线欧美| 成人黄色视频免费在线看| 国产精品久久久久成人av| 国产欧美日韩一区二区三 | 国产成人免费无遮挡视频| 久久久精品免费免费高清| 国产97色在线日韩免费| 少妇 在线观看| 成在线人永久免费视频| 欧美另类一区| 99国产极品粉嫩在线观看| 亚洲精品自拍成人| 91九色精品人成在线观看| a级片在线免费高清观看视频| 欧美黄色淫秽网站| 亚洲精品国产区一区二| 男女下面插进去视频免费观看| 国产成人a∨麻豆精品| 日韩欧美一区二区三区在线观看 | 午夜福利影视在线免费观看| 欧美黑人欧美精品刺激| 精品国产一区二区久久| 久久久国产成人免费| 在线 av 中文字幕| 国产一区二区三区综合在线观看| 成人国产av品久久久| 看免费av毛片| 80岁老熟妇乱子伦牲交| 日本vs欧美在线观看视频| 亚洲国产欧美日韩在线播放| 纵有疾风起免费观看全集完整版| 国产免费视频播放在线视频| 成年动漫av网址| 亚洲国产av影院在线观看| 婷婷色av中文字幕| 欧美精品人与动牲交sv欧美| 国产成人精品久久二区二区免费| 在线观看免费视频网站a站| 一区二区av电影网| 亚洲专区国产一区二区| 少妇裸体淫交视频免费看高清 | 水蜜桃什么品种好| 大香蕉久久网| 男女高潮啪啪啪动态图| av天堂在线播放| 69精品国产乱码久久久| 狂野欧美激情性bbbbbb| 性色av乱码一区二区三区2| 国产免费视频播放在线视频| 国产淫语在线视频| 桃花免费在线播放| 欧美日韩黄片免| 老鸭窝网址在线观看| av电影中文网址| 色94色欧美一区二区| 人人澡人人妻人| 国产xxxxx性猛交| 亚洲国产av影院在线观看| 一边摸一边做爽爽视频免费| 高清黄色对白视频在线免费看| 人妻人人澡人人爽人人| 在线天堂中文资源库| 精品第一国产精品| 国产又爽黄色视频| 性少妇av在线| 免费在线观看影片大全网站| 久久免费观看电影| 国产精品久久久久成人av| 国产av精品麻豆| 国产免费视频播放在线视频| 久久亚洲国产成人精品v| 婷婷丁香在线五月| av在线app专区| 日韩有码中文字幕| 亚洲国产欧美日韩在线播放| 嫁个100分男人电影在线观看| 亚洲午夜精品一区,二区,三区| 国产有黄有色有爽视频| 在线观看免费高清a一片| 捣出白浆h1v1| 国产日韩一区二区三区精品不卡| 午夜福利乱码中文字幕| 777米奇影视久久| tube8黄色片| 性少妇av在线| 超色免费av| 黄色怎么调成土黄色| 国产精品国产av在线观看| 免费久久久久久久精品成人欧美视频| 啦啦啦免费观看视频1| 首页视频小说图片口味搜索| 女人被躁到高潮嗷嗷叫费观| 母亲3免费完整高清在线观看| 黑人操中国人逼视频| 99国产精品免费福利视频| 国产人伦9x9x在线观看| 久久国产精品男人的天堂亚洲| 亚洲免费av在线视频| 亚洲伊人色综图| 一区二区av电影网| 狠狠精品人妻久久久久久综合| 亚洲色图 男人天堂 中文字幕| 精品少妇一区二区三区视频日本电影| 69av精品久久久久久 | 亚洲国产精品一区三区| 另类亚洲欧美激情| svipshipincom国产片| 日韩精品免费视频一区二区三区| 亚洲第一欧美日韩一区二区三区 | 久久精品亚洲熟妇少妇任你| 99精国产麻豆久久婷婷| 丰满少妇做爰视频| 精品国产一区二区三区久久久樱花| netflix在线观看网站| 黄色视频,在线免费观看| 丰满少妇做爰视频| 久久中文字幕一级| 欧美人与性动交α欧美软件| 欧美xxⅹ黑人| 一边摸一边抽搐一进一出视频| 亚洲七黄色美女视频| 国产在视频线精品| 日韩欧美免费精品| 搡老熟女国产l中国老女人| 久久国产精品大桥未久av| 9191精品国产免费久久| 99国产综合亚洲精品| 亚洲精品国产av成人精品| 肉色欧美久久久久久久蜜桃| 不卡av一区二区三区| 永久免费av网站大全| 丝袜脚勾引网站| a级毛片在线看网站| 亚洲成人免费电影在线观看| 国产精品成人在线| 欧美亚洲日本最大视频资源| 亚洲天堂av无毛| 在线亚洲精品国产二区图片欧美| 操出白浆在线播放| 国产无遮挡羞羞视频在线观看| 免费看十八禁软件| av不卡在线播放| 国产三级黄色录像| 欧美少妇被猛烈插入视频| 精品人妻一区二区三区麻豆| 久久精品亚洲av国产电影网| 无限看片的www在线观看| 97在线人人人人妻| cao死你这个sao货| 欧美少妇被猛烈插入视频| 亚洲精品一区蜜桃| 一区二区三区精品91| 秋霞在线观看毛片| 性色av乱码一区二区三区2| 国产精品久久久久成人av| 女人久久www免费人成看片| 午夜日韩欧美国产| 俄罗斯特黄特色一大片| 在线十欧美十亚洲十日本专区| 纵有疾风起免费观看全集完整版| 亚洲三区欧美一区| 精品国产乱码久久久久久小说| videos熟女内射| 黑人猛操日本美女一级片| 在线精品无人区一区二区三| 9191精品国产免费久久| av视频免费观看在线观看| 亚洲视频免费观看视频| 久久香蕉激情| 精品亚洲成a人片在线观看| 熟女少妇亚洲综合色aaa.| 蜜桃在线观看..| 午夜福利视频精品| 永久免费av网站大全| 丰满饥渴人妻一区二区三| 亚洲免费av在线视频| 91麻豆精品激情在线观看国产 | 国产精品麻豆人妻色哟哟久久| 极品人妻少妇av视频| 少妇精品久久久久久久| 欧美另类亚洲清纯唯美| 国产又色又爽无遮挡免| 天堂8中文在线网| 国产在线免费精品| 亚洲精品国产av成人精品| 69av精品久久久久久 | 亚洲精品成人av观看孕妇| 国产精品偷伦视频观看了| 国产精品久久久久久精品古装| 中国国产av一级| 国产伦理片在线播放av一区| av国产精品久久久久影院| av有码第一页| 精品久久久精品久久久|