• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reliability Modeling of Phased Mission System with Phase Backup by Stochastic Petri Net

    2018-11-15 08:07:56LIMengzhuYUHaiyueWUXiaoyue

    LI Mengzhu(), YU Haiyue(), WU Xiaoyue()

    College of Systems Engineering,National University of Defense Technology,Changsha, 410073,China

    Abstract:This paper presents a modeling method by stochastic Petri net for reliability analysis of phased mission system(PMS)with phase backup.The model consisting of petri nets,depicts the system behaviors of unit level,system logic level and phase level.Guard functions of petri nets are used to avoid modeling complexity and make the model flexible to different reliability logical structures.It was shown that the time redundancy within phase and from phase backup for PMS can both be described by use of the proposed model.

    Key words:mission reliability;phased mission system(PMS);phase backup;Petri nets

    Introduction

    Phased mission system (PMS) is a kind of system that has a number of consecutive time phases. The units and the reliability logical structure of them may change from phase to phase[1]. For some PMS in engineering application, tasks failed in a phase can be re-executed in the next phase, so there is time redundancy among phases.

    In existing literatures, there are mainly three types of methods for reliability modeling of conventional forms of PMS, namely PMS without time redundancy. (1) Combinatorial method[2-3], such as reliability block diagram and fault tree. This method has advantages of simple modeling with high solution efficiency. (2) State space method[4], typically based on the Markov model. This method can take the dependency between units into consideration. However, it is difficult for large-scale and complex problems due to rapidly increasing in the size of the model with the number of units. (3) Simulation method[5-7], including Petri nets and Monte Carlo simulation, which can be applied even when the failure and repair times of the system units follow non-exponential distributions. Petri net is a graphical mathematical language. It has now became a widely used tool for system modeling and simulation. Deterministic and Stochastic Petri nets(DSPN) has been used to model the mission reliability of tracking, telemetry and command(TT&C) system[8]. However, the logic structure of units and information dependency between phases is described by excessive use of transition arcs, which makes the model very complex when the scale of the problem increases. Extend object-oriented Petri nets(EOOPN) greatly improves the modularity and visuality in reliability modeling of conventional PMS[9].

    In recent years, some research works have been done for reliability evaluation of mission systems with time redundancy. Depending on the schedule and mission requirements for PMS, during some phases the system must operate continuously throughout the time, while for some other phases, only a minimum service support duration is required. Therefore, some of the phases may have time redundancy or flexibility in the starting time of mission execution, which means that the mission can be executed from any time within the phase interval, and provides that the system remains in the operational state continuously for a period of time not less than a given value. Such PMS can be called PMS with time redundancy[10]. Wu and Hillston provided a approach for mission reliability of semi-Markov systems with time redundancy[10]. Later, they presented a Monte Carlo simulation approach to evaluate the mission reliability of PMS with time redundancy within phase[11].

    However, the methods mentioned above do not consider the time redundancy between phases. In this paper, we use Petri net to provide a reliability modeling method for PMS with time redundancy which is in the form of phase task backup. Our proposed model can also consider the complexity due to the unit-repair activity.

    The remaining part of this paper is organized as follows.Section 1 briefly introduces the Petri nets we used and its operation rules. Section 2 presents the petri net models for mission reliability of PMS considering phase backup.Section 3 makes some conclusions.

    1 Petri Nets

    1.1 Stochastic Petri net(SPN)

    Petri net is a model based on place, transition, token and directed arc. The basic Petri net has been extended to an advanced Petri nets such as SPN, generalized stochastic Petri nets[12]and colored Petri nets(CPN) by adding constraints to the place or transition[13].

    The SPN used in our reliability modeling is defined as a 6-tupleNSP=(P,T,I,O,G,M0,λ)[13], where P is a finite set of places,Tis a finite set of transitions,Iis a set of directed arc weightsPtoT,Ois a set of directed arc weightsTtoP,M0is the initial marking which describes the initial distribution of system resources,Gis a Guard function that associates with a transition,λ={λ1,λ2, …,λm} is a set of average enabling rates for transitions, which describes the enabling times of transitions per unit time. In reliability analysis,λcan represent the failure rate and repair rate of the unit.

    In this paper, place is represented by “○”, token is represented by “●”, instant transition is represented by “|”, delayed transition is represented by “□”. The input function value from placePto transitionTis denoted asI(P,T)=w. The output function value from transitionTto placePis denoted asO(P,T)=w. The weight of arcwis marked on the arc. If the weight is 1, it does not need to be annotated. Bidirectional arcs is indicated by dotted lines.

    1.2 Operation rules

    In a dynamic system, the transition enabling requires that the conditions associated with transition be satisfied. Transition T is enabled if and only if all of the number of tokens in input placePis greater than or equal to the connection arc weight and Guard functions onTequals True. With the markmd, the enabled transitionTwill result in a new statem′ as

    m′(p)=m(p)-I(P,T)+O(P,T).

    (1)

    In this paper, we used the Guard function to make the model more concise by information share among the components of Petri nets. A Guard function was equivalent to a constraint for the directed arc between placePand transitionT, and was used for restricting the transition enabled. Figure 1 shows an example of transition enabling.

    Fig. 1 Transition enabling process

    The transitionTin Fig. 1 has a Guard function and two input places.Thas a Guard function that requires one token inP2. It means that transitionTis enabled when there is one token inP2throughT0enabling. After the firing of transitionT,P3will have two tokens. Since the connection betweenP2and the transitionTis a bidirectional arc with a weight of 1, after enabling, the number of tokens inP2does not change. The use of bidirectional arc allows access to the state of the place and requires no token transfer in the associated place. Consequently, the petri net model can be much simplified with proper use of Guard functions and bidirectional arcs to express information dependency.

    2 SPN Model for Mission Reliability of PMS with Dynamic Time Redundancy

    2.1 PMS with time redundancy

    For the conventional PMS, the mission success requires that the system should keep operational throughout the entire time duration of each phase. However, for the PMS discussed in this paper, the phase mission success only demands the system keep operational for a time period greater than a given length of time within the phase duration. In addition, depending on the schedule strategy, redundant time of the current phase can be scheduled for the re-execution of other phase tasks, such as those failed in the precedent phases.

    2.2 SPN model of PMS

    The SPN model of this paper has hierarchical structure and consists of Petri nets in unit level, the system-logic level and the phase level which interact with each other.

    (1) Unit level Petri net describes the changes in state of the system unit, which is caused by event occurrences such as time starting, time ending, failure and repair. As shown in Fig. 2. when place Pdi receives the token indicating the start of work, transition Tis is enabled and the unit’s state changes from the idle state Pi to the working state Piw. During the working process, on one hand, the unit’s state transfer to failure state Pif through the failure event Tif-w, and then it goes back to the working state through the repair transition Tif-w; On the other hand, when preconditions of Guard function on the Tie are satisfied, the instantaneous transition Tie is enabled and the unit goes back to the idle state Pi.

    Fig. 2 Unit level model

    The notations in Fig. 2 are explained as follows.

    Pdi: place used to receive information of starting instruction for the unit.

    Pi and Pif: places representing the idle state and the failed state of the unit respectively.

    Tis, Tie, Tiw-f, and Tif-w: transitions that represent the unit’s start, end, failure, and repair events respectively.

    The Guard function describes the condition for end of the unit work.

    (2) The model of system logic level describes the reliability logic structure in each phase. Figure 3 gives a system-logic level Petri net with three system units. When PD receives token, the system transfers from idle state PI to working state PW. In this working state, when the tokens in Pout make the instantaneous transition Tw-f fired, the state of system transfers to failure state Pf. The tokens in Pout result from firing transition Tif-w, which representing the failure of working state. When the number of tokens in Pout satisfies the Guard function on Tf-w, transition Tf-w is enabled and the system returns to working state PW. When all the units return to the idle state Pi, the state of system returns to idle state PI by TW-I. The weight of the arc from place Pout to transition Tw-f is w. If w equals 1 and the guard function on Tf-w requires only zero token in Pout, the model represents the logical structure of system with series reliability logic structure; When w equals the number of unit and the Guard function on Tf-w requires the number of token in Pout that is less than the number of system units, the model corresponds to system with parallel reliability logical structure.

    The symbols in Fig. 3 are explained as follows.

    Fig. 3 System logic level model

    PD: place to receive the information of starting work.

    Pout: place for receiving token indicating failure of system units.

    PI, PW and Pf: places representing the idle, working and failure states of the system respectively.

    TI-W and TW-I: transitions representing the events that the system goes into the working state and the ends working state respectively.

    Tw-f and Tf-w: transitions representing the events that the system logic goes into the failure state and leaves failure state respectively.

    Guard function on transition Tiw-f is used to ensure the unit to no longer failure once the system is in failure state.

    Guard function on transition Tf-w represents the conditions for the system to leave failure state.

    (3) Phase level model includes phase time model and phase task model. The models describe the execution process of phase task and the transfer of task success information between phases.

    The model for a PMS with three phases is shown in Figs. 4 and 5. The Petri nets in “phase level” describe the begin time and end time of one phase (Fig. 4) and the task execution process in the phase (Fig. 5).

    Fig. 4 Phase time model

    Fig. 5 Phase task model

    As one phase reaches its beginning time, transition “T0” is enabled and transfers a token to place “P1”. Then, the Guard function on transition “Tm” equals true. At this moment, if both of place “Pm” and place “P4” have tokens in them, transition “Tm” is enabled and fired. Then the “task” token in “Pm” be removed to place “P3”, and a work starting request is sent to place “PD”.

    As shown in Fig. 3, if place “PD” receives a token and the system is in idle state (“PI” has a token), place “Pw” will receive a token after transition “Ti-w” firing. Then, the Guard function on transition “T3” equals true. The “task” token then be removed from place “P3” to place “P5”, which means that the task is on processing. After a time delay created by “T5”, the task is completed and a token is transferred to place “Ps”. Place “P4” would also receive a token after firing of transition “T5”, which means that the system can serve to another task. However, if the system failure occurs during the task processing, namely Pf==1 for the Guard function on transition Tf3, the “task” token will reenter place “P3” and waiting another execution after system recovery from failure. If the phase reaches its end time, place “P2” receives a token after firing of transition “T1”. Then, the Guard function on transitions “Tf1”, “Tf2” and “Tf3” equal true, which makes the “task” token goes to place “PF” to indicate that the phase task failure.

    2.3 Mission reliability of model

    According to the relationship between phases, we can build the complete mission reliability model of PMS by adding proper Petri net elements. Figure 6 shows the mission reliability model of a PMS with three-phases, “Phase1”, “Phase2” and “Phase3”, based on the Petri nets introduced in section 2.2.

    Fig. 6 Mission reliability model

    The following gives the places for the model.

    Pmi’: places for receiving the tokens representing failure in previous phase;

    PSiand PFi: places for receiving the “task” tokens created by successful processing and non-successful processing in a phase respectively;

    PY, PN:place for receiving the tokens produced by successful processing and non-successful processing in the whole mission time respectively;

    In this system, the mission succeeds only if all phase tasks have been accomplished before the end of the mission time. The failed task in current phase (place “PFi”) would be transferred to the subsequence phase (place “Pmi+1”) through the firing of transition “TFi”, which make it possible for the failed task to make a re-execution in “Phasei+1” if there is a time redundancy in this phase. If the task has been successfully performed in a phase, the transition “TYi” is enabled and fired, which transfers this “task” token to place “PY”. At the end of the time, system mission reliability is obtained by statistical analysis of the token in place “PY”.

    Both time redundancy within a phase and by phase backups can be considered. For the time redundancy in a single-phase mission, we use transition “Tf3” (in Fig. 5), which could resent the failed “task” token to place “P3”, to represent that the task can be executed repeatedly if the phase does not reach it end time. For the phase backups in multi-phase mission, we use transition “TFi”, which could remove the failed “task” token from place “PFi” to place “Pmi+1”, to represent that the task could be re-executed in subsequence phases as it has failed in previous phase.

    3 Conclusions

    A modeling approach is introduced, which is based on SPN with Guard function for mission reliability of PMS with phase backups. The use of Guard function makes it convenient to represent information share in Petri nets and avoids the excessive use of arcs that cause the complexity of the model. The modeling method has following advantages. (1) Hierarchical model structure of Petri nets in unit, phase, and system level. The layered model simplifies the modeling process. (2) Flexibility. For different logical connections between units, we need only to change the Guard functions and related transition conditions. (3) As a simulation model, it can be used for evaluation of the mission reliability of the system with its unit having non-exponential working or repair time.

    一进一出好大好爽视频| 99久久精品国产亚洲精品| 伊人久久大香线蕉亚洲五| 国语自产精品视频在线第100页| 91国产中文字幕| 啪啪无遮挡十八禁网站| 国内毛片毛片毛片毛片毛片| 免费高清视频大片| 欧美老熟妇乱子伦牲交| 天天躁狠狠躁夜夜躁狠狠躁| 人人妻,人人澡人人爽秒播| 777久久人妻少妇嫩草av网站| 精品高清国产在线一区| 久久精品91蜜桃| 99国产极品粉嫩在线观看| 亚洲,欧美精品.| 亚洲激情在线av| 极品教师在线免费播放| 好男人在线观看高清免费视频 | 狠狠狠狠99中文字幕| 国产成人影院久久av| 午夜老司机福利片| 九色国产91popny在线| 少妇熟女aⅴ在线视频| 老汉色∧v一级毛片| 亚洲全国av大片| 亚洲全国av大片| 国产av在哪里看| 日韩欧美三级三区| 电影成人av| 久久久久国产一级毛片高清牌| 国产精品一区二区在线不卡| 色婷婷久久久亚洲欧美| 亚洲三区欧美一区| 亚洲人成网站在线播放欧美日韩| 国产精品98久久久久久宅男小说| 国产成人av教育| 1024视频免费在线观看| 麻豆av在线久日| 成年人黄色毛片网站| 99久久国产精品久久久| 国产97色在线日韩免费| 久久久久国产一级毛片高清牌| 成熟少妇高潮喷水视频| 亚洲av电影不卡..在线观看| 午夜福利成人在线免费观看| 正在播放国产对白刺激| 欧美黄色淫秽网站| 色av中文字幕| 国产精品一区二区免费欧美| 亚洲中文日韩欧美视频| 精品卡一卡二卡四卡免费| 超碰成人久久| 在线观看66精品国产| 国产一区二区三区视频了| 免费在线观看影片大全网站| 身体一侧抽搐| www.自偷自拍.com| 精品国产一区二区三区四区第35| 国产免费av片在线观看野外av| 亚洲第一青青草原| 美女高潮到喷水免费观看| 日韩欧美免费精品| 母亲3免费完整高清在线观看| 桃红色精品国产亚洲av| 一进一出抽搐动态| 女人精品久久久久毛片| 国产成人啪精品午夜网站| 伦理电影免费视频| 日日夜夜操网爽| 国产精品香港三级国产av潘金莲| 他把我摸到了高潮在线观看| 他把我摸到了高潮在线观看| 亚洲成人国产一区在线观看| 变态另类丝袜制服| 久久久久久久午夜电影| 搡老妇女老女人老熟妇| 色精品久久人妻99蜜桃| 一级片免费观看大全| 在线观看免费日韩欧美大片| 欧美日韩一级在线毛片| 国产成人影院久久av| 一边摸一边抽搐一进一小说| 国产色视频综合| 黄色片一级片一级黄色片| 狂野欧美激情性xxxx| 国产人伦9x9x在线观看| 国产精品野战在线观看| 日韩国内少妇激情av| 变态另类成人亚洲欧美熟女 | 中国美女看黄片| 午夜福利在线观看吧| 热99re8久久精品国产| 国产精品 国内视频| 亚洲aⅴ乱码一区二区在线播放 | 男女下面进入的视频免费午夜 | 巨乳人妻的诱惑在线观看| 美女免费视频网站| 欧美午夜高清在线| 国产精品久久久久久精品电影 | 精品久久久久久久毛片微露脸| av在线天堂中文字幕| 欧美日韩乱码在线| 国产精品久久视频播放| 一级作爱视频免费观看| 老司机福利观看| 人妻丰满熟妇av一区二区三区| 国产熟女xx| 欧美国产精品va在线观看不卡| 又黄又粗又硬又大视频| 久久国产精品影院| 亚洲伊人色综图| 国产精品久久电影中文字幕| 日韩欧美在线二视频| 热re99久久国产66热| 精品国产国语对白av| 久久久久国产精品人妻aⅴ院| 日本五十路高清| 国产精品,欧美在线| 国产精品自产拍在线观看55亚洲| 午夜福利,免费看| 久久人人97超碰香蕉20202| 麻豆成人av在线观看| 香蕉久久夜色| 人人澡人人妻人| 大码成人一级视频| 久久久国产成人免费| 亚洲国产欧美一区二区综合| 禁无遮挡网站| av片东京热男人的天堂| 国产精品电影一区二区三区| 精品少妇一区二区三区视频日本电影| 乱人伦中国视频| 国产免费av片在线观看野外av| 久久久精品欧美日韩精品| 国产精品 国内视频| 十分钟在线观看高清视频www| 中文字幕最新亚洲高清| 精品卡一卡二卡四卡免费| 欧美日韩瑟瑟在线播放| 亚洲中文字幕一区二区三区有码在线看 | 久久中文字幕人妻熟女| 一本久久中文字幕| 非洲黑人性xxxx精品又粗又长| 亚洲免费av在线视频| 日韩欧美在线二视频| 久久热在线av| 欧美乱码精品一区二区三区| 久久国产精品影院| 国产精品影院久久| 在线观看免费视频网站a站| 亚洲性夜色夜夜综合| 国产伦人伦偷精品视频| 亚洲人成电影免费在线| 国产精品一区二区在线不卡| 一区二区三区激情视频| 村上凉子中文字幕在线| 久久精品aⅴ一区二区三区四区| 国产三级黄色录像| 成人亚洲精品一区在线观看| 亚洲成av人片免费观看| 美女 人体艺术 gogo| 欧美久久黑人一区二区| 黑人操中国人逼视频| 老司机在亚洲福利影院| 亚洲伊人色综图| 88av欧美| 欧美成人性av电影在线观看| 女警被强在线播放| www.熟女人妻精品国产| 欧美最黄视频在线播放免费| 欧美乱色亚洲激情| 色婷婷久久久亚洲欧美| 亚洲欧美日韩另类电影网站| 国产三级在线视频| 亚洲伊人色综图| 日韩欧美一区视频在线观看| 亚洲,欧美精品.| 香蕉丝袜av| 麻豆av在线久日| 夜夜夜夜夜久久久久| 亚洲第一欧美日韩一区二区三区| 女人精品久久久久毛片| 国产野战对白在线观看| 国产高清视频在线播放一区| 一区二区三区激情视频| 欧美一区二区精品小视频在线| 悠悠久久av| 国产成人欧美| 欧美日韩黄片免| 夜夜看夜夜爽夜夜摸| 又紧又爽又黄一区二区| 成人国产综合亚洲| 狂野欧美激情性xxxx| 久久久久久久久久久久大奶| 免费看十八禁软件| 日本撒尿小便嘘嘘汇集6| 欧美中文综合在线视频| 亚洲中文日韩欧美视频| 9热在线视频观看99| 午夜免费成人在线视频| 嫩草影视91久久| 国产一卡二卡三卡精品| or卡值多少钱| 午夜精品在线福利| 免费观看人在逋| 免费人成视频x8x8入口观看| 老鸭窝网址在线观看| 国内精品久久久久久久电影| svipshipincom国产片| 窝窝影院91人妻| 国产成人av激情在线播放| 女性被躁到高潮视频| 日韩免费av在线播放| 亚洲国产精品999在线| 国产真人三级小视频在线观看| 午夜福利一区二区在线看| 在线天堂中文资源库| 国产精品久久久久久人妻精品电影| 如日韩欧美国产精品一区二区三区| 这个男人来自地球电影免费观看| 一本久久中文字幕| 欧美日韩一级在线毛片| 日韩一卡2卡3卡4卡2021年| 久久久久久亚洲精品国产蜜桃av| 久久精品国产99精品国产亚洲性色 | 岛国视频午夜一区免费看| 免费高清视频大片| 精品久久久久久久毛片微露脸| 制服丝袜大香蕉在线| 大型av网站在线播放| 日韩高清综合在线| 别揉我奶头~嗯~啊~动态视频| 女警被强在线播放| 国产单亲对白刺激| 精品久久久久久久人妻蜜臀av | 亚洲一区二区三区色噜噜| 欧美中文综合在线视频| 无限看片的www在线观看| 人人妻,人人澡人人爽秒播| 国产精品自产拍在线观看55亚洲| 欧美黄色淫秽网站| 在线十欧美十亚洲十日本专区| 99国产极品粉嫩在线观看| 亚洲精品国产精品久久久不卡| 操美女的视频在线观看| 成人永久免费在线观看视频| 涩涩av久久男人的天堂| 又黄又粗又硬又大视频| 精品日产1卡2卡| 丰满人妻熟妇乱又伦精品不卡| 91老司机精品| 免费无遮挡裸体视频| 黑人巨大精品欧美一区二区蜜桃| 欧美午夜高清在线| cao死你这个sao货| 桃色一区二区三区在线观看| 精品久久久久久久人妻蜜臀av | 9热在线视频观看99| 午夜两性在线视频| 亚洲国产欧美日韩在线播放| 中文字幕人妻丝袜一区二区| 99riav亚洲国产免费| 精品午夜福利视频在线观看一区| 波多野结衣巨乳人妻| 日韩精品中文字幕看吧| 97人妻天天添夜夜摸| 91成人精品电影| 亚洲成人精品中文字幕电影| 欧美激情 高清一区二区三区| 精品免费久久久久久久清纯| bbb黄色大片| 国产成人av激情在线播放| 黄网站色视频无遮挡免费观看| 亚洲国产毛片av蜜桃av| 男女做爰动态图高潮gif福利片 | 精品免费久久久久久久清纯| 在线观看免费日韩欧美大片| 免费不卡黄色视频| 日韩欧美国产在线观看| 一级毛片高清免费大全| 女性被躁到高潮视频| 悠悠久久av| 亚洲国产看品久久| 一进一出好大好爽视频| 成人亚洲精品一区在线观看| 亚洲黑人精品在线| 亚洲成av人片免费观看| 久久亚洲真实| 波多野结衣一区麻豆| av片东京热男人的天堂| 高清在线国产一区| 国产成人精品久久二区二区免费| 在线十欧美十亚洲十日本专区| 久久精品91蜜桃| 日本五十路高清| 欧美午夜高清在线| 亚洲性夜色夜夜综合| 日韩大码丰满熟妇| bbb黄色大片| 亚洲精品国产色婷婷电影| 一区二区三区国产精品乱码| av免费在线观看网站| 老熟妇仑乱视频hdxx| 中文字幕人成人乱码亚洲影| 亚洲男人天堂网一区| av在线天堂中文字幕| 如日韩欧美国产精品一区二区三区| 高清在线国产一区| 无限看片的www在线观看| 日本五十路高清| 久久精品aⅴ一区二区三区四区| 国内毛片毛片毛片毛片毛片| 99久久国产精品久久久| 亚洲中文日韩欧美视频| 男人舔女人的私密视频| 亚洲av日韩精品久久久久久密| 好男人在线观看高清免费视频 | 成年女人毛片免费观看观看9| 国产亚洲精品av在线| 日本黄色视频三级网站网址| 人人妻人人澡欧美一区二区 | 亚洲七黄色美女视频| 亚洲性夜色夜夜综合| 国产成人一区二区三区免费视频网站| 99久久99久久久精品蜜桃| 亚洲一区二区三区色噜噜| 丰满的人妻完整版| 亚洲欧美一区二区三区黑人| 少妇的丰满在线观看| 91精品国产国语对白视频| 在线观看免费视频日本深夜| 精品人妻在线不人妻| 1024视频免费在线观看| xxx96com| 日本免费一区二区三区高清不卡 | 中出人妻视频一区二区| 午夜免费鲁丝| 午夜激情av网站| 午夜福利18| 久久久久久久午夜电影| 久久久久国内视频| 午夜福利成人在线免费观看| 在线观看舔阴道视频| 午夜视频精品福利| 欧美激情 高清一区二区三区| 大型av网站在线播放| 桃色一区二区三区在线观看| 日日爽夜夜爽网站| 久久香蕉精品热| 婷婷六月久久综合丁香| 久久人妻福利社区极品人妻图片| 久久性视频一级片| 欧美中文综合在线视频| 国产免费男女视频| 午夜福利高清视频| 中文字幕人妻丝袜一区二区| 久久天躁狠狠躁夜夜2o2o| 久久精品国产99精品国产亚洲性色 | 午夜老司机福利片| 免费观看精品视频网站| 精品少妇一区二区三区视频日本电影| 无遮挡黄片免费观看| 亚洲精品粉嫩美女一区| 黄片大片在线免费观看| 精品午夜福利视频在线观看一区| 亚洲国产日韩欧美精品在线观看 | 国产精品av久久久久免费| 精品无人区乱码1区二区| 国产熟女xx| avwww免费| 国产色视频综合| 国产成人精品久久二区二区免费| 色在线成人网| 亚洲五月天丁香| 亚洲 欧美一区二区三区| 涩涩av久久男人的天堂| 叶爱在线成人免费视频播放| 女人精品久久久久毛片| 亚洲 欧美 日韩 在线 免费| 日本精品一区二区三区蜜桃| 国产单亲对白刺激| 精品国产亚洲在线| 亚洲精品美女久久av网站| 国产成人影院久久av| 亚洲avbb在线观看| 欧美 亚洲 国产 日韩一| 日韩 欧美 亚洲 中文字幕| www.www免费av| 精品卡一卡二卡四卡免费| 巨乳人妻的诱惑在线观看| 又大又爽又粗| 欧洲精品卡2卡3卡4卡5卡区| 欧美性长视频在线观看| 精品人妻在线不人妻| 久9热在线精品视频| 91老司机精品| 亚洲精品中文字幕在线视频| 女生性感内裤真人,穿戴方法视频| 成人国语在线视频| 久久精品91蜜桃| 成人亚洲精品一区在线观看| 法律面前人人平等表现在哪些方面| 亚洲电影在线观看av| 琪琪午夜伦伦电影理论片6080| 老司机午夜福利在线观看视频| 日韩欧美免费精品| 日韩一卡2卡3卡4卡2021年| 午夜福利影视在线免费观看| 久久人人精品亚洲av| 深夜精品福利| 欧美成狂野欧美在线观看| 啦啦啦观看免费观看视频高清 | 欧美日韩亚洲综合一区二区三区_| 精品无人区乱码1区二区| netflix在线观看网站| 国产男靠女视频免费网站| av在线天堂中文字幕| 女人被狂操c到高潮| av电影中文网址| 丁香欧美五月| 久久久久久久久久久久大奶| 高清在线国产一区| 午夜福利高清视频| 久久精品国产亚洲av高清一级| 久久草成人影院| 午夜两性在线视频| 天堂√8在线中文| 日本vs欧美在线观看视频| 老司机在亚洲福利影院| 国产欧美日韩一区二区三| 久久性视频一级片| 中文字幕精品免费在线观看视频| 婷婷六月久久综合丁香| 午夜老司机福利片| 亚洲人成网站在线播放欧美日韩| 亚洲性夜色夜夜综合| 亚洲情色 制服丝袜| 国产又爽黄色视频| 男人的好看免费观看在线视频 | 久久精品aⅴ一区二区三区四区| 免费在线观看黄色视频的| 岛国在线观看网站| 国产一区二区三区综合在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 侵犯人妻中文字幕一二三四区| 19禁男女啪啪无遮挡网站| 日韩欧美一区视频在线观看| 久久久国产精品麻豆| 亚洲第一欧美日韩一区二区三区| 黄色成人免费大全| 日韩三级视频一区二区三区| 欧美色欧美亚洲另类二区 | 亚洲熟妇中文字幕五十中出| aaaaa片日本免费| 亚洲色图av天堂| 老汉色av国产亚洲站长工具| 最新在线观看一区二区三区| 精品福利观看| 国产午夜精品久久久久久| 热99re8久久精品国产| 亚洲午夜精品一区,二区,三区| 深夜精品福利| 美女 人体艺术 gogo| 国产精品野战在线观看| 91国产中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 99精品久久久久人妻精品| 丰满人妻熟妇乱又伦精品不卡| av电影中文网址| 国产亚洲精品第一综合不卡| 精品久久久久久久毛片微露脸| 在线av久久热| 黑人巨大精品欧美一区二区mp4| 老汉色av国产亚洲站长工具| bbb黄色大片| 91九色精品人成在线观看| 国产高清激情床上av| 制服诱惑二区| 亚洲国产欧美网| 亚洲国产看品久久| 真人一进一出gif抽搐免费| 中文字幕最新亚洲高清| 黑人巨大精品欧美一区二区蜜桃| 男女下面插进去视频免费观看| 亚洲欧美日韩高清在线视频| 亚洲精品一区av在线观看| 久久精品91无色码中文字幕| 精品国内亚洲2022精品成人| 亚洲欧美日韩无卡精品| 午夜福利视频1000在线观看 | 午夜精品国产一区二区电影| 亚洲精品中文字幕一二三四区| 精品久久久久久久久久免费视频| 黑人巨大精品欧美一区二区蜜桃| a级毛片在线看网站| 一级毛片高清免费大全| 欧美午夜高清在线| 无人区码免费观看不卡| 一边摸一边抽搐一进一出视频| 亚洲第一青青草原| 亚洲一区高清亚洲精品| 国产午夜福利久久久久久| 国产亚洲精品久久久久5区| 久久热在线av| 成熟少妇高潮喷水视频| 老熟妇乱子伦视频在线观看| 亚洲精品粉嫩美女一区| 精品午夜福利视频在线观看一区| 亚洲成人免费电影在线观看| 天天添夜夜摸| xxx96com| 亚洲国产精品sss在线观看| 桃红色精品国产亚洲av| 香蕉久久夜色| 岛国视频午夜一区免费看| 老司机福利观看| 亚洲全国av大片| 免费观看人在逋| 人人澡人人妻人| 久久久国产欧美日韩av| 久久性视频一级片| 欧美 亚洲 国产 日韩一| 99国产精品免费福利视频| 人妻久久中文字幕网| ponron亚洲| 麻豆av在线久日| 亚洲国产日韩欧美精品在线观看 | 久久久国产成人精品二区| 丝袜在线中文字幕| 亚洲精华国产精华精| 看黄色毛片网站| 亚洲,欧美精品.| 精品日产1卡2卡| 日韩欧美国产一区二区入口| 亚洲人成电影观看| 757午夜福利合集在线观看| 亚洲中文av在线| 淫妇啪啪啪对白视频| 日韩精品免费视频一区二区三区| 热99re8久久精品国产| 黄网站色视频无遮挡免费观看| 亚洲av第一区精品v没综合| 看片在线看免费视频| 久久中文看片网| 日韩欧美在线二视频| 午夜影院日韩av| 热99re8久久精品国产| 国产午夜福利久久久久久| 亚洲五月天丁香| 中文字幕精品免费在线观看视频| 色综合站精品国产| 精品一区二区三区av网在线观看| 午夜福利欧美成人| 97超级碰碰碰精品色视频在线观看| 亚洲精品在线美女| 电影成人av| 欧美 亚洲 国产 日韩一| 国产精品爽爽va在线观看网站 | 日韩大码丰满熟妇| 少妇熟女aⅴ在线视频| 亚洲狠狠婷婷综合久久图片| 午夜免费鲁丝| 1024香蕉在线观看| 91麻豆av在线| 午夜免费成人在线视频| 99香蕉大伊视频| 久久久久久免费高清国产稀缺| 麻豆av在线久日| 777久久人妻少妇嫩草av网站| 亚洲性夜色夜夜综合| 可以在线观看毛片的网站| 日韩欧美三级三区| www.精华液| 99re在线观看精品视频| 久久精品国产99精品国产亚洲性色 | 欧美中文日本在线观看视频| 神马国产精品三级电影在线观看 | 亚洲午夜精品一区,二区,三区| 91av网站免费观看| 国产精品电影一区二区三区| 国产精品免费一区二区三区在线| 成人18禁在线播放| 国产精品香港三级国产av潘金莲| aaaaa片日本免费| 一进一出抽搐gif免费好疼| 男人操女人黄网站| 女同久久另类99精品国产91| 日韩av在线大香蕉| 无限看片的www在线观看| 琪琪午夜伦伦电影理论片6080| 91老司机精品| 91麻豆精品激情在线观看国产| 亚洲国产中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 日本vs欧美在线观看视频| 日韩欧美国产一区二区入口| 可以在线观看的亚洲视频| 黄色 视频免费看| 亚洲五月婷婷丁香| 亚洲 欧美 日韩 在线 免费| 一个人观看的视频www高清免费观看 | 久久久久久大精品| 精品久久久久久久人妻蜜臀av | 亚洲精华国产精华精| 欧美日韩黄片免| 夜夜夜夜夜久久久久| 日韩 欧美 亚洲 中文字幕| 国产av一区在线观看免费| 免费在线观看完整版高清| 日日爽夜夜爽网站| 亚洲七黄色美女视频| 中文亚洲av片在线观看爽| 国产国语露脸激情在线看| 天天躁狠狠躁夜夜躁狠狠躁|