• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of numerical wave model for typhoon wave simulation in South China Sea

    2018-11-15 03:40:18ZhiyuanWuChangboJiangBinDengJieChenYonggangCaoLianjieLi
    Water Science and Engineering 2018年3期

    Zhi-yuan Wu,Chang-bo Jiang,Bin Deng,*,Jie Chen,Yong-gang Cao,Lian-jie Li

    aSchool of Hydraulic Engineering,Changsha University of Science and Technology,Changsha 410004,China

    bKey Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province,Changsha 410004,China

    cSchool for Marine Science and Technology,University of Massachusetts Dartmouth,New Bedford,MA 02744,USA

    dKey Laboratory of Technology for Safeguarding of Maritime Rights and Interests and Application,State Oceanic Administration,Guangzhou 510310,China

    Abstract The simulating waves nearshore(SWAN)model has typically been designed for wave simulations in near-shore regions.In this study,the model's applicability to the simulation of typhoon waves in the South China Sea(SCS)was evaluated.A blended wind field,consisting of an interior domain based on Fujita's model and an exterior domain based on Takahashi's model,was used as the driving wind field.The waves driven by Typhoon Kai-tak over the SCS that occurred in 2012 were selected for the numerical simulation research.Sensitivity analyses of time step,grid resolution,and angle resolution were performed in order to obtain optimal model settings.Through sensitivity analyses,it can be found that the time step has a large influence on the results,while grid resolution and angle resolution have a little effect on the results.

    ?2018 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Keywords:Typhoon wave;South China Sea;SWAN model;Numerical wave model;Wave prediction and simulation

    1.Introduction

    Information on wind waves is very important for coastal ocean engineering and marine activities.The sustainable development of economic activities in the marine environment requires long-term data about environmental conditions such as wind-generated waves.Accordingly,knowledge of the wind-wave patterns is necessary in a variety of applications including design of coastal structures,sediment transport,coastal erosion,and pollution transport studies(Akp?nar et al.,2012;Jiang et al.,2015,2017;Chowdhury and Behera,2017).

    Up to 90%of natural destruction of the ocean is induced by waves,especially tropical cyclones and typhoon waves(Monserrat et al.,2006).As ocean resources development activities have been taken to new areas such as deep-sea areas with poor natural environments,wind-generated waves have obstructed the exploitation of the ocean resources by creating a poor operating environment.The South China Sea(SCS)has two different climate zones:the tropical and subtropical zones.Typhoons,which occur frequently,pose great threats to the SCS(Morton and Blackmore,2001)due to its water depth,wind fitch,varied topography,complicated hydrology,active tropical cyclones,and prevalent monsoons(Huangfu et al.,2017;Shao et al.,2018),constituting a serious challenge to deep-sea engineering.Therefore,it is urgently necessary to conduct further study on extreme environmental factors such as typhoons and waves in the SCS,in order to meet the needs of design,construction,and safe operation of deep-water engineering in the SCS.

    Currently,there are mainly three kinds of numerical models used to calculate typhoon waves:the wave modeling(WAM,Group,1988),WAVEWATCHIII(WWIII)model(Tolman,2009),and simulating waves nearshore(SWAN)models(Padilla-Hernandez et al.,2007;Xu et al.,2017;Umesh and Swain,2018).The calculation principles for the three models are roughly similar.The WAM model and WWIII model are suitable for the calculation of large-scale wavefields in the deep sea,but the results are not satisfactory when they are used to calculate small-scale wave fields in shallow water.The SWAN model is modified by the WAM model,adding the shoaling on the basis of the WAM model.The SWAN model includes some wave propagation factors,such as wave breaking,wave diffraction,and bottom friction in shallow water(Ou et al.,2002;Rogers et al.,2007).Thus,the simulation accuracy of the waves in the near-shore area can be largely enhanced.Considering the physical process,the computational efficiency of the SWAN model is lower than that of the WAM and WWIII models.

    Because the range of wind speed adopted in parameter calibration of the wind wave growth model is from 12 to 17 m/s(Booij et al.,1999),some researchers believe that the SWAN model is applicable to the calculation of general wind and waves,while the WWIII model is suitable to the calculation of large-scale typhoon waves(Reguero et al.,2012;Chen et al.,2013).With consideration of nonlinear physical process,the WWIII and SWAN models both tend to solve the balance equation of dynamic spectral density of the directional spectrum.Using the Jonswap spectrum,the WWIII model mainly considers wind energy input,nonlinear wave-wave interactions,bottom friction,and whitecapping.

    In addition to the physical process considered in the WWIII model,the SWAN model also takes the dissipation of energy and three-wave interaction of depth-induced wave breaking into account.With consideration of the shallow water effect,the computational efficiency of the SWAN model is slightly lower.In the WWIII model,the linear growth of the wind energy input is not considered,but the exponential growth is considered,as in the SWAN model.The waves are mainly affected by a linear growth in the primary generating stage as well as exponential growth in the growing stage.Meanwhile,the case is different when the wind speed turns into friction wind speed.

    It should be noted that the SWAN model is typically driven by the wind speed at an elevation of 10 m(U10),whereas in this study it was driven by the friction velocity U*.For the WWIII model formulation,the transformation from U10to U*is obtained with U*=,where CDis the drag coefficient and CD= (0.8+0.065U*)× 10-3.In the SWAN model,when the wind speed is greater than 7.5 m/s,CDtakes the same value as in the WWIII model,and when the wind speed is less than 7.5 m/s,CDcan be regarded as a constant,and CD=1.2875×10-3.Consequently,the SWAN model has a rather wider range of adaptive wind speed than the WWIII model in wave calculation.

    In this study,the calculation of waves caused by a specific typhoon in the SCS was carried out based on the SWAN model.A blended wind field consisting of an interior domain and an exterior domain,based on Fujita's model and Takahashi's model,respectively,was used as the driving wind field.The waves driven by Typhoon Kai-tak over the SCS occurring in 2012 were used for numerical simulation.

    2.Theoretical background of wind and wave models

    2.1.Typhoon wind field

    In this study,the interior domain based on Fujita's model(Fujita,1952)and the exterior domain based on Takahashi's model(Takahashi,1939)were adopted as the model wind if eld.Fujita's model was selected to simulate the wind field within two times the maximum wind speed radius,and Takahashi's model was selected beyond the range.The atmospheric pressure(pr)distribution in a typhoon area has the following forms:

    where pris the pressure at a radial distance r from the cyclone center(hPa);r is the distance from any position(x,y)to the center of the typhoon,andwhere xcand ycare the positions of typhoon center;p∞is the ambient or environmental pressure,equal here to 1013.25 hPa;p0is the central pressure of the typhoon;and R is the radius of the maximum wind speed(km),obtained with an empirical formula put forward by Graham and Nunn(1959)as follows:

    where Vcis the speed of the typhoon center and φ is the geographic latitude.

    The combination of Fujita's air pressure formula and Takahashi's air pressure formula can better describe the distribution of a typhoon pressure field.If the origin of coordinates was in the fixed computational domain,the center of the wind field in the typhoon domain would be symmetric.The distribution of the typhoon domain has the following forms:

    where Wxand Wyrepresent the components of wind speed in the x and y directions,respectively;Vxand Vyrepresent the components of the moving speed of the typhoon center in the x and y directions,respectively; Δp=p∞-p0,indicating different atmospheric pressures of the typhoon center;ρa(bǔ)is the air density;θ is the fluid inlet angle;C1and C2are constants,with C1=1.0 and C2=0.8;and f represents the Coriolis force.

    2.2.Formulations of SWAN model

    As a third-generation wave model,the SWAN model is one of the wave numerical models commonly used around the world at present.It can be used to calculate waves driven by wind,swells,and mixed waves of coastal,lake,and estuarine waters.All kinds of important wave parameters required in coastal engineering can be calculated,including wave height,wave period,wave length,wave steepness,the wave-moving direction,and wave energy propagation.The SWAN model has been widely used in simulation and calculation of waves since it was released.

    In the SWAN model,for the control equation for wave description,the dynamic spectrum balance equation is adopted based on the theory of linear and random surface gravity waves.In the flow field,the random waves are presented in two-dimensional dynamic spectral density rather than twodimensional energy spectral density.Dynamic spectral density N(σ,θ)is the ratio of the spectral energy density E(σ,θ)to the intrinsic representative wave frequency σ.The control equation is

    where N is the evolution of the action density;t is time;Cxand Cyare the propagation velocities of wave energy in the x and y directions,respectively;Cσand Cθare the propagation velocities in spectral spaces σ and θ,respectively;and S represents the energy source.The left-hand side is the kinematic part of this equation.The first item on the left side of this equation represents the changing rate of wave action density over time;the second and third items represent the propagation of wave energy in the x and y directions,respectively;the fourth item represents shifting of the relative frequency due to variations in depths and currents;and the fifth item represents the depth-induced and current-induced refraction.The item S on the right side of this equation includes dissipations,quadruplet interaction,and triad interaction caused by wind input,white capping,bottom friction,and depth-induced wave breaking.

    These terms mentioned above denote,respectively,generation due to wind input,dissipations due to depth-induced wave breaking,bottom friction,white capping,and triad and quadruplet nonlinear wave-wave interactions(Cavaleri et al.,2007).Details of these processes can be found in the SWAN manual(SWAN Team,2010).

    3.Study area and datasets

    3.1.Wind data of Typhoon Kai-tak

    Typhoon Kai-tak,known in the Philippines as Tropical Storm Helen,was a mild tropical cyclone that affected China,Vietnam,and Laos.It was the seventh typhoon and the thirteenth named storm of the 2012 Pacific typhoon season.The storm killed up to 40 people and caused a loss of 315 million dollars.Typhoon Kai-tak originated from an area in the Pacific Ocean on the evening of August 12,2012,then moved to the west,and developed into a severe tropical storm offshore of Luzon in the Philippines.It intensified into a typhoon on the surface of the northern SCS,was then downgraded into a tropical depression at 14:00 p.m.on August 18,and slowly dissipated after that.The track of Typhoon Kai-tak is illustrated in Fig.1.

    3.2.Study area

    The SCS is a marginal sea,a part of the Pacific Ocean,encompassing an area of around 3.5×106km2from the Singapore and Malacca Straits to the Taiwan Strait.James Shoal,about 2000 km from Guangdong Province,is located in the southern most part of China.The SCS is the deepest sea in China.The average water depth is about 1212 m,and the maximum depth of the middle of the abyssal plain reaches 5567 m.

    This study focuses on all the areas of the SCS.The computational domain of the SWAN model,from 0°N to 32°N and 102°E to 130°E,covers the SCS,as shown in Fig.2.

    In this study,the SWAN model was adopted for numerical calculation with the nesting method,as shown in Fig.2.The large grid(Domain 1)was used to calculate the wave height,wave direction,wave period,and some other characteristic values of the SCS and its surrounding waters,providing the boundary conditions for calculation of the small grid(Domain 2).The small grid(Domain 2)was used to calculate the wave characteristic values of the Beibuwan Gulf,the Qiongzhou Strait,and the surrounding waters.

    3.3.Bathymetry

    The bathymetric data for the SCS were provided by the United States National Geophysical Data Center(NGDC)of the National Oceanic and Atmospheric Administration(NOAA)(Amante and Barry,2009).

    Fig.1.Track of Typhoon Kai-tak.

    Fig.2.Two nested domains in SWAN modeling system.

    The coastline was supplied by a global self-consistent,hierarchical,high-resolution geographical(GSHHG)database(http://www.ngdc.noaa.gov/ngdc.html).Thisdatabasewas amalgamated from three databases in the public domain:World Vector Shorelines(WVS),CIA World Data Bank II(WDBII),and Atlas of the Cryosphere(AC).The latest release data of bathymetry(Version 2.3.4 released on January 1,2015)was used in this study.

    The topography was interpolated from the global ETOPO1.ETOPO are the digital terrain elevation data released by the United States NGDC,including data about land elevation and sea bottom topography.ETOPO terrain data have a total offive specifications.ETOPO1,adopted in this study,are the global relief data with the best effect and highest precision.They constitute a 1 arc-minute global relief model of Earth's surface that integrates land topography and ocean bathymetry.The database was built from numerous global and regional data sets,and is available in “Ice Surface”(top of Antarctic and Greenland ice sheets)and “Bedrock”(base of the ice sheets)versions.

    The spatial resolution of the bathymetric data source is 1× 1and the bathymetry is shown in Fig.3.In other words,it represents a spatial resolution of 1.3 km×1.8 km.Based on the terrain data,the topographic map of the SCS is shown in Fig.3.

    Fig.3.Topographic map of computational Domain 1 based on ETOPO1.

    4.Set-up of SWAN model

    In this study,the SWAN cycle III version 41.01 was used for wave simulations.The model was executed in the third generation and non-stationary mode with spherical coordinates.Both linear and exponential wind input growths were included in the model.The grid definitions in this study and recommended values for computational grid discretization in the SWAN model are summarized in Table 1.Formulations of available physical processes and their associated coefficients included in the model are summarized in Table 2.

    5.Discussion

    A few sensitivity analyses were performed to obtain optimal model settings for time step,grid resolution,and angle resolution.

    5.1.Sensitivity analysis for time step

    In order to determine the time step,the calculation time steps were set as 60 min,30 min,20 min,and 10 min.The results of significant wave heights in the four different conditions are shown in Fig.4.The calculated significant wave heights are lower than the measured values when the calculation time step is the same as that of the wind field.This shows that the simulation result is unsatisfactory when using a relatively larger time step.When the time steps were set as 10 min,20 min,and 30 min,the accuracy of simulation improved significantly.It can be found that the simulation result was best when the time step was 10 min.Therefore,the time step of 10 min was selected in the subsequent calculations.

    5.2.Sensitivity analysis for grid resolution

    To avoid the deviation caused by the wind field interpolated into the computing grid,the resolutions of the wind field and computing grid were set at the same level when verifying the impact of the computing grid resolution on simulation results.Grid resolutions were selected at four different calculation values:0.05°,0.10°,0.15°,and 0.20°.The comparison of calculated significant wave heights with different grid resolutions is shown in Fig.5.When the computing grid resolutions were set as 0.20°and 0.15°,both simulation results were less ideal than the observed results.When the computing grid resolutions were set as 0.05°and 0.10°,both simulation results were satisfied,and there was almost no difference in the significant wave heights simulated with the computing grid resolutions of 0.05°and 0.10°.To improve the calculation efficiency,the angle resolution of 0.10°was selected as the computing grid.

    5.3.Sensitivity analysis for angle resolution

    The SWAN model is calculated in the space of a twodimensional spectrum on a directional spectrum.It is suggested that the angle resolutions be set between 2°and 5°when calculating swells but between 10°and 15°when calculating wind and waves.In this study,the values of 10.00°,11.25°,12.50°,and 15.00°were selected for calculation.The comparison results of significant wave heights at four different angle resolutions are shown in Fig.6.When the angle resolutions were set at 11.25°,12.50°,and 15.00°,the simulation results were close to one another.When the angle resolution was set as 10.00°,the simulation result was superior to those of other angle resolutions.Therefore,the angle resolution of 10.00°was selected for the calculation.That is,360°was divided into 36 parts in the direction of the angle.

    6.Summary and conclusions

    The atmospheric driving forces of the typhoon wave model(pressure and wind fields)have been simulated by a blended wind field consisting of Fujita's model and Takahashi's model.The topography files obtained from NOAA were selected,and the typhoon waves driven by Typhoon Kai-tak over the SCS in 2012 were simulated based on the SWAN model.The SWAN model was successfully implemented for Typhoon Kai-tak over the SCS with the purpose of constituting a database for various typhoon wave parameters.This database can be used to comprehensively examine wave energy potential and long-term changes in wind-wave climate,and perform extreme value statistics to come up with design parameters.To validate the SWAN model,measured data were obtained from a buoy station.The results showed that the extreme wave heights calculated by the SWAN model agreed with the measured values when an accurate wind field was provided.The SWAN model can accurately describe the development process of typhoon waves driven by Typhoon Kai-tak.

    Table 1 Grid definitions in this study and recommended values for computational grid discretization in SWAN model(van der Westhuysen,2002).

    Table 2 Formulations of available physical processes and their associated coefficients included in SWAN model for application.

    Fig.4.Comparison of significant wave heights under influence of different time steps at a buoy station in 2012.

    Fig.5.Comparison of significant wave heights under influence of different grid resolutions at a buoy station in 2012.

    Fig.6.Comparison of significant wave heights under influence of different angle resolutions at a buoy station in 2012.

    Through sensitivity analysis,it was found that the time step had a strong influence on the simulation results,while grid resolution and angle resolution had less of an influence.Based on this,the nested grids and the non-static schema under spherical coordinates were chosen.The spatial resolution of the model was set as 0.1°× 0.1°,the time step was set as 10 min,and the angle resolution was set as 10.00°.In the twodimensional spectral space of frequency and direction,frequency was distributed in logarithmic form and divided into 34 spectrums,from 0.04 Hz to 1.00 Hz.

    The SCS is rather deep,as can be seen from the topographic map.At the edges of the SCS,the shallow water processes become significant,causing enhanced gradients in wave conditions.Therefore,for nearshore predictions,the present spatial resolution is possibly too crude.A simple solution to this problem is to apply the nesting facilities of the SWAN model,or to apply unstructured grids with varying spatial resolution.In addition,validation and calibration of wind fields against satellite data are recommended as well as application of wind fields with a finer spatial and temporal resolution,in order to further improve the quality of the wave model for the SCS.

    av线在线观看网站| 最近手机中文字幕大全| 亚洲,一卡二卡三卡| 国产精品99久久99久久久不卡 | 啦啦啦在线观看免费高清www| 爱豆传媒免费全集在线观看| av在线天堂中文字幕| 国精品久久久久久国模美| 99久国产av精品国产电影| 久久精品国产亚洲网站| 超碰97精品在线观看| 蜜桃亚洲精品一区二区三区| 在线观看人妻少妇| 99久久精品一区二区三区| 80岁老熟妇乱子伦牲交| 国产精品不卡视频一区二区| 欧美激情国产日韩精品一区| 日本色播在线视频| 色视频在线一区二区三区| 免费在线观看成人毛片| 色5月婷婷丁香| 欧美精品人与动牲交sv欧美| a级毛片免费高清观看在线播放| 久久久色成人| av专区在线播放| 欧美日韩一区二区视频在线观看视频在线 | 午夜日本视频在线| 成人漫画全彩无遮挡| 秋霞在线观看毛片| 日韩国内少妇激情av| 国产精品无大码| 我要看日韩黄色一级片| 亚洲精品456在线播放app| av在线亚洲专区| 中文天堂在线官网| 最新中文字幕久久久久| 网址你懂的国产日韩在线| 亚洲美女搞黄在线观看| 国产综合懂色| 天堂网av新在线| 亚洲在久久综合| 亚洲精品一二三| 看免费成人av毛片| 国产毛片a区久久久久| 国产成人午夜福利电影在线观看| 99re6热这里在线精品视频| 国内精品美女久久久久久| 国产黄色免费在线视频| 亚洲美女视频黄频| 少妇的逼好多水| 国产视频首页在线观看| 嫩草影院入口| 在线免费十八禁| 美女高潮的动态| 99久久精品一区二区三区| 欧美最新免费一区二区三区| 亚洲欧美一区二区三区黑人 | freevideosex欧美| 国产精品女同一区二区软件| 国产精品久久久久久久久免| 老司机影院毛片| 国产精品无大码| 国产午夜精品久久久久久一区二区三区| 蜜桃久久精品国产亚洲av| 国产 一区 欧美 日韩| 久久精品熟女亚洲av麻豆精品| 欧美97在线视频| 亚洲精华国产精华液的使用体验| 日日啪夜夜撸| 卡戴珊不雅视频在线播放| 午夜精品国产一区二区电影 | www.色视频.com| 欧美xxxx黑人xx丫x性爽| 国产久久久一区二区三区| 2021天堂中文幕一二区在线观| av一本久久久久| 99热全是精品| 国产成人精品福利久久| 丰满人妻一区二区三区视频av| 春色校园在线视频观看| 人人妻人人看人人澡| 亚洲精品日韩在线中文字幕| 亚洲av电影在线观看一区二区三区 | 在线a可以看的网站| 亚洲国产精品专区欧美| 亚洲欧美中文字幕日韩二区| 在线精品无人区一区二区三 | 国产av国产精品国产| 亚洲精品国产av蜜桃| 岛国毛片在线播放| 97超视频在线观看视频| 亚洲四区av| 欧美97在线视频| 天天躁夜夜躁狠狠久久av| 日韩强制内射视频| 欧美日韩亚洲高清精品| 国产白丝娇喘喷水9色精品| 99热网站在线观看| 男插女下体视频免费在线播放| 国产成人a区在线观看| 亚洲av日韩在线播放| 国产精品三级大全| 亚洲av不卡在线观看| av天堂中文字幕网| 有码 亚洲区| 久久精品夜色国产| 成年版毛片免费区| av免费在线看不卡| 一二三四中文在线观看免费高清| 少妇被粗大猛烈的视频| 久久鲁丝午夜福利片| 免费观看在线日韩| 日日啪夜夜撸| 亚洲av.av天堂| 国产男人的电影天堂91| 亚洲精品国产色婷婷电影| 女人十人毛片免费观看3o分钟| 极品教师在线视频| 精品熟女少妇av免费看| 成人漫画全彩无遮挡| 欧美 日韩 精品 国产| .国产精品久久| 亚洲av免费在线观看| 亚洲欧美中文字幕日韩二区| 熟女av电影| 欧美日韩视频精品一区| 国产免费一区二区三区四区乱码| 可以在线观看毛片的网站| 国产精品国产三级专区第一集| 校园人妻丝袜中文字幕| 国产成人精品一,二区| 边亲边吃奶的免费视频| 91久久精品国产一区二区成人| 久久久久久久久久久丰满| 高清午夜精品一区二区三区| 国产精品三级大全| 亚洲不卡免费看| 国内精品美女久久久久久| 亚洲精品国产色婷婷电影| 香蕉精品网在线| av天堂中文字幕网| 舔av片在线| 成人亚洲精品av一区二区| 欧美区成人在线视频| 中文精品一卡2卡3卡4更新| 狂野欧美激情性bbbbbb| 亚洲成色77777| 国产成人免费观看mmmm| 最近的中文字幕免费完整| 十八禁网站网址无遮挡 | 午夜福利在线观看免费完整高清在| 麻豆国产97在线/欧美| 麻豆精品久久久久久蜜桃| www.av在线官网国产| 99热网站在线观看| 亚洲精品影视一区二区三区av| 国产免费一区二区三区四区乱码| 国产黄频视频在线观看| 最新中文字幕久久久久| 久久久精品94久久精品| 亚洲高清免费不卡视频| 亚洲人与动物交配视频| 极品教师在线视频| 日韩欧美一区视频在线观看 | 搞女人的毛片| 人人妻人人澡人人爽人人夜夜| 久久99精品国语久久久| 大片电影免费在线观看免费| 极品教师在线视频| 午夜福利高清视频| 男男h啪啪无遮挡| 天堂网av新在线| 国产精品成人在线| 国产片特级美女逼逼视频| 亚洲精品一二三| 国产精品秋霞免费鲁丝片| 一本一本综合久久| 免费大片黄手机在线观看| 日韩大片免费观看网站| 又爽又黄无遮挡网站| 欧美最新免费一区二区三区| 偷拍熟女少妇极品色| 亚洲图色成人| 91aial.com中文字幕在线观看| 一级毛片我不卡| 国产精品人妻久久久久久| 看非洲黑人一级黄片| 毛片女人毛片| 欧美激情久久久久久爽电影| 久久久精品94久久精品| 在线观看人妻少妇| 少妇被粗大猛烈的视频| 久久精品国产亚洲网站| av在线蜜桃| 黄色怎么调成土黄色| 乱码一卡2卡4卡精品| 日产精品乱码卡一卡2卡三| av卡一久久| 日韩电影二区| 久久99热这里只有精品18| 人妻少妇偷人精品九色| h日本视频在线播放| 国产男女内射视频| 尤物成人国产欧美一区二区三区| 2021天堂中文幕一二区在线观| 欧美日韩国产mv在线观看视频 | 2021天堂中文幕一二区在线观| 最后的刺客免费高清国语| 亚洲精华国产精华液的使用体验| 爱豆传媒免费全集在线观看| 亚洲精品一二三| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人久久爱视频| 黄色配什么色好看| 91久久精品国产一区二区三区| 99久久人妻综合| 亚洲精品乱码久久久久久按摩| 卡戴珊不雅视频在线播放| 久久这里有精品视频免费| 精品国产三级普通话版| 狂野欧美激情性bbbbbb| 国产免费福利视频在线观看| 18禁在线无遮挡免费观看视频| 亚洲人成网站在线观看播放| 各种免费的搞黄视频| 欧美丝袜亚洲另类| 精品国产露脸久久av麻豆| 国产精品爽爽va在线观看网站| 久久精品国产a三级三级三级| 亚洲av国产av综合av卡| 在现免费观看毛片| av天堂中文字幕网| 亚洲欧美日韩卡通动漫| 日日摸夜夜添夜夜添av毛片| www.色视频.com| 成年免费大片在线观看| 欧美精品一区二区大全| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美成人精品一区二区| 国产成人福利小说| 99热这里只有是精品50| 99久久精品热视频| 18禁动态无遮挡网站| 国产女主播在线喷水免费视频网站| 日日摸夜夜添夜夜爱| 国产午夜精品一二区理论片| 少妇的逼好多水| 日本三级黄在线观看| 国产精品国产三级专区第一集| 春色校园在线视频观看| 国产男女超爽视频在线观看| 女人十人毛片免费观看3o分钟| 久久久精品免费免费高清| 一区二区av电影网| 中文字幕制服av| 日韩一本色道免费dvd| 久久午夜福利片| 中文资源天堂在线| 一级毛片电影观看| 国产免费又黄又爽又色| 高清日韩中文字幕在线| 亚洲精品国产av蜜桃| 在线观看av片永久免费下载| 亚洲av电影在线观看一区二区三区 | 成人毛片a级毛片在线播放| 亚洲精品,欧美精品| 欧美另类一区| 啦啦啦啦在线视频资源| 国产欧美亚洲国产| 在线观看av片永久免费下载| 我要看日韩黄色一级片| 欧美高清性xxxxhd video| 你懂的网址亚洲精品在线观看| 日韩制服骚丝袜av| av国产久精品久网站免费入址| 丝袜喷水一区| 麻豆久久精品国产亚洲av| 国产视频首页在线观看| 国产视频内射| 看免费成人av毛片| 少妇人妻 视频| 热99国产精品久久久久久7| av黄色大香蕉| 国产精品三级大全| 中文字幕制服av| 国产探花在线观看一区二区| 汤姆久久久久久久影院中文字幕| av国产精品久久久久影院| 成年av动漫网址| av天堂中文字幕网| 午夜激情久久久久久久| 国产片特级美女逼逼视频| 小蜜桃在线观看免费完整版高清| 亚洲成人精品中文字幕电影| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美精品专区久久| 亚洲国产精品成人综合色| 老女人水多毛片| 欧美日韩精品成人综合77777| 亚洲欧美日韩另类电影网站 | 国产黄频视频在线观看| 麻豆精品久久久久久蜜桃| 男的添女的下面高潮视频| 高清欧美精品videossex| 人人妻人人澡人人爽人人夜夜| 国产黄a三级三级三级人| 热re99久久精品国产66热6| 黄色日韩在线| 欧美日韩在线观看h| 美女脱内裤让男人舔精品视频| 日韩中字成人| 欧美激情在线99| 国产乱人偷精品视频| 寂寞人妻少妇视频99o| 亚洲av电影在线观看一区二区三区 | 久久这里有精品视频免费| 一本色道久久久久久精品综合| 欧美 日韩 精品 国产| 中文欧美无线码| 一级黄片播放器| 纵有疾风起免费观看全集完整版| 热re99久久精品国产66热6| 一个人看的www免费观看视频| 亚洲自偷自拍三级| 婷婷色av中文字幕| 你懂的网址亚洲精品在线观看| 色吧在线观看| 中文乱码字字幕精品一区二区三区| 欧美日本视频| 国内揄拍国产精品人妻在线| 在现免费观看毛片| 伊人久久精品亚洲午夜| 高清日韩中文字幕在线| 狂野欧美激情性bbbbbb| 欧美日韩综合久久久久久| xxx大片免费视频| 亚洲aⅴ乱码一区二区在线播放| 欧美一级a爱片免费观看看| 久久精品国产亚洲av涩爱| eeuss影院久久| 久久精品夜色国产| 国产极品天堂在线| 亚洲欧美日韩另类电影网站 | 日本黄大片高清| 一级毛片我不卡| 在线a可以看的网站| 性插视频无遮挡在线免费观看| 久久鲁丝午夜福利片| 亚洲精品久久午夜乱码| 日韩一区二区视频免费看| 日韩不卡一区二区三区视频在线| 日韩亚洲欧美综合| 乱码一卡2卡4卡精品| 国产精品.久久久| av国产免费在线观看| 国产老妇伦熟女老妇高清| 国产精品一区二区三区四区免费观看| 亚洲国产精品专区欧美| 最后的刺客免费高清国语| 久久久久久久大尺度免费视频| 久久女婷五月综合色啪小说 | 日本av手机在线免费观看| 极品少妇高潮喷水抽搐| 2021天堂中文幕一二区在线观| 日本欧美国产在线视频| 国产免费一级a男人的天堂| 国产精品熟女久久久久浪| 国产精品久久久久久久电影| 好男人在线观看高清免费视频| 亚洲av日韩在线播放| 中文乱码字字幕精品一区二区三区| 天堂中文最新版在线下载 | 成年版毛片免费区| 嫩草影院入口| 日本免费在线观看一区| 国产精品熟女久久久久浪| 亚洲av日韩在线播放| 亚洲精品日本国产第一区| 两个人的视频大全免费| 亚洲欧美一区二区三区国产| 免费看a级黄色片| 建设人人有责人人尽责人人享有的 | 成人亚洲精品一区在线观看 | 午夜爱爱视频在线播放| 神马国产精品三级电影在线观看| 日本黄色片子视频| 精华霜和精华液先用哪个| 亚洲av不卡在线观看| 最新中文字幕久久久久| 老师上课跳d突然被开到最大视频| 亚洲av男天堂| 中文字幕久久专区| 久久精品综合一区二区三区| 国产成人一区二区在线| 精品少妇久久久久久888优播| 亚洲国产日韩一区二区| 国产免费一区二区三区四区乱码| 天堂中文最新版在线下载 | 精品国产一区二区三区久久久樱花 | 日韩成人av中文字幕在线观看| 国产探花极品一区二区| 欧美zozozo另类| 黄色日韩在线| 一本一本综合久久| 午夜日本视频在线| 国产一级毛片在线| 一区二区av电影网| 久久久久久久亚洲中文字幕| 日韩av免费高清视频| 亚洲人成网站在线观看播放| 视频中文字幕在线观看| 精品酒店卫生间| av国产久精品久网站免费入址| 在线天堂最新版资源| 午夜福利视频1000在线观看| 日韩一本色道免费dvd| 亚洲欧美日韩另类电影网站 | 免费电影在线观看免费观看| 国产亚洲av片在线观看秒播厂| 在线观看一区二区三区| 99热这里只有是精品在线观看| 2021少妇久久久久久久久久久| 成年av动漫网址| 欧美精品一区二区大全| 亚洲高清免费不卡视频| 中文资源天堂在线| 黑人高潮一二区| 国产v大片淫在线免费观看| 久久精品久久久久久噜噜老黄| 99久久人妻综合| 黑人高潮一二区| 成人午夜精彩视频在线观看| 精品少妇久久久久久888优播| 成人免费观看视频高清| 美女cb高潮喷水在线观看| 国产免费一级a男人的天堂| 亚洲人与动物交配视频| av免费观看日本| 精品亚洲乱码少妇综合久久| 国产男女内射视频| 欧美+日韩+精品| 毛片一级片免费看久久久久| 精品熟女少妇av免费看| 午夜激情福利司机影院| 日韩伦理黄色片| 精品亚洲乱码少妇综合久久| 精品久久久久久久久av| 十八禁网站网址无遮挡 | www.色视频.com| 成人综合一区亚洲| 成人漫画全彩无遮挡| 国产成人精品福利久久| 各种免费的搞黄视频| 大陆偷拍与自拍| 日韩三级伦理在线观看| 亚洲不卡免费看| 纵有疾风起免费观看全集完整版| 91精品伊人久久大香线蕉| 国产成人一区二区在线| 精品一区在线观看国产| 80岁老熟妇乱子伦牲交| 777米奇影视久久| 国产综合懂色| 亚洲av成人精品一二三区| 晚上一个人看的免费电影| 亚洲欧美精品专区久久| 国产精品一二三区在线看| 男女啪啪激烈高潮av片| 极品教师在线视频| 亚州av有码| 人人妻人人看人人澡| 一区二区三区四区激情视频| 精品熟女少妇av免费看| 99热这里只有是精品在线观看| 国内揄拍国产精品人妻在线| 成人综合一区亚洲| 天美传媒精品一区二区| 高清午夜精品一区二区三区| 亚洲精品成人av观看孕妇| 深夜a级毛片| 日本三级黄在线观看| 亚洲欧美成人综合另类久久久| 嘟嘟电影网在线观看| 少妇高潮的动态图| 欧美日韩精品成人综合77777| 久久人人爽人人片av| 欧美日韩一区二区视频在线观看视频在线 | 日本色播在线视频| 99久国产av精品国产电影| 人妻一区二区av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本黄色片子视频| 国产免费一级a男人的天堂| 国产亚洲av嫩草精品影院| 一级毛片黄色毛片免费观看视频| 卡戴珊不雅视频在线播放| 国产探花极品一区二区| 免费观看性生交大片5| 人人妻人人澡人人爽人人夜夜| 国产老妇伦熟女老妇高清| 国产高清三级在线| 中国三级夫妇交换| 欧美日本视频| 欧美日韩国产mv在线观看视频 | 亚洲国产精品专区欧美| 欧美变态另类bdsm刘玥| 丝袜美腿在线中文| 日本黄大片高清| 美女高潮的动态| 美女国产视频在线观看| kizo精华| 精品久久久久久久末码| 亚洲欧美一区二区三区黑人 | 直男gayav资源| 国产精品人妻久久久久久| 少妇的逼好多水| 18禁在线播放成人免费| 国产精品久久久久久精品电影小说 | 少妇人妻精品综合一区二区| 联通29元200g的流量卡| 2018国产大陆天天弄谢| 涩涩av久久男人的天堂| av在线亚洲专区| 欧美一区二区亚洲| av福利片在线观看| 日本欧美国产在线视频| 日韩一本色道免费dvd| 久久久久性生活片| 亚洲欧洲国产日韩| 久久精品国产亚洲av天美| 九草在线视频观看| 亚洲美女视频黄频| 亚洲欧美清纯卡通| 性色av一级| 中文字幕久久专区| 三级男女做爰猛烈吃奶摸视频| 性色avwww在线观看| 亚洲av成人精品一区久久| 国产精品久久久久久久电影| 97在线视频观看| 国产一区二区三区综合在线观看 | 欧美丝袜亚洲另类| 午夜日本视频在线| 中文字幕制服av| 亚洲自偷自拍三级| 高清视频免费观看一区二区| 性插视频无遮挡在线免费观看| 身体一侧抽搐| 丝袜脚勾引网站| 精品久久久久久久久亚洲| 亚洲av成人精品一区久久| 一级毛片久久久久久久久女| 欧美日韩综合久久久久久| 亚洲国产最新在线播放| 欧美日韩国产mv在线观看视频 | 日本与韩国留学比较| 99九九线精品视频在线观看视频| 亚洲久久久久久中文字幕| 亚洲av日韩在线播放| av在线天堂中文字幕| 欧美极品一区二区三区四区| 丰满人妻一区二区三区视频av| 97超碰精品成人国产| 18禁在线无遮挡免费观看视频| 亚洲精品aⅴ在线观看| 晚上一个人看的免费电影| 国产男人的电影天堂91| 欧美+日韩+精品| 九九爱精品视频在线观看| 精品久久久久久久久av| 黄色一级大片看看| 精品一区二区三区视频在线| 婷婷色综合大香蕉| 国产探花在线观看一区二区| 91在线精品国自产拍蜜月| 身体一侧抽搐| 午夜精品国产一区二区电影 | 一个人看的www免费观看视频| 久久久久精品性色| 一区二区三区乱码不卡18| 亚洲一区二区三区欧美精品 | 久久久久久国产a免费观看| 国产精品一区二区三区四区免费观看| 亚洲欧美中文字幕日韩二区| 在线观看一区二区三区| a级一级毛片免费在线观看| 国产成人免费无遮挡视频| 亚洲第一区二区三区不卡| 久久久久精品性色| 只有这里有精品99| 熟妇人妻不卡中文字幕| 色播亚洲综合网| 久久久久久久久久人人人人人人| 最后的刺客免费高清国语| 午夜福利在线在线| 国产在线一区二区三区精| 嫩草影院精品99| 肉色欧美久久久久久久蜜桃 | 高清日韩中文字幕在线| 日日摸夜夜添夜夜添av毛片| 亚洲国产最新在线播放| 亚洲成人精品中文字幕电影| 国产成人精品一,二区| 嫩草影院新地址| 91久久精品电影网| 九九爱精品视频在线观看| 听说在线观看完整版免费高清| 熟女电影av网| 干丝袜人妻中文字幕| 久久人人爽人人爽人人片va| 亚洲经典国产精华液单| 亚洲欧美一区二区三区国产| 国产成人91sexporn| 国产毛片在线视频| 在线 av 中文字幕|