• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    From flatness,GPI observers,GPI control and flat filters to observer-based ADRC

    2018-11-02 06:30:58HeberttSIRARAMIREZ
    Control Theory and Technology 2018年4期
    關鍵詞:申報表國別行動計劃

    Hebertt SIRA-RAM′IREZ

    CINVESTAV-IPN,Department of Electrical Engineering,Mechatronics Section,Avenida IPN No.2508,Col.San Pedro Zacatenco CP 07360,CDMX,M′exico

    Received 30 June 2018;revised 10 August 2018;accepted 10 August 2018

    Abstract

    In this article,we establish the route taken by the author,and his research group,to bring differential flatness to the realm of active disturbance rejection control(ADRC).This avenue entitled:1)generalized proportional integral observers(GPIO),as natural state and disturbance observers for flat systems,2)generalized proportional integral(GPI)control,provided with extra integrations,to produce a modular controller known as flat filters(FF’s)and,finally,3)the establishing of an equivalence of observer based ADRC with FF’s.The context is that of pure integration systems.The obtained controllers depend only on the order of the flat system and they are to be directly used on the basis of the available flat output signal in a universal,modular,fashion.The map is complemented with the relevant references where the intermediate techniques were illustrated and developed,over the years,in connection with laboratory experimental implementations.

    Keywords:Flatness,GPI observers,GPI control,reduced order GPI observers,flat filters

    1 Introduction

    Differential flatness is a system property establishing,in a natural manner,an input output description of the system,thus easing the controller design task in,both,SISO(single-input single-output)and MIMO(multiple inputs multiple outputs)nonlinear systems within a zero dynamics-free environment.All system states and the control inputs are differentially parameterizable in terms of the flat outputs and of a finite number of their time derivatives with a clear opportunity for identification of possible structural singularities.The flatness property substantially eases off-line trajectory planning issues,while trivializing feedback controller design.One of the advantages of the flatness property,in their inputto-flat-output representation of the dynamics,is that it allows to efficiently circumvent matching conditions,as it naturally leads to trivially matched input-to-flatoutput models.Flatness allows for exact static feedback linearization,for SISO systems,and to clearly identify the need for static or dynamic feedback linearization,in MIMO nonlinear systems.Flatness easily leads to controller synthesis based on desirable input to flat outputs closed-loop dynamics,in total absence of unobservable zero dynamics.In the linear system case,flatness is completely equivalent to system’s controllability,while flat outputs are trivially observable.

    Nonlinear differentially flat systems are equivalent to perturbed chains of pure integration.Treating,via drastic model simplification,the effects of endogenous nonlinearities in combination with exogenous inputs into a single footing of total unknown,unstructured,disturbance(addressed as thetotal disturbance),immediately prompts for the need of,simultaneous,state and disturbance estimates.Generalized proportional integral(GPI)observers are extended state observers traditionally used for robust phase variable reconstruction and high-gain based disturbance estimation,including the estimation of a finite number of disturbance input time derivatives.Integral phase variables reconstruction,via iterated inputs and outputs integrations,with suitably added iterated output integral compensation is an alternative to GPI observer design,which is known as GPI control.The GPI control scheme establishes a means of circumventing nonlinear observers design in both SISO and MIMO nonlinear systems.The key point here is to carry out the GPI observer,or GPI controller design,for the unperturbed version of the system,and,then,assess the effect of the neglected disturbance on the closed-loop response of the system to the designed controller.The scheme results in attenuation or disturbance rejection properties and generates a desirable,robust,trajectory tracking,or output stabilization,performance.

    The robustness consideration of GPI controller design,on flat systems simplified to perturbed chains of pure integrations,directly results in a high gain FF with desirable trajectory tracking qualities simultaneously achieved with low frequency input disturbance rejection and high frequency output measurement noise filtering or attenuation.

    In this article,we establish the route,taken by the author and his colleagues,students and coworkers,to bring Differential Flatness to the realm of ADRC design.This entitled GPI observers,GPI control via integral reconstructors and,finally,the establishing of an important equivalence between Observer based ADRC and robust linear control based on FF’s.This developments clarified,step by step,the way to establish a complete equivalence of ADRC via reduced order extended observers,and robust GPI control based on integral reconstructors also called FF’s.The context,quite on purpose,is that of pure integration systems which is the fundamental paradigm of flat nonlinear systems.The obtained controllers can be directly used on the perturbed flat system in a universal controller fashion requiring only knowledge of the dimension of the nonlinear flat system.The map is complemented with the relevant references where the intermediate techniques were illustrated with the help of experimental results.

    Section 2 introduces flatness and formulates the problem of controlling a flat output under unknown,timevarying,lumped input disturbances constituted by endogenous(state dependent)inputs and exogenous inputs.Section 3 illustrates the use of GPI observers and its relevance in the control of uncertain input-output models of flat systems and assesses the performance of the estimator in frequency domain terms.Section 4 explains GPI control in the context of an unperturbed chain of integrations.Section 5 places the uncertain control problem for flat systems in the context of robust FF’s.Section 6 contains the equivalence of reduced order extended observers,for disturbance estimation in an ADRC scheme,with the FF approach.

    To simplify the presentation,only the SISO nonlinear case will be treated throughout.Extension to MIMO flat systems,linearizable via static or dynamic feedback,is not particularly difficult.All technical assumptions are to be considered globally valid in the relevant state or phase space.For convenience,we only treat flat output stabilization problems.The results trivially extend to flat output reference trajectory tracking problems.

    2 Flat systems

    Ann-dimensional,smooth,nonlinear system of the form:x=f(x,u),y=h(x),withx∈Rn,y∈R andu∈R,is said to beflat,with flat outputy∈R,if there exists a diffeomorphic mapand a smooth function ψi.e.,

    Φis said to differentially parameterize thencomponents of the statex.We assume thatThe state de-pendent input coordinate transformation:u=ψ,v),confirms that the original system is equivalent to the pure integration,controllable,linear system,y(n)=v.The relationu=ψ,y(n))is addressed as the input-(flat)output description of the system,or simply,the input-output system.

    The vast majority of examples of flat systems include the affine in the control input case:=f(x)+g(x)u,y=h(x),with(f,g)a smooth pair of complete vector fields defined on the tangent space of Rn.The input-output description of the nonlinear,affine in the control,flat system is readily determined by

    It will be assumed that the nonlinear input gain:is nonzero in a sufficiently large open subset of Rn.If nothing is specified aboutthe previous regularity assumption will hold globally in Rn.

    Many engineering SISO nonlinear systems are flat(DC-to-DC converters such as the boost,the buck and the buck-boost converters;electric motors,such as DC motors,induction motors,variable reluctance motors,and permanent magnet synchronous motors;Airplane models,PVTOL systems,helicopters,some drones and marine vessels models).Many popular underactuated mechanical systems(ball and beam,inverted pendulum on a cart,the Furuta pendulum,the Kapitsa pendulum,etc.)are,generally speaking,non flat.

    Suppose,for a moment,that the termnotprecisely known,or difficult to “wire-up”in an experimental implementation of a certain output feedback control law strategy,implying its“exact cancellation”.Contrary to this,assume also that the input gain,is perfectly known.The termviewed as an unknown scalar time function:is then properly regarded as anendogenous perturbationinput.Any external,unstructured,perturbation input,affecting the system’s state model,actsasamatchedperturbation inputin the inputoutput model and it is addressed as theexogenous perturbation,denoted by ?(t).The total perturbation input is,hence,defined as ξ(t)= η(t)+ ?(t).We consider then thesimplified modelas the perturbed integration system,

    Flatness clearly leads,in a natural manner,to the paradigmatic perturbed model customarily considered in ADRC.Endogenous and exogenous perturbation inputs are handled as the total additive perturbation input.Particularly simple regular cases include:constant input gain:b)=b,output dependent input gain,b()=b(y).The general regular case,b()≠0,is treated via a suitable homotopic equivalence of the closed-loop output solution trajectories with those pertaining unit input gain,trivially stable,closed-loop output trajectories.This uses a globally well defined,state-dependent,time coordinate transformation.In such cases,b(,t),is largely unknown except,possibly,for its(unchanging)sign.

    Let,without loss of generality,b((t))>0 uniformly in time.Consider the implicit state-dependent time coordinate transformation,

    with the corresponding differential equation exhibiting the trivial initial conditions:τ(0)=0.This defines a statede pendent time scaling transformationt→τ.Sinceis uniformly strictly positive,the solution trajectory,τ(t),is uniformly increasing,thus qualifying as a time-like variable.The transformation τ :t→ τ,represented by the solution of the differential equation for τ,is,hence,globally invertible on the non-negative portion of R,denoted by R+.The time transformed system is

    For any static,or dynamic,feedback control lawu(such as ADRC),and any given set of initial conditions for the phase variables,(0),the trajectory,in the flat output phase space of the original system,is a smooth map,:R+→ Rn,defined by:t→(t).The corresponding phase space trajectory,τ→(τ),of the pure integration system,starting from the same initial condition,is a continuous deformation of that of the original system.In fact,the two maps:t→(t)and τ→(τ)belong to the samehomotopyclass.

    Indeed,considerthemapz:[0,1]×R+→Rndefined by This map,continuously deforms phase space trajectories,t→(t),of the nonlinear flat system into phase space trajectories,t→(τ(t)),of the simplified system.The monotonicity of the function τ(t),with τ(0)=0,guarantee thatare the same.Since the phase trajectories for the original and the timescaled pure integration system start at the same initial condition,and end at the same point at infinity,the timescaling homotopy class existing between the trajectory maps is well defined.Trajectories homotopic,via time scale transformations,to stable trajectories are stable.

    We,henceforth,consider,without loss of generality,pure integration systems of the form:

    3 Generalized proportional integral observers

    The flat system equivalence to a perturbed pure integration system,with unit control input gain,still requires,for robust feedback purposes,of the following two items 1)the asymptotic estimation of the phase variables set{y,,...,y(n?1)},simply denoted byand 2)the accurate estimation of the disturbance input ξ(t),as if it were an unstructured,purely time-varying,total disturbance input.It is clear that the prevailing linearity of the simpli fied system prompts,for the phasevaria bles estimation purposes,the use of a linear Luenberger type of observer and the incorporation of a reasonable total disturbance model for the signal ξ(t).Under the suitable disturbance smoothness assumption,anmth order Taylor time-polynomial approximation at timet,of the disturbance input,leads to the following self-updating linear approximation model:

    Definingzi(t)=z(i?1),i=1,2,...,m,we immediately obtain

    The disturbance approximation model corresponds with an(m?1)st order time polynomial which ultra-locally will be made to act as a self-updating polynomial spline approximating the actual value of the disturbance input.This self-updating character is bestowed through the disturbance estimation errors in the following manner.

    Define the simplified plant phase variables:yi=yi?1,i=1,2,...,n.Consider next the full order system model,including the disturbance model,and,also,its associated(perturbed)asymptotic extended observer:

    The(redundant)output estimation error,ey=y?1,is seen to satisfy the following perturbed linear dynamics,

    Clearly,the unperturbed version(ξ(t)=0)of the output estimation error dynamics can be specified to become asymptotically exponentially stable through the choice of suitable Hurwitz design coefficients:{λ0,...,λm+n?1}.Let ξ(s)denote the Laplace transform of the total disturbance signal ξ(t).The injected estimation error dynamics is described by the perturbed band-pass stable filter,

    which enjoys infinite attenuation at very low,and at very high,frequencies.At intermediate frequencies,where the minimum disturbance attenuation(or,actually,disturbance amplification)may be experienced,a high gain observer design,based on corresponding Hurwitz coefficients:κi,i=0,1,...,m+n,definedby,λi= κi/∈m+n?i,i=0,1,...,m+n?1 substantially attenuates to a desired level themth derivative of the smooth total disturbance influence on the output estimation error and of its time derivatives.The parameter∈is a small positive real number.The frequency response of the output estimation error would be given,in normalized frequency terms,σ = ∈s,by

    The attenuation effects of the high gain design parameter∈ are clearly depicted.

    As a result,as∈is made sufficiently small,an uniformly absolutely bounded total perturbation input,with uniformly absolutely bounded time derivatives,induces a phase variable estimation error which can be made as small in magnitude as desired.Clearly,forj=0,1,...,n?1,

    which still enjoys infinite,low and high frequency,attenuation features and modest attenuation at intermediate frequencies as the order of the output estimation error time derivative,j,increases from 0 towardsn?1.

    The disturbance estimation erroreξ=ξ(t)?1is seen to satisfy,in the time domain,

    As the estimation errors time derivatives,...,n,uniformly ultimately approach a neighborhood of the origin in the estimation error phase space,the disturbance estimation error,ξ?1,approaches a small neighborhood of the origin of the real line,still conveniently determined by the small parameter∈.

    It should be clear by now,that the approximation error ξ(t)?z1,associated with the proposed Taylor polynomial model of the total disturbance,ξ(t),exhibits an explicit linear depen dance on the phase variable estimation errors.Forcing their contributions to be part of an(m+n)th order asymptotically exponentially stable linear dynamics perturbed by the distur bance model actual residual,the resulting disturbance estimate error automatically adapts to a small vicinity of zero,thus making the Taylor polynomial approximation truly self-adapting.

    In the context of pure integration perturbed systems,GPI observers have been shown to be a generalization of Han’s extended state observer,but one which is also capable of on-line estimating a finite number of time derivatives of the total disturbance input.High gain state estimation seems to be at the heart of observer based ADRC control.

    It was,therefore,rather natural to combine GPI observers in an ADRC scheme for simplified models of totally perturbed flat nonlinear systems.The estimated phase variables completed a suitable linear feedback loop with rather accurate,though approximate,disturbance cancellation.

    4 GPI control:dynamical output feedback control without observers

    The stabilization of a perturbed pure integration system can be accomplished by the use of suitable classical compensation networks.The lack of universality of classical compensation networks is determined,primarily,by the nature of the disturbance function,by the order of the plant and by the knowledge of the control input gain.There exists a very close connection between GPI control,based on integral phase variables reconstructors,and classical output compensation networks.The presence of additive exogenous and endogenous(total)disturbances disrupts the established input error integration process aimed to obtain structural estimates of the output phase variables.To circumvent this inconvenience,one must first establish the structure of the GPI output compensator,regardless of the additive disturbances and,then,proceed to examine,and assess,the closed-loop performance in the presence of such unknown but bounded perturbation inputs.

    Consider then thenth order pure integration system as simplified from the input-to-flat output dynamics,

    Iterated integrations of the inputuyield structural estimates of the phase variables as follows:

    Each estimate is off by an(n?i?1)th order time polynomial,whose coefficients are exclusively dependent upon the unknown initial conditions associated with the estimated phase variable.Any linear feedback control scheme,based on the use of all these structural estimates of the phase variables(from the first,y1==(1),to the(n?1)th,yn?1=(n?1)),must dully compensate,as classically done,for the resulting linear combination of the corresponding time-polynomial errors.This simply requires a suitable linear combination of iterated integrals of the output signaly,ranging from a first order output integration,for compensation of the constant errors,up to an iterated(n?1)th order output iterated integration for the compensation of the(n?2)th order time polynomial associated with the estimationy1ofy=y(1).The linear control scheme,thus requires only the measurements of the input signaluand of the output signalyfor its implementation.

    A compensator for the unperturbed chain of integrations is given by

    In terms of the Laplace transforms,one obtains the implicit expression for the control inputu

    Solving foru(s)we have

    The closed-loop,unperturbed,system is readily obtained as

    The order of the dynamic output feedback compensator,for the unperturbed input output dynamics,is one less than the order of the plant.The output can be exponentially asymptotically stabilized via the suitable choice of the design parameters,{k2n?2,...,k1,k0},as the coefficients of a(2n?1)degree Hurwitz polynomial in the complex variables.The above stabilizing classical compensation network is addressed as theGPI controller.

    The above dynamic flat output feedback control scheme allows for flat output stabilization without explicitly using a linear observer exhibiting exponentially asymptotically stable(redundant)flat output estimation error.

    5 Flat filters

    The GPI controller is non robust with respect to additive disturbance inputs of the simplest kind(constant unknown disturbances,for example).As it was done in GPI observer based ADRC control of simplified,perturbed,flat systems,total additive disturbances may be modeled as finite order time polynomials(say,polynomials of orderm?1).There are,however,at least,two equivalent manners of bestowing the self updating feature to such a finite order,linear,total perturbation model.One of them is through exogenous input extensions,coupled with imposition of closed-loop stability for the entire extended systems.This is dual to the GPI observer approach.We take,however,the alternative route of compensating,in the feedback control,the effects of the total perturbation input through a suitable finite linear combination of iterated output integrations.

    Consider the output feedback control law

    Solving foru(s),after using the Laplace transform operator on the implicit controller expression,we obtain

    The closed-loop system,in the absence of input disturbances,is given by

    which can be made to asymptotically exponentially converge towards zero provided the appropriate(Hurwitz)gains are used.

    For the perturbed pure integration system

    The previously derived dynamic output feedback controller is directly used on the perturbed system.One obtains the following closed-loop system,driven by the total perturbation input.

    (3)對接BEPS第13項行動計劃成果,國內稅法中引入轉讓定價國別報告法律制度。2016年6月,國家稅務總局發(fā)布《關于完善關聯申報和同期資料管理有關事項的公告》,引入了新的轉讓定價文檔體系,更新了現行中國轉讓定價合規(guī)要求,具體涵括了國別報告在內的同期資料文檔和納稅申報表的新要求,與BEPS第13項行動計劃成果《轉讓定價同期資料和分國信息披露指引》的建議保持一致,為中國履行國別報告交換義務提供了國內法律保障。

    The frequency response of the output stabilization error(represented byyitself)exhibits significantly large attenuation at low and high frequencies,thus rejecting high frequency measurement noise and rejecting also typical low frequency disturbance inputs.For intermediate frequencies,a high gain parameter factor,in the form:κ =ki/∈2n+m?1?i.This induces the normalized frequency relation,

    6 Flat filters and observer based ADRC:An equivalence

    Consider the pure integration perturbed system

    We adopt,for the reduced order observer,then?1 dimensional system state representation including an artificial velocity measurement(y2==1):

    A reduced order extended state observer(ROESO),which takesy2as the artificially measured output,including,also,mextra output integrations,is given by

    Define

    The ROESO is thus proposed to be

    The estimates of the original phase variables may be computed from the following expressions:

    Defining also,for the original system,

    with ξ1=ξ,ξ2=˙ξ,...,ξm=ξ(m?1).One readily obtains

    The ROESO state,and disturbance,estimation errors are seen to satisfy:

    In other words,the estimation errore2satisfies the linear perturbed differential equation:

    From here,it easily follows that,

    which implies large attenuation of the low frequency input disturbance signal,ξ(t),in the state and disturbance estimation errors,produced by the proposed ROESO.

    whereyjis the(j?1)th order time derivative of the outputy.

    Thenth order time derivative of the output(itself the stabilization error)satisfies

    Letq(s)denote the following characteristic polynomial:q(s)=sn+m?1+ λn+m?2sn+m?2+...+ λ1s+ λ0and letp(s)denote the closed-loop control characteristic polynomialp(s)=sn+ γn?1sn?1+...+ γ1s+ γ0.Using the above expressions,one obtains,in the Laplace transform domain:

    with

    The closed-loop system output,y1,evolves,excited by the disturbance ξ,in accordance with the following dynamics:

    where

    Clearly the denominatorr(s)is of the form,

    while the numerator is of the form,

    The characteristic polynomial of the closed-loop system factors into the product of the ROESO characteristic polynomial(i.e.,n+m?1=(n?1)+m)and thenth order characteristic polynomial of the closed-loop system,obtained by straightforward pole placement on thenth order pure integration plant system,as if all the phase variables had been available for feedback.All this is,evidently,in accordance with the observer controller design separation principle for state feedback through an observer in linear systems.

    An output stabilization feedback controller for annth order pure integration system,y(n)=u+ξ(t),was found to be characterized,in the frequency domain,by

    with the filter gains chosen to guarantee a Hurwitz closed-loop characteristic polynomial.The closed-loop system is described by

    where

    which is clearly identifiable with the ROESO-based ADRC closed-loop system,depicted in equation(41),thanks to the fact that the closed-loop characteristic polynomial coefficients uniquely determine all the coefficients in the flat filter controller.We therefore have

    Clearly,given a ROESO-based ADRC controller design,there exists a unique stable flat filter controller which has exactly the same set of fundamental transfer functions(sensitivity,complementary sensitivity and open loop transfer functions).On the other hand,given a FF controller design,there exists non-unique equivalent ROESO based ADRC controllers.This one-way equivalence is substantially helpful in synthesizing observer based ADRC control schemes in the form of a single linear controller,in the form of a stable proper transfer function with enhanced disturbance attenuation features and good low frequency trajectory tracking features.The equivalence has been tested,also,in several experimental settings.

    7 Conclusions

    In this article,a roadmap,intimately related to the author’s gradual understanding,and linking,of ADRC with differential flatness and GPI control in the form of robust flat filters,has been provided through the basic developments leading from one end to the other.An exposition has been given of the inherent and natural relevance of differential flatness in the control of nonlinear uncertain systems for the SISO case.Also,the natural importance of classical compensation schemes in the control of uncertain nonlinear systems cannot be overemphasized.It is the author’s belief that the key issue,and one which encounters serious difficulties and criticisms on ADRC in the automatic control community,is given by the unstructured nature of the simplified pure integration system in the realm of non-linear control,whose design methods have been traditionally dominated by meticulous consideration of the nonlinear state structure.When the cult to the nonlinearities is swept away,in the form of a total purely time varying disturbance,all the arsenal of robust linear control can be readily applied to great advantage.It is my personal belief that ADRC still has numerous development avenues,both,in theory and practise,in comparison with other nonlinear control and observer design methods.

    Acknowledgements

    The author wishes to express his indebtedness to his colleages:V.Feliu-Battle,J.Linares Flores,R.Garrido-Moctezuma,M.Oliver-Salazar,M.Velasco-Villa,R.Castro-Linares,A.Rodríguez′Angeles,and M.Arteaga-P′erez,R.Morales,Z.Gao and C.Huang and C.Aguilar-Ib?nez for their kind cooperation in carrying out joint work on ADRC over the years in challenging areas of automatic control engineering.Former and actual Ph.D.and M.Sc.students:J.Cort′es-Romero,A.Luviano-Juarez,C.García-Rodríguez,M.RamírezNeria,E.Zurita-Bustamante,F.Gonzalez Mont?nez,C.Lopez-Uribe,D.Rosales-Díaz,L.Cuevas-Ramírez,E.Herńandez-Flores,M.Aguilar-Orduna,for efficiently,and successfully,implementing,on laboratory experiments,results related to ADRC,while teaching him most of what he has been able to report on the topic.

    8 Brief description of the bibliography

    References[1–4]represent,in the form of books,the contributions towards flatness,GPI control,GPI observers and ADRC of the author,his coworkers and students.Numerous application examples and laboratory experiments are described in detail in those four references.References[5–11]are book chapters containing early work on GPI observers,flatness and GPI control.References[12–41]constitute journal articles,published since 2010,containing diverse applications of GPI observers,GPI controllers and flatness based controllers.In many of these works striking coincidences and similarities may be found with ADRC schemes,at a time the author of this article was unaware of the vast potentials and appeal of the fascinating research field started by Prof.J.Han.Meeting Prof.Z.Gao in 2013,completely changed the perspectives and triggered the enthusiasm of the author for this area,while feeling the respectful need to start calling things by their proper name.

    猜你喜歡
    申報表國別行動計劃
    “一帶一路”高等教育國別比較研究
    ?陽河守護行動計劃
    國別成謎的紀王崮春秋大墓
    藝術品鑒(2020年1期)2020-01-19 06:01:12
    國家稅務總局關于修訂城鎮(zhèn)土地使用稅和房產稅申報表單的公告
    財會學習(2019年32期)2019-12-16 02:59:27
    國家稅務總局關于修訂城鎮(zhèn)土地使用稅和房產稅申報表單的公告
    稅收征納(2019年11期)2019-02-19 13:05:15
    如何制定30天行動計劃?
    國務院正式發(fā)布《水污染防治行動計劃》
    中國水利(2015年8期)2015-02-28 15:13:13
    學前教育三年行動計劃圓滿完成
    2012年8月不銹板(帶)分國別(地區(qū))進口情況
    2012年2月不銹板(帶)分國別(地區(qū))進口情況
    超色免费av| 免费在线观看影片大全网站 | 久久毛片免费看一区二区三区| 在线精品无人区一区二区三| 亚洲欧美一区二区三区黑人| 国产熟女午夜一区二区三区| 2018国产大陆天天弄谢| 欧美人与性动交α欧美软件| 日韩制服丝袜自拍偷拍| 在线精品无人区一区二区三| 免费高清在线观看日韩| 久久性视频一级片| 欧美少妇被猛烈插入视频| 丁香六月欧美| 中文字幕制服av| 国产真人三级小视频在线观看| 亚洲av日韩精品久久久久久密 | 欧美国产精品va在线观看不卡| 晚上一个人看的免费电影| 国产精品国产av在线观看| 狠狠婷婷综合久久久久久88av| 中文欧美无线码| 十八禁人妻一区二区| 亚洲欧美一区二区三区黑人| 欧美 亚洲 国产 日韩一| 在线av久久热| 女警被强在线播放| 国产麻豆69| 国产欧美日韩综合在线一区二区| 国产熟女午夜一区二区三区| 亚洲天堂av无毛| 国产精品av久久久久免费| 天堂中文最新版在线下载| 亚洲一码二码三码区别大吗| 久久久久久久久久久久大奶| 男女边摸边吃奶| 国产黄频视频在线观看| 一区在线观看完整版| 一级毛片 在线播放| 免费av中文字幕在线| 欧美精品啪啪一区二区三区 | 欧美 日韩 精品 国产| av视频免费观看在线观看| 男女之事视频高清在线观看 | 热re99久久精品国产66热6| 精品人妻在线不人妻| 国产有黄有色有爽视频| 亚洲免费av在线视频| 美女福利国产在线| 999精品在线视频| 热99久久久久精品小说推荐| 99国产精品一区二区蜜桃av | kizo精华| 日韩大码丰满熟妇| 丰满迷人的少妇在线观看| 一边摸一边抽搐一进一出视频| 国产亚洲精品第一综合不卡| 免费女性裸体啪啪无遮挡网站| 精品国产一区二区久久| 亚洲 欧美一区二区三区| 黄网站色视频无遮挡免费观看| 久热这里只有精品99| 欧美精品一区二区大全| 欧美少妇被猛烈插入视频| 水蜜桃什么品种好| 欧美老熟妇乱子伦牲交| 丝袜人妻中文字幕| 国产精品欧美亚洲77777| 欧美性长视频在线观看| 久久精品熟女亚洲av麻豆精品| 叶爱在线成人免费视频播放| 自拍欧美九色日韩亚洲蝌蚪91| 无限看片的www在线观看| 亚洲国产精品国产精品| 99精国产麻豆久久婷婷| 七月丁香在线播放| 在现免费观看毛片| 午夜福利乱码中文字幕| 18在线观看网站| 久久久精品94久久精品| 久久精品久久久久久久性| kizo精华| 日本色播在线视频| 精品高清国产在线一区| 97在线人人人人妻| cao死你这个sao货| 亚洲欧洲精品一区二区精品久久久| 午夜激情av网站| 国产淫语在线视频| 久久精品成人免费网站| 国产精品一区二区在线不卡| 国产视频一区二区在线看| 国产av一区二区精品久久| 交换朋友夫妻互换小说| 亚洲国产中文字幕在线视频| 建设人人有责人人尽责人人享有的| 亚洲视频免费观看视频| 1024视频免费在线观看| 久久精品久久精品一区二区三区| 亚洲图色成人| 最近最新中文字幕大全免费视频 | 久久亚洲精品不卡| cao死你这个sao货| www.精华液| 国产精品99久久99久久久不卡| 男人添女人高潮全过程视频| 这个男人来自地球电影免费观看| 人人妻人人添人人爽欧美一区卜| 在线观看www视频免费| 人妻一区二区av| 两性夫妻黄色片| 天堂8中文在线网| 超碰97精品在线观看| 91精品三级在线观看| 波多野结衣一区麻豆| 亚洲精品久久午夜乱码| 免费黄频网站在线观看国产| 1024视频免费在线观看| 黑人猛操日本美女一级片| 欧美成人午夜精品| 午夜福利免费观看在线| 2018国产大陆天天弄谢| 日韩中文字幕欧美一区二区 | 中文字幕精品免费在线观看视频| 国产不卡av网站在线观看| 18在线观看网站| 亚洲精品久久午夜乱码| 97在线人人人人妻| 国产成人影院久久av| 黄色a级毛片大全视频| 中文字幕亚洲精品专区| 美女扒开内裤让男人捅视频| 狂野欧美激情性bbbbbb| av有码第一页| 可以免费在线观看a视频的电影网站| 女性被躁到高潮视频| 国产精品麻豆人妻色哟哟久久| 亚洲一码二码三码区别大吗| 国产av国产精品国产| 亚洲国产精品国产精品| 亚洲精品久久久久久婷婷小说| 50天的宝宝边吃奶边哭怎么回事| 在线亚洲精品国产二区图片欧美| 欧美xxⅹ黑人| 国产成人av激情在线播放| 在线亚洲精品国产二区图片欧美| av网站免费在线观看视频| 成人18禁高潮啪啪吃奶动态图| 婷婷色av中文字幕| 波野结衣二区三区在线| svipshipincom国产片| 热re99久久精品国产66热6| 国产成人精品在线电影| av一本久久久久| 老汉色∧v一级毛片| 国产欧美亚洲国产| 爱豆传媒免费全集在线观看| 精品国产超薄肉色丝袜足j| 19禁男女啪啪无遮挡网站| 老司机午夜十八禁免费视频| 一级黄片播放器| 久久鲁丝午夜福利片| 亚洲av男天堂| 亚洲中文字幕日韩| 国产熟女欧美一区二区| 制服人妻中文乱码| 91成人精品电影| 欧美在线一区亚洲| 精品卡一卡二卡四卡免费| 日本91视频免费播放| 又大又爽又粗| 啦啦啦视频在线资源免费观看| 天天躁夜夜躁狠狠躁躁| 18在线观看网站| 精品少妇内射三级| 亚洲国产看品久久| 操出白浆在线播放| 97精品久久久久久久久久精品| 欧美日韩成人在线一区二区| 国产成人a∨麻豆精品| 亚洲第一av免费看| 精品熟女少妇八av免费久了| 黄色视频在线播放观看不卡| 日韩,欧美,国产一区二区三区| 少妇的丰满在线观看| 一二三四在线观看免费中文在| 精品人妻熟女毛片av久久网站| 国产麻豆69| 亚洲精品一卡2卡三卡4卡5卡 | 狂野欧美激情性bbbbbb| 久久久精品免费免费高清| 男人操女人黄网站| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三区在线| 在线精品无人区一区二区三| 久久久久国产一级毛片高清牌| 欧美乱码精品一区二区三区| 亚洲精品一二三| 国产成人影院久久av| netflix在线观看网站| 亚洲专区中文字幕在线| 亚洲久久久国产精品| 七月丁香在线播放| 欧美久久黑人一区二区| 国产免费又黄又爽又色| 美女大奶头黄色视频| 在线观看免费高清a一片| 嫩草影视91久久| 久久久亚洲精品成人影院| 日韩av免费高清视频| 女人被躁到高潮嗷嗷叫费观| 久久精品人人爽人人爽视色| 成人18禁高潮啪啪吃奶动态图| 另类精品久久| 免费观看人在逋| 七月丁香在线播放| 久久久久久久国产电影| 人体艺术视频欧美日本| 国产精品一区二区在线不卡| 在线亚洲精品国产二区图片欧美| 电影成人av| 男女高潮啪啪啪动态图| 亚洲精品一区蜜桃| 日韩av不卡免费在线播放| 国产1区2区3区精品| 国产欧美日韩一区二区三区在线| 日韩大码丰满熟妇| 黄色毛片三级朝国网站| 国产91精品成人一区二区三区 | 亚洲熟女精品中文字幕| 亚洲精品久久午夜乱码| 国产高清视频在线播放一区 | 久久九九热精品免费| 国产亚洲欧美精品永久| www.自偷自拍.com| 大陆偷拍与自拍| 久久ye,这里只有精品| 中文字幕亚洲精品专区| 亚洲一码二码三码区别大吗| av电影中文网址| 巨乳人妻的诱惑在线观看| 最黄视频免费看| 91精品国产国语对白视频| 久久亚洲精品不卡| 一区在线观看完整版| 欧美日韩av久久| 蜜桃在线观看..| av片东京热男人的天堂| 亚洲欧美中文字幕日韩二区| 国产av精品麻豆| 成年女人毛片免费观看观看9 | 晚上一个人看的免费电影| 国产成人精品无人区| 日本猛色少妇xxxxx猛交久久| 黑人巨大精品欧美一区二区蜜桃| 男女下面插进去视频免费观看| 亚洲精品av麻豆狂野| 亚洲精品国产区一区二| cao死你这个sao货| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产欧美日韩在线播放| 久久免费观看电影| 啦啦啦在线免费观看视频4| 国产精品香港三级国产av潘金莲 | 国产亚洲一区二区精品| 黄片小视频在线播放| 狂野欧美激情性xxxx| 黄色视频在线播放观看不卡| 99国产综合亚洲精品| 爱豆传媒免费全集在线观看| 精品亚洲成a人片在线观看| 美女脱内裤让男人舔精品视频| 青青草视频在线视频观看| 精品少妇一区二区三区视频日本电影| 交换朋友夫妻互换小说| 人人妻人人添人人爽欧美一区卜| 黄片小视频在线播放| 精品国产乱码久久久久久小说| 久久人人爽人人片av| 久久天堂一区二区三区四区| 欧美少妇被猛烈插入视频| 午夜两性在线视频| 人成视频在线观看免费观看| 久久精品久久久久久噜噜老黄| av不卡在线播放| 人人妻人人澡人人爽人人夜夜| 精品国产乱码久久久久久小说| 老司机在亚洲福利影院| 欧美日本中文国产一区发布| 在线观看国产h片| 久久久久久久国产电影| 中文字幕人妻熟女乱码| 国精品久久久久久国模美| 伊人久久大香线蕉亚洲五| 午夜福利在线免费观看网站| www.精华液| 少妇精品久久久久久久| 嫁个100分男人电影在线观看 | 在线天堂中文资源库| www.熟女人妻精品国产| 欧美日韩黄片免| 国产精品 国内视频| 国产日韩一区二区三区精品不卡| 日韩精品免费视频一区二区三区| 十八禁人妻一区二区| 曰老女人黄片| 中文字幕人妻丝袜一区二区| 亚洲精品乱久久久久久| 亚洲少妇的诱惑av| 久久99精品国语久久久| 97精品久久久久久久久久精品| 精品少妇黑人巨大在线播放| 丰满迷人的少妇在线观看| 亚洲图色成人| 日本vs欧美在线观看视频| 99九九在线精品视频| 捣出白浆h1v1| 国产97色在线日韩免费| 亚洲精品一区蜜桃| 国产有黄有色有爽视频| 欧美日韩视频高清一区二区三区二| h视频一区二区三区| 满18在线观看网站| 91精品伊人久久大香线蕉| 在线观看一区二区三区激情| 各种免费的搞黄视频| 97精品久久久久久久久久精品| cao死你这个sao货| 亚洲 欧美一区二区三区| 人人妻人人爽人人添夜夜欢视频| 大码成人一级视频| 欧美av亚洲av综合av国产av| 色精品久久人妻99蜜桃| 9热在线视频观看99| 熟女av电影| 免费久久久久久久精品成人欧美视频| 少妇 在线观看| 看免费成人av毛片| 50天的宝宝边吃奶边哭怎么回事| 日韩 欧美 亚洲 中文字幕| 成年女人毛片免费观看观看9 | 激情视频va一区二区三区| 午夜福利免费观看在线| 99久久综合免费| 午夜影院在线不卡| 精品久久久久久电影网| 99久久99久久久精品蜜桃| 国产不卡av网站在线观看| 成人黄色视频免费在线看| 2021少妇久久久久久久久久久| 色网站视频免费| 美女福利国产在线| 国产91精品成人一区二区三区 | 久久99一区二区三区| 男女边吃奶边做爰视频| 国产主播在线观看一区二区 | 国产欧美日韩一区二区三区在线| 中文欧美无线码| 一区二区三区四区激情视频| 国产av一区二区精品久久| 一区在线观看完整版| 久久久久国产精品人妻一区二区| 午夜福利在线免费观看网站| 国产成人精品久久二区二区免费| 精品一品国产午夜福利视频| 国产亚洲午夜精品一区二区久久| 飞空精品影院首页| 亚洲av日韩在线播放| 我要看黄色一级片免费的| 亚洲,欧美,日韩| 国产日韩一区二区三区精品不卡| 国产真人三级小视频在线观看| 在线av久久热| 亚洲专区国产一区二区| 免费高清在线观看日韩| 欧美精品av麻豆av| 尾随美女入室| 丰满迷人的少妇在线观看| 久久av网站| 成人影院久久| 丝袜脚勾引网站| 女人爽到高潮嗷嗷叫在线视频| 高潮久久久久久久久久久不卡| 亚洲色图 男人天堂 中文字幕| 人人妻人人澡人人看| 成人18禁高潮啪啪吃奶动态图| 久久精品久久久久久久性| 1024香蕉在线观看| 国产一区二区在线观看av| av国产久精品久网站免费入址| 日韩 欧美 亚洲 中文字幕| 久久性视频一级片| 美女国产高潮福利片在线看| 国产亚洲精品第一综合不卡| 亚洲激情五月婷婷啪啪| 国产片内射在线| 麻豆乱淫一区二区| 亚洲精品成人av观看孕妇| 国产又爽黄色视频| 国产成人精品在线电影| 亚洲激情五月婷婷啪啪| 搡老乐熟女国产| av在线app专区| 老司机影院毛片| 在线观看国产h片| 美女大奶头黄色视频| 亚洲国产欧美在线一区| 在线 av 中文字幕| 亚洲精品美女久久久久99蜜臀 | 国产日韩欧美在线精品| 国产欧美日韩综合在线一区二区| 亚洲国产精品成人久久小说| 国产av精品麻豆| 日韩中文字幕视频在线看片| 欧美 日韩 精品 国产| 亚洲精品美女久久久久99蜜臀 | 国产欧美日韩综合在线一区二区| 亚洲欧美日韩高清在线视频 | 国产一区二区激情短视频 | 免费观看a级毛片全部| 国产一区亚洲一区在线观看| 老司机影院成人| 国产一区二区激情短视频 | 久久久久久久久久久久大奶| 大片免费播放器 马上看| 嫩草影视91久久| 麻豆av在线久日| 亚洲精品av麻豆狂野| 亚洲伊人色综图| 在线观看免费视频网站a站| 亚洲欧美精品自产自拍| 免费在线观看视频国产中文字幕亚洲 | 亚洲成人手机| 久久久精品免费免费高清| 别揉我奶头~嗯~啊~动态视频 | 性少妇av在线| 亚洲中文日韩欧美视频| 乱人伦中国视频| 亚洲国产精品一区二区三区在线| 国产免费一区二区三区四区乱码| 新久久久久国产一级毛片| 国产精品 国内视频| 大码成人一级视频| 日韩一区二区三区影片| 精品免费久久久久久久清纯 | e午夜精品久久久久久久| 晚上一个人看的免费电影| av有码第一页| 亚洲欧洲精品一区二区精品久久久| 日韩制服丝袜自拍偷拍| 欧美激情极品国产一区二区三区| 中文字幕色久视频| 九色亚洲精品在线播放| 国产精品一区二区在线观看99| 美女扒开内裤让男人捅视频| 天天躁夜夜躁狠狠躁躁| 欧美xxⅹ黑人| 国产成人啪精品午夜网站| 久久人人97超碰香蕉20202| 欧美日韩综合久久久久久| 亚洲av电影在线观看一区二区三区| 亚洲熟女毛片儿| 久久精品人人爽人人爽视色| 久久精品久久精品一区二区三区| 一边摸一边做爽爽视频免费| 岛国毛片在线播放| 国产高清videossex| 乱人伦中国视频| 又大又黄又爽视频免费| 国产1区2区3区精品| 成年动漫av网址| 久9热在线精品视频| 咕卡用的链子| 91精品三级在线观看| 老司机午夜十八禁免费视频| 欧美+亚洲+日韩+国产| 在线天堂中文资源库| 久9热在线精品视频| 丰满饥渴人妻一区二区三| 亚洲人成77777在线视频| 亚洲精品国产色婷婷电影| 久久人人爽人人片av| 国产欧美日韩一区二区三 | 91老司机精品| 亚洲精品一二三| 操出白浆在线播放| netflix在线观看网站| 欧美 日韩 精品 国产| 亚洲精品一二三| 美女主播在线视频| 超碰97精品在线观看| 久久精品国产亚洲av高清一级| av不卡在线播放| 尾随美女入室| 亚洲综合色网址| 五月天丁香电影| 精品亚洲成a人片在线观看| bbb黄色大片| 国产亚洲av高清不卡| 大型av网站在线播放| 天堂8中文在线网| 亚洲人成网站在线观看播放| 国产一区二区在线观看av| 中文字幕制服av| 大型av网站在线播放| 看免费av毛片| 欧美av亚洲av综合av国产av| 十分钟在线观看高清视频www| 国产精品一二三区在线看| 久久av网站| 国产男女内射视频| 精品少妇一区二区三区视频日本电影| 欧美精品人与动牲交sv欧美| 91精品伊人久久大香线蕉| 看十八女毛片水多多多| 中文字幕色久视频| 亚洲精品中文字幕在线视频| 欧美日韩综合久久久久久| 欧美成人精品欧美一级黄| 成人亚洲精品一区在线观看| 免费一级毛片在线播放高清视频 | 国产成人欧美| 香蕉丝袜av| 王馨瑶露胸无遮挡在线观看| 涩涩av久久男人的天堂| 国产有黄有色有爽视频| 欧美少妇被猛烈插入视频| 日韩 欧美 亚洲 中文字幕| 久久久精品国产亚洲av高清涩受| 亚洲国产看品久久| www.熟女人妻精品国产| 久久女婷五月综合色啪小说| av天堂久久9| 精品亚洲成国产av| 一级毛片 在线播放| 人人妻,人人澡人人爽秒播 | a 毛片基地| 看十八女毛片水多多多| 老司机影院成人| 99香蕉大伊视频| 亚洲精品国产区一区二| 777米奇影视久久| 国产精品久久久av美女十八| 欧美国产精品一级二级三级| 波野结衣二区三区在线| 丰满少妇做爰视频| 天天操日日干夜夜撸| 欧美亚洲日本最大视频资源| 亚洲色图 男人天堂 中文字幕| 国产在线观看jvid| av国产精品久久久久影院| 日本黄色日本黄色录像| 丝袜脚勾引网站| 在线观看免费午夜福利视频| www.自偷自拍.com| 中文字幕最新亚洲高清| 在线观看免费视频网站a站| 91精品伊人久久大香线蕉| 亚洲精品自拍成人| 激情视频va一区二区三区| 各种免费的搞黄视频| 黄色 视频免费看| 熟女少妇亚洲综合色aaa.| 欧美日本中文国产一区发布| 国产成人a∨麻豆精品| 国产黄色免费在线视频| 国产亚洲av片在线观看秒播厂| 久久久久久亚洲精品国产蜜桃av| 亚洲,欧美精品.| 国产免费一区二区三区四区乱码| 国产成人精品久久久久久| 中文字幕亚洲精品专区| 国产成人av教育| 国产91精品成人一区二区三区 | 国产一区二区激情短视频 | 欧美久久黑人一区二区| 最近中文字幕2019免费版| 国产99久久九九免费精品| 欧美在线一区亚洲| 久久精品国产a三级三级三级| 少妇人妻久久综合中文| 国产精品国产av在线观看| 亚洲国产最新在线播放| 亚洲七黄色美女视频| 狠狠精品人妻久久久久久综合| 亚洲色图 男人天堂 中文字幕| 纯流量卡能插随身wifi吗| 精品一区在线观看国产| 精品久久久久久久毛片微露脸 | 国产片内射在线| 国产av精品麻豆| 亚洲自偷自拍图片 自拍| 只有这里有精品99| 涩涩av久久男人的天堂| 国产熟女午夜一区二区三区| 好男人电影高清在线观看| 日韩大码丰满熟妇| 天天影视国产精品| 91精品伊人久久大香线蕉| 精品国产乱码久久久久久男人| 又紧又爽又黄一区二区| 亚洲免费av在线视频| 男女午夜视频在线观看| 欧美日韩视频高清一区二区三区二| 欧美在线一区亚洲| 亚洲欧美激情在线| 爱豆传媒免费全集在线观看| 美女高潮到喷水免费观看| 亚洲国产欧美网| 免费人妻精品一区二区三区视频| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲日产国产| 天天添夜夜摸| 中国国产av一级| 在线精品无人区一区二区三|