• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of summer drought ensemble prediction over the Yellow River basin

    2018-11-05 10:49:56YAOMengNndYUANXingKeyLaoratoryofRegionalClimateEnvironmentforTemperateEastAsiaRCETEAInstituteofAtmosphericPhysicsChineseAcademyofSciencesBeijingChinaSchoolofAtmosphericSciencesChengduUniversityofInformationTechnologyChen

    YAO Meng-Nnd YUAN XingKey Laoratory of Regional Climate-Environment for Temperate East Asia(RCE-TEA),Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing,China;School of Atmospheric Sciences,Chengdu University of Information Technology,Chengdu,China

    ABSTRACT Accurately predicting drought a few months in advance is important for drought mitigation and agricultural and water resources management,especially for a river basin like that of the Yellow River in North China.However,summer drought predictability over the Yellow River basin is limited because of the low influence from ENSO and the large interannual variations of the East Asian summer monsoon.To explore the drought predictability from an ensemble prediction perspective,29-year seasonal hindcasts of soil moisture drought,taken directly from several North American multimodel ensemble(NMME)models with different ensemble sizes,were compared with those produced by combining bias-corrected NMME model predictions and variable infiltration capacity(VIC)land surface hydrological model simulations.It was found that the NMME/VIC approach reduced the root-mean-square error from the best NMME raw products by 48%for summer soil moisture drought prediction at the lead-1 season,and increased the correlation significantly.Within the NMME/VIC framework,the multimodel ensemble mean further reduced the error from the best single model by 6%.Compared with the NMME raw forecasts,NMME/VIC had a higher probabilistic drought forecasting skill in terms of a higher Brier skill score and better reliability and resolution of the ensemble.However,the performance of the multimodel grand ensemble was not necessarily better than any single model ensemble,suggesting the need to optimize the ensemble for a more skillful probabilistic drought forecast.

    KEYWORDS Probabilistic prediction;drought;North American multimodel ensemble;Yellow River basin;Brier skill score

    1.Introduction

    Under the combined influence of global warming and human activity,the frequency and intensity of extreme hydrometeorological events have shown an increasing trend.Among these types of events,drought is considered to be one of the most serious natural disasters,having a huge impact on economies,agricultural production and human livelihoods(Burke,Perry,and Brown 2010;Dai,Trenberth,and Qian 2004).Numerous studies have shown that seasonal drought events in China have also increased significantly(Ma and Fu 2006;Wang et al.2010,2015b).Therefore,predicting drought a few months in advance is of great help to various sectors,allowing them enough time for mitigation(Yuan and Wood 2013).

    In recent years,dynamical seasonal forecasting systems based on coupled atmosphere–ocean–land general circulation models have been widely used for drought early warning(Luo and Wood 2007;Dutra et al.2012;Yuan et al.2013),including those conducted over east Asia(Ding et al.2004;Ghosh and Mujumdar 2007;Kim and Byun 2009;Tang,Lin,and Luo 2013;Wang et al.2015a).However,less than 30%of meteorological drought onsets globally can be detected by climate forecast models,especially over midlatitude regions(Yuan and Wood 2013).In addition,soil moisture drought prediction is also very challenging,due to both limited atmospheric predictability and uncertainties in land surface modeling.

    A contemporary approach to improving forecast skill is to use an ensemble prediction technique,where the ensemble can either derive from a single model or from multiple climate forecast models(Palmer et al.2004;Doblas-Reyes,Michel,and Jean-Philippe 2010;Becker,Den Dool,and Zhang 2014).For example,Thober et al.(2015)used meteorological forecasts of the North American multimodel ensemble(NMME;Kirtman et al.2014)to drive a mesoscale hydrological model by following a similar approach to those used by Luo and Wood(2007)and Yuan et al.(2015),and obtained improvement against the ensemble stream flow prediction approach for drought prediction at monthly to seasonal time scales.Yao and Yuan(2018)used a superensemble method to combine soil moisture predictions directly from NMME climate forecast models over China,and reduced the forecast errors,especially over southeastern and northeastern China.However,the soil moisture forecast skill is low over the Yellow River basin in northern China,where drought frequently occurs.

    In order to improve the forecasting of soil moisture drought over the Yellow River basin,Yuan(2016)bias-corrected the NMME meteorological hindcasts and used them to drive the variable infiltration capacity(VIC;Liang et al.1994)land surface hydrological model to produce soil moisture hindcasts up to six months.Yuan(2016)briefly evaluated the deterministic predictive skill of soil moisture for the NMME grand ensemble mean by comparison with a traditional hydrological forecasting approach.Here,we used the soil moisture hindcast data to carefully assess both the deterministic and probabilistic forecast skill for both the NMME grand ensemble and the individual NMME models,especially for soil moisture droughts during summertime.In addition,we compared the climate–hydrology modeling approach(NMME/VIC)proposed by Yuan (2016)with the NMME raw soil moisture(drought)hindcasts that were released by phase 2 of the NMME project.This study provides a first look at the ensemble(probabilistic)characteristics of seasonal soil moisture prediction from the NMME models,both for the raw hindcasts and the climate–hydrology-model-produced hindcasts.

    2.Data and evaluation method

    The Yellow River basin is located in North China,and its drainage area is about 7.52×105km2.With a semi-arid climate,drought is one of the most severe natural disasters in the Yellow River basin.Using eight NMME models,i.e.,CanCM3,CanCM4,CM2.2,CFSv2,CCSM4, CM2p5-A06,CM2p5-B01,and GMAO,Yuan(2016)carried out a set of hydrological hindcasts with the VIC land surface hydrological model over the Yellow River basin to produce hindcasts of soil moisture.These soil moisture hindcasts were used to calculate the seasonal means and were then standardized prior to the drought analysis in this study.The lead-0 season forecast represented the seasonal mean soil moisture (or soil drought)forecast started from the beginning of the season,the lead-1 season forecast represented the forecast started from one month before the beginning of the season,and so on.

    For convenience,we describe the data and forecasting approach briefly in this paper.The NMME precipitation and temperature hindcasts were downscaled and bias-corrected through the quantile-mapping method,as follows(Yuan 2016):

    (1)The 1°NMME global meteorological hindcasts during 1982–2010 were first bilinearly interpolated to 0.25°.

    (2)For each calendar month and each NMME model,all meteorological hindcasts(excluding the target year)with all ensemble members for the target month were used to construct cumulative distribution functions(CDFs)of the forecasts.The CDFs of meteorological observations were constructed similarly(excluding the target year),and the hindcast in the target year was adjusted by matching its rank in the CDFs of the forecasts and observations.

    (3)The bias-corrected monthly meteorological hindcasts were temporally downscaled to a daily time step by sampling from the observation dataset and rescaling to match the monthly hindcasts.

    With the downscaled and bias-corrected meteorological forcings,the well-calibrated VIC land surface hydrological model was used to produce soil moisture hindcasts up to six months.

    In this study,we used-0.8 as a threshold for drought,and evaluated the ensemble forecast skill for summer drought over the Yellow River basin.The threshold was equivalent to a moderate drought condition,with a probability of about 0.2(Yuan et al.2013).The observational dataset was from the VIC offline simulation,driven by observed meteorological forcings.We used it because there was no direct soil moisture observation at a large scale,and the VIC-model-simulated soil moisture was also constrained by observed stream flow through the calibration procedure.Another reason was that our basic aim in this study was to focus on the effect of seasonal climate prediction,where the error from the hydrological model could be removed by using offline simulated soil moisture.Several metrics,including the correlation coefficient,root-mean-square error(RMSE),and the Brier skill score(BSS;Wilks 2011)were calculated for verification.The Brier score(BS),which is similar to the RMSE,can be used to assess the probabilistic prediction(Wilks 2011):

    where k indicates a number of n forecast-verification pairs,ykis the probability of forecast for drought in the kth pair,and okis the corresponding probability from the observations,with ok=1 if the drought event occurs and ok=0 if it does not.

    The BS can be decomposed into reliability and resolution terms as follows(Wilks 2011):

    where I is the discrete number of allowable forecast values(here,I is the number of member models plus one),Niis the number of times for each forecast value yi(forecast probability),and ōiis the conditional distribution of an observation,given forecast probability yi.

    The reliability(Rel)measures how close the issued forecast yiis to the probability of an observed occurrence conditional on the forecast;the resolution(Res)refers to the differences between the conditional distributions of the observations for different forecast values;and the third term is the uncertainty(Wilks 2011).A lower Rel and higher Res are representative of a better forecasting skill.

    The BSS is based on the BS:

    where BSclimrepresents a reference forecast(e.g.,climatological forecast).The BSS indicates the degree of improvement in climate predictions,and a better forecast has a higher BSS.

    Figure 1.The skill(Pearson correlation)for ensemble prediction of June–July–August mean soil moisture over the Yellow River basin during summer time at the lead-1 season:(a–d)NMME raw soil moisture prediction;(e–l)VIC soil moisture prediction driven by biascorrected NMME meteorological forcings;(m)multimodel ensemble mean from 99 NMME/VIC members.The reference soil moisture is from the VIC offline simulation.All statistics were calculated using standardized soil moisture hindcasts during 1982–2010.

    3.Results

    3.1.Predictive skill of summer soil moisture in the Yellow River basin

    The correlations for summer soil moisture forecasts over the Yellow River basin at the lead-1 season are shown in Figure 1.The numbers in the upper-right corner of each panel indicate the area average of the correlation coefficients.Here,we only show soil moisture raw forecasts from four NMME models because of hindcast data availability for both NMME and NMME/VIC.For the raw soil moisture forecasts from individual NMME climate models,CFSv2(Figure 1(d))had the highest skill,especially in the southern part of the Yellow River basin,as compared with the other three models(Figure 1(a–c)).All models showed high forecasting skill in the central part of the Yellow River basin,but had low skill both in the upstream and downstream regions.The skill was significantly improved when predicting soil moisture by combining the NMME climate forecasts and VIC land surface hydrological model with a bias correction method(Yuan 2016).Taking C an CM4 as an example,the mean correlation for C an CM4/VIC was0.59(Figure 1(f)),while for CanCM4 it was only 0.11.The improvement may have been due to the reduction in errors both from the climate forecasts and land model simulations,where the VIC model was calibrated by using stream flow data over the Yellow River(Yuan 2016).NMME/VIC was a simple ensemble mean of 99 members from eight models(Figure 1(e–k)).The average correlation for NMME/VIC was 0.6,which was only a marginal improvement compared to the best single model(CanCM4/VIC).

    Figure 2.Frequency distributions of RMSE for the predicted June–July–August mean soil moisture at different lead times.Different dashed color lines represent results for soil moisture raw predictions from the NMME models;solid color lines represent results for soil moisture predictions from the VIC model driven by the NMME models;and the black solid line represents the multimodel ensemble mean prediction(NMME/VIC).All statistics were calculated using standardized soil moisture hindcasts during 1982–2010.

    Figure 2 shows the frequency distributions of RMSE at different forecast lead times over the Yellow River basin during June–July–August.Similar to the lead-1 seasons,the NMME models’raw forecast had much larger errors than those produced by the climate–hydrology approach.The reasons might be threefold:

    (1)Land surface models(including those in the NMME)are usually less reliable in reproducing the soil moisture dynamics over semiarid regions like the Yellow River basin,while the VIC model’s performance was improved through stream flow calibration.

    (2)Some of the NMME models did not initialize the land surface component when making the seasonal prediction,while NMME/VIC used a realistic initial condition through offline simulation to the forecast start date.

    (3)Biases of meteorological forcings in NMME would transfer to their land surface modeling,while NMME/VIC removed those biases before producing the soil moisture forecasts.

    The NMME/VIC grand ensemble was similar to the individual models in the upper and middle reaches of the Yellow River basin,but it became gradually better than any single model in the lower reaches of the Yellow River basin as the forecast lead time increased.

    3.2.Predictive skill of summer drought in the Yellow River basin

    Soil moisture drought refers to the phenomenon of a water shortage due to the imbalance between soil moisture supply and demand.The performances of the models in predicting summer soil moisture droughts at the lead-1 season are shown in Figure 3.Similar to Figure 1,CFSv2(Figure 3(d))had the lowest error(1.34)among the four NMME models for the soil drought raw forecasts.The error was smaller in the middle and lower reaches of the Yellow River,and larger in the upstream areas.CFSv2/VIC(Figure 3(h))had the smallest regional mean error(0.7),as compared with the seven otherclimate–hydrology forecasting models.NMME/VIC,the multi-model grand ensemble mean,performed better than the best individual model for soil moisture drought forecasting,with errors decreased by 6%.For the eight climate–hydrology forecasting models,they showed high drought forecasting skill in the central part of the Yellow River basin,which was similar to the soil moisture forecast skill(Figure 1).Moreover,most models had their worst drought forecasting skill in the upstream regions,except for CCSM4/VIC(Figure 3(i)).CM2.2(Figure 1(g))and CM2p5-A06/VIC(Figure 1(j))had the lowest soil moisture forecasts skill,as compared with other models,with an average correlation of 0.49;meanwhile,they also had the lowest drought forecasting skill,with a regional mean error as large as 0.83.

    In order to evaluate the probabilistic drought prediction skill,we calculated the BSS,the results of which,at the lead-0 season,are shown in Figure 4.The climate–hydrology approach produced a much better probabilistic soil moisture drought forecast than the NMME raw forecasts.Similar to the deterministic forecasts,there was also a higher probabilistic drought forecast skill over the middle reaches of the Yellow River.The area-average BSS of GMAO/VIC(Figure 4(l))was the highest(0.43),which was even better than the grand ensemble mean of NMME/VIC(0.39).This was a little surprising because given that the deterministic drought forecasting skill from NMME/VIC was higher than any individual model(Figure 3).One of the reasons was perhaps the skill spatial patterns from individual models were too similar to one another,where a simple combination did not help without spatial complementary skill.Another reason was perhaps related to the bias correction approach(Yuan 2016),where each NMME model was mapped to the observed climatology,without considering the skill of the climate forecasts.A Bayesian approach for the bias correction can account for the model hindcast skill,where the ensemble forecast distribution will match reality if the hindcast skill is high,and the forecast distribution will be close to climatology if the hindcast skill is low(Yuan et al.2013).However,whether to use full samples including drought,neutral and wet conditions to calibrate the Bayesian model,or just those samples in drought conditions,is still under debate.For thelatter,three decades of hindcasts may not be enough for calibrating extreme forecasts.

    Figure 4.The Brier skill score for probabilistic forecasts of summer(June-July-August)droughts at the lead-0 season.

    To further assess the probabilistic drought forecasting skill,we plotted the frequency distribution of the BSS,Rel,and Res terms for summer drought at the lead-0 season over the Yellow River basin(Figure 5).The climate model raw forecasts were the worst for both the BSS and its components.The NMME/VIC multimodel probabilistic forecast was not much different from the single model probabilistic forecasts,laying between the best and the worst models.As compared with the results shown in Figure 2(a),where NMME/VIC only improved the soil moisture forecasts with large errors,Figure 5 shows that a simple multimodel ensemble did not improve the probabilistic prediction of extremes(droughts).

    4.Concluding remarks

    After the bias correction of the meteorological forecast and the implementation of a well-calibrated land surface hydrological model,summer soil moisture drought forecasting was improved significantly,especially over the middle and lower reaches of the Yellow River basin.The simple multimodel ensemble improved the forecasting skill for soil moisture,but not for extreme events,such as drought,where the performance of the multimodel ensemble lay between the best and worst individual models.It is necessary to find appropriate methods to improve the ensemble prediction of extreme events,either for deterministic or probabilistic forecasting.

    Acknowledgments

    We would like to thank the IRI(http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/)for making the NMME forecast information available.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was supported by the China Special Fund for Meteorological Research in the Public Interest(Major projects)(Grant No.GYHY201506001)and the National Natural Science Foundation of China(Grant No.91547103).

    亚洲欧美成人综合另类久久久| av在线蜜桃| 久久精品人妻少妇| xxx大片免费视频| 久久 成人 亚洲| 99热这里只有是精品在线观看| 亚洲人成网站高清观看| 肉色欧美久久久久久久蜜桃| 亚洲欧洲国产日韩| 大片免费播放器 马上看| 国产v大片淫在线免费观看| 国产成人午夜福利电影在线观看| 久久久午夜欧美精品| 国内揄拍国产精品人妻在线| 亚洲成人手机| 性色av一级| 国产精品麻豆人妻色哟哟久久| 女性生殖器流出的白浆| 婷婷色综合大香蕉| av国产精品久久久久影院| 国产中年淑女户外野战色| 精品99又大又爽又粗少妇毛片| 欧美激情国产日韩精品一区| 久久国产乱子免费精品| 亚洲欧美日韩卡通动漫| 欧美成人精品欧美一级黄| 在线播放无遮挡| av网站免费在线观看视频| 亚洲av.av天堂| 91久久精品国产一区二区成人| 干丝袜人妻中文字幕| 国产精品不卡视频一区二区| 亚洲精品日韩在线中文字幕| 偷拍熟女少妇极品色| 国产黄色视频一区二区在线观看| 人人妻人人看人人澡| 日韩人妻高清精品专区| 精品久久国产蜜桃| 99热6这里只有精品| h视频一区二区三区| 午夜福利在线观看免费完整高清在| 七月丁香在线播放| 99久国产av精品国产电影| 在线观看人妻少妇| 寂寞人妻少妇视频99o| 18禁裸乳无遮挡动漫免费视频| 日韩欧美精品免费久久| videos熟女内射| 人人妻人人澡人人爽人人夜夜| 一区在线观看完整版| 久久影院123| 在线免费观看不下载黄p国产| 日本欧美视频一区| 久久久亚洲精品成人影院| xxx大片免费视频| 国产亚洲精品久久久com| 亚洲国产精品国产精品| 欧美xxⅹ黑人| 成人特级av手机在线观看| 欧美精品亚洲一区二区| 夜夜爽夜夜爽视频| 伦精品一区二区三区| h日本视频在线播放| 男女免费视频国产| 日本av免费视频播放| 一区二区av电影网| av又黄又爽大尺度在线免费看| 18禁在线播放成人免费| 亚洲欧美清纯卡通| 少妇熟女欧美另类| 精品人妻一区二区三区麻豆| 免费看不卡的av| 欧美三级亚洲精品| 婷婷色综合大香蕉| 成人特级av手机在线观看| 好男人视频免费观看在线| 亚洲四区av| 男人狂女人下面高潮的视频| 一个人免费看片子| 国产伦理片在线播放av一区| 成人亚洲欧美一区二区av| 在线观看av片永久免费下载| 黄片wwwwww| 免费久久久久久久精品成人欧美视频 | 99热这里只有是精品50| 不卡视频在线观看欧美| 看免费成人av毛片| www.色视频.com| 欧美国产精品一级二级三级 | 久久久久人妻精品一区果冻| 国产黄片视频在线免费观看| 国产在视频线精品| 国产精品久久久久久精品古装| 日韩视频在线欧美| 人妻制服诱惑在线中文字幕| 欧美三级亚洲精品| 观看av在线不卡| 亚洲自偷自拍三级| 久久久久久久精品精品| 亚洲国产色片| 亚洲不卡免费看| 91精品一卡2卡3卡4卡| 亚洲国产高清在线一区二区三| 少妇人妻一区二区三区视频| 一级毛片电影观看| 精品99又大又爽又粗少妇毛片| 黄色日韩在线| 一级a做视频免费观看| 亚洲国产色片| 久久鲁丝午夜福利片| 在线观看一区二区三区| 夫妻午夜视频| 18禁裸乳无遮挡免费网站照片| 一级av片app| av专区在线播放| 精品酒店卫生间| 永久免费av网站大全| 亚洲一区二区三区欧美精品| 亚洲怡红院男人天堂| 偷拍熟女少妇极品色| 毛片女人毛片| 久久精品久久久久久久性| 在线观看人妻少妇| 久久久久国产网址| 日韩一本色道免费dvd| 在线免费观看不下载黄p国产| 国产爽快片一区二区三区| 亚洲欧美成人精品一区二区| 99视频精品全部免费 在线| 欧美日韩视频精品一区| 男女国产视频网站| 春色校园在线视频观看| 性色av一级| 成人一区二区视频在线观看| 色综合色国产| 中文欧美无线码| 99热网站在线观看| 午夜免费鲁丝| 国产成人aa在线观看| 高清在线视频一区二区三区| 99re6热这里在线精品视频| 亚洲精品aⅴ在线观看| 日韩大片免费观看网站| 午夜福利视频精品| 欧美3d第一页| 80岁老熟妇乱子伦牲交| 日韩欧美 国产精品| 国产一区二区三区av在线| 国国产精品蜜臀av免费| 一级毛片我不卡| 久久精品国产鲁丝片午夜精品| 亚洲第一区二区三区不卡| 亚洲欧洲日产国产| 啦啦啦啦在线视频资源| 最近中文字幕2019免费版| 2018国产大陆天天弄谢| 18禁动态无遮挡网站| 网址你懂的国产日韩在线| 亚洲精品自拍成人| 久久97久久精品| 国产日韩欧美亚洲二区| 中文天堂在线官网| 在线观看国产h片| 最后的刺客免费高清国语| 久久国产精品男人的天堂亚洲 | a级毛片免费高清观看在线播放| 亚洲精品456在线播放app| 五月开心婷婷网| 亚洲国产av新网站| 久久精品国产亚洲网站| 亚洲三级黄色毛片| 亚洲激情五月婷婷啪啪| 少妇裸体淫交视频免费看高清| 九九爱精品视频在线观看| 五月开心婷婷网| 26uuu在线亚洲综合色| 国产黄片视频在线免费观看| 亚洲国产成人一精品久久久| 一个人免费看片子| 在线天堂最新版资源| 日本午夜av视频| 97在线视频观看| 日本欧美国产在线视频| 婷婷色av中文字幕| 欧美高清成人免费视频www| 日本黄色日本黄色录像| 91久久精品电影网| 精品国产乱码久久久久久小说| 天美传媒精品一区二区| 久久人人爽人人片av| 国产欧美日韩精品一区二区| 国产成人精品久久久久久| 日本wwww免费看| 观看美女的网站| a 毛片基地| 久久久a久久爽久久v久久| 久久久久久久久久久免费av| 亚洲欧洲国产日韩| 亚洲,一卡二卡三卡| 如何舔出高潮| www.av在线官网国产| 黄片wwwwww| 美女内射精品一级片tv| 亚洲精品国产av蜜桃| 内射极品少妇av片p| 亚洲精品乱码久久久久久按摩| 又粗又硬又长又爽又黄的视频| 插阴视频在线观看视频| 久久99蜜桃精品久久| 成人特级av手机在线观看| 毛片一级片免费看久久久久| 嘟嘟电影网在线观看| 亚洲无线观看免费| 亚洲熟女精品中文字幕| 一二三四中文在线观看免费高清| 韩国av在线不卡| av视频免费观看在线观看| 男女啪啪激烈高潮av片| 成人影院久久| 天堂俺去俺来也www色官网| 日日摸夜夜添夜夜添av毛片| 国产免费一级a男人的天堂| 搡女人真爽免费视频火全软件| 久久青草综合色| 亚洲精品456在线播放app| 国产成人一区二区在线| av播播在线观看一区| 国模一区二区三区四区视频| 国产又色又爽无遮挡免| 亚洲怡红院男人天堂| 99热6这里只有精品| 大陆偷拍与自拍| 伦理电影免费视频| 国产在线一区二区三区精| 男人舔奶头视频| 午夜老司机福利剧场| 久久av网站| 国产一区亚洲一区在线观看| 国产无遮挡羞羞视频在线观看| 精品熟女少妇av免费看| 日本av手机在线免费观看| 国产免费又黄又爽又色| 少妇丰满av| 水蜜桃什么品种好| 五月开心婷婷网| 精品一区在线观看国产| 亚洲国产精品国产精品| 一区二区三区精品91| 亚洲综合精品二区| 国产成人一区二区在线| 亚洲av福利一区| 如何舔出高潮| 国产乱人视频| av国产久精品久网站免费入址| 中文资源天堂在线| 18禁裸乳无遮挡动漫免费视频| 免费在线观看成人毛片| 岛国毛片在线播放| 日本色播在线视频| 噜噜噜噜噜久久久久久91| 狂野欧美白嫩少妇大欣赏| 人妻 亚洲 视频| 国产黄色免费在线视频| 久久影院123| 如何舔出高潮| 成人亚洲精品一区在线观看 | 一级毛片电影观看| 51国产日韩欧美| 97超碰精品成人国产| 免费人妻精品一区二区三区视频| 校园人妻丝袜中文字幕| 精品一区二区三卡| 一区二区av电影网| 99热这里只有是精品在线观看| 日本-黄色视频高清免费观看| 久久精品久久精品一区二区三区| 日韩一区二区视频免费看| 久久99热这里只有精品18| 啦啦啦啦在线视频资源| 中文天堂在线官网| 成人无遮挡网站| 麻豆成人av视频| 大片电影免费在线观看免费| 亚洲图色成人| 欧美日韩在线观看h| 水蜜桃什么品种好| 国产av码专区亚洲av| 人人妻人人添人人爽欧美一区卜 | 我的女老师完整版在线观看| 国产v大片淫在线免费观看| 亚洲精品乱码久久久久久按摩| 中文字幕精品免费在线观看视频 | 毛片女人毛片| 亚洲色图av天堂| 99九九线精品视频在线观看视频| 男女无遮挡免费网站观看| 亚洲综合色惰| 欧美成人精品欧美一级黄| 2022亚洲国产成人精品| 久久久色成人| 黄色日韩在线| 国产高清有码在线观看视频| 久久婷婷青草| 3wmmmm亚洲av在线观看| 最近手机中文字幕大全| 午夜视频国产福利| 成人漫画全彩无遮挡| 国产人妻一区二区三区在| 国产黄片美女视频| 激情五月婷婷亚洲| 国产乱人偷精品视频| 亚洲av国产av综合av卡| 国产成人免费无遮挡视频| 久久久久久久国产电影| 国产精品一区二区性色av| 天美传媒精品一区二区| 精品人妻一区二区三区麻豆| 自拍偷自拍亚洲精品老妇| 国产精品久久久久久av不卡| 国产色爽女视频免费观看| 大话2 男鬼变身卡| 日本爱情动作片www.在线观看| 久久婷婷青草| 国产真实伦视频高清在线观看| 国产黄片视频在线免费观看| 99久久人妻综合| 精品熟女少妇av免费看| 成人特级av手机在线观看| 晚上一个人看的免费电影| 寂寞人妻少妇视频99o| 人人妻人人添人人爽欧美一区卜 | 亚洲经典国产精华液单| 国产视频首页在线观看| 亚洲不卡免费看| 我的老师免费观看完整版| 免费久久久久久久精品成人欧美视频 | 一本—道久久a久久精品蜜桃钙片| 日韩一区二区三区影片| 99精国产麻豆久久婷婷| 国产高清国产精品国产三级 | 精华霜和精华液先用哪个| 插阴视频在线观看视频| 午夜视频国产福利| 日韩精品有码人妻一区| 麻豆成人午夜福利视频| 亚洲无线观看免费| 九九久久精品国产亚洲av麻豆| 亚洲av免费高清在线观看| 国产精品99久久久久久久久| 国产精品秋霞免费鲁丝片| 国产精品国产三级国产av玫瑰| 成人特级av手机在线观看| 亚洲精品中文字幕在线视频 | 国产欧美日韩精品一区二区| 又大又黄又爽视频免费| 少妇熟女欧美另类| 老司机影院毛片| 日韩成人av中文字幕在线观看| 精品久久久噜噜| 亚洲精品自拍成人| 亚洲,一卡二卡三卡| 大又大粗又爽又黄少妇毛片口| freevideosex欧美| 免费观看无遮挡的男女| 免费少妇av软件| 日本av免费视频播放| 婷婷色综合www| 日日摸夜夜添夜夜添av毛片| 一级片'在线观看视频| 免费少妇av软件| 99久久中文字幕三级久久日本| 涩涩av久久男人的天堂| 日本与韩国留学比较| 国产精品一区二区在线不卡| 香蕉精品网在线| av.在线天堂| 综合色丁香网| 国产大屁股一区二区在线视频| 在线观看av片永久免费下载| 久久 成人 亚洲| 99久久精品一区二区三区| 国内揄拍国产精品人妻在线| 下体分泌物呈黄色| 色综合色国产| 久久影院123| 国产日韩欧美在线精品| 亚洲精品日韩av片在线观看| 一本久久精品| 亚洲无线观看免费| 日日撸夜夜添| 女的被弄到高潮叫床怎么办| 欧美区成人在线视频| 狂野欧美激情性xxxx在线观看| 亚洲不卡免费看| 天天躁夜夜躁狠狠久久av| 欧美zozozo另类| 亚洲丝袜综合中文字幕| 最近最新中文字幕免费大全7| 亚洲不卡免费看| 久久国产乱子免费精品| 最近2019中文字幕mv第一页| 欧美区成人在线视频| av在线播放精品| videos熟女内射| 一区在线观看完整版| 少妇熟女欧美另类| 国产男女超爽视频在线观看| 成人特级av手机在线观看| av黄色大香蕉| 日韩av在线免费看完整版不卡| videossex国产| 日日摸夜夜添夜夜添av毛片| 亚洲一级一片aⅴ在线观看| 亚洲人成网站高清观看| 国产男女内射视频| 蜜桃在线观看..| 人人妻人人添人人爽欧美一区卜 | 国产亚洲欧美精品永久| 精品一品国产午夜福利视频| 黑人猛操日本美女一级片| 日日摸夜夜添夜夜添av毛片| 久久精品久久精品一区二区三区| 亚洲色图av天堂| 亚洲va在线va天堂va国产| 精品熟女少妇av免费看| 乱系列少妇在线播放| 国产亚洲5aaaaa淫片| 啦啦啦啦在线视频资源| 日韩精品有码人妻一区| 老女人水多毛片| 久久久成人免费电影| 又黄又爽又刺激的免费视频.| 亚洲av福利一区| 亚洲人成网站在线观看播放| 99九九线精品视频在线观看视频| 亚洲国产日韩一区二区| 一区二区三区免费毛片| 肉色欧美久久久久久久蜜桃| 丝袜脚勾引网站| 免费人妻精品一区二区三区视频| 特大巨黑吊av在线直播| 久久久久久久久大av| 日韩视频在线欧美| 国产高清国产精品国产三级 | 毛片女人毛片| 男女啪啪激烈高潮av片| 国产精品伦人一区二区| 亚洲欧洲国产日韩| 国产色爽女视频免费观看| 亚洲欧洲日产国产| 亚洲,欧美,日韩| 亚洲aⅴ乱码一区二区在线播放| 欧美区成人在线视频| 麻豆成人午夜福利视频| 国产黄频视频在线观看| 内地一区二区视频在线| av又黄又爽大尺度在线免费看| 亚洲人成网站在线观看播放| 久久99热这里只频精品6学生| 波野结衣二区三区在线| 亚洲四区av| 久久久午夜欧美精品| 晚上一个人看的免费电影| 国产精品一及| 久久精品熟女亚洲av麻豆精品| av又黄又爽大尺度在线免费看| av在线app专区| 国产成人免费观看mmmm| 男女无遮挡免费网站观看| 毛片一级片免费看久久久久| 久久女婷五月综合色啪小说| av女优亚洲男人天堂| 国产精品国产三级专区第一集| 在线亚洲精品国产二区图片欧美 | 精华霜和精华液先用哪个| 又爽又黄a免费视频| 久久人人爽人人爽人人片va| 高清视频免费观看一区二区| 亚洲国产最新在线播放| 国产男女超爽视频在线观看| 99久久综合免费| .国产精品久久| 国产成人a∨麻豆精品| 久久精品国产亚洲av涩爱| 国产高清国产精品国产三级 | 国产国拍精品亚洲av在线观看| 中文在线观看免费www的网站| 色婷婷av一区二区三区视频| 蜜桃久久精品国产亚洲av| 亚洲熟女精品中文字幕| 妹子高潮喷水视频| 少妇人妻 视频| 国产日韩欧美在线精品| 免费大片18禁| 日本免费在线观看一区| 少妇熟女欧美另类| 久久99热这里只有精品18| 在线观看免费视频网站a站| 男女国产视频网站| 久久精品熟女亚洲av麻豆精品| 精品午夜福利在线看| 亚洲性久久影院| 久久99热这里只频精品6学生| 久久国产精品大桥未久av | 日韩电影二区| av国产精品久久久久影院| 精品熟女少妇av免费看| 免费看av在线观看网站| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 欧美另类一区| 五月开心婷婷网| 男人爽女人下面视频在线观看| 国产精品偷伦视频观看了| av线在线观看网站| av一本久久久久| 亚洲经典国产精华液单| 久久精品夜色国产| 又大又黄又爽视频免费| 日韩一区二区视频免费看| 国产av国产精品国产| av在线蜜桃| 香蕉精品网在线| 国产精品一及| 久久毛片免费看一区二区三区| 久久6这里有精品| 欧美xxⅹ黑人| 久久精品夜色国产| 日韩一本色道免费dvd| 少妇人妻精品综合一区二区| 国产av精品麻豆| 王馨瑶露胸无遮挡在线观看| 色网站视频免费| 亚洲精品国产av成人精品| 人体艺术视频欧美日本| 亚洲精品国产av成人精品| 午夜福利在线观看免费完整高清在| 老司机影院成人| 亚洲av欧美aⅴ国产| 久久久久国产精品人妻一区二区| 国产精品av视频在线免费观看| 精品视频人人做人人爽| 91久久精品国产一区二区成人| 男的添女的下面高潮视频| 亚洲人成网站在线播| 国产精品欧美亚洲77777| 精品酒店卫生间| 国产精品99久久99久久久不卡 | 在线观看免费日韩欧美大片 | 高清毛片免费看| 国产国拍精品亚洲av在线观看| 国产在线免费精品| 久久久久精品性色| 日韩伦理黄色片| 秋霞伦理黄片| 91精品伊人久久大香线蕉| 久久久亚洲精品成人影院| 国产久久久一区二区三区| 亚洲精品国产色婷婷电影| 亚洲成色77777| 99热全是精品| 亚洲一级一片aⅴ在线观看| 99re6热这里在线精品视频| 一本久久精品| 全区人妻精品视频| 亚洲av综合色区一区| 亚洲国产欧美在线一区| 国产成人精品福利久久| 狂野欧美白嫩少妇大欣赏| 亚洲综合色惰| 99re6热这里在线精品视频| 国产片特级美女逼逼视频| 欧美日韩精品成人综合77777| 秋霞伦理黄片| 欧美成人一区二区免费高清观看| 国产黄频视频在线观看| 日韩视频在线欧美| 国产免费视频播放在线视频| 在线观看av片永久免费下载| 又爽又黄a免费视频| 国产综合精华液| 国产精品一区二区性色av| 成年av动漫网址| a级毛片免费高清观看在线播放| 人体艺术视频欧美日本| 美女视频免费永久观看网站| 精品久久国产蜜桃| 久久久久久久久久人人人人人人| 99热全是精品| 精品午夜福利在线看| 伦理电影大哥的女人| 少妇熟女欧美另类| 五月玫瑰六月丁香| 九草在线视频观看| 精品一区二区三区视频在线| 99久久精品热视频| 国产成人一区二区在线| 亚洲国产色片| 美女国产视频在线观看| 亚洲在久久综合| 亚洲国产精品成人久久小说| 少妇人妻久久综合中文| 亚洲性久久影院| 简卡轻食公司| 我的女老师完整版在线观看| 在线精品无人区一区二区三 | 日本色播在线视频| av视频免费观看在线观看| 春色校园在线视频观看| 观看av在线不卡| 国产精品人妻久久久久久| 亚洲av免费高清在线观看| 亚洲欧美成人综合另类久久久| 秋霞伦理黄片| 久久 成人 亚洲|