• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strength criterion of composite solid propellants under dynamic loading

    2018-10-18 05:27:50ZhejunWangHongfuQiangGuangWangBiaoGeng
    Defence Technology 2018年5期

    Zhe-jun Wang,Hong-fu Qiang,Guang Wang,Biao Geng

    206Staff Room,Xi'an Hi-Tech Institute,Xi'an,710025,China

    Keywords:Strength criterion Unified strength theory Composite solid propellant Dynamic loading Biaxial tension

    ABSTRACT Based on the dynamic loading(1-100 s-1)experiments under different temperatures(223-298 K)and stress states,uniaxial and biaxial strength criterion of a Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant were further investigated.These experiments were conducted through the use of a new uniaxial INSTRON testing machine,different new designed gripping apparatus and samples with different configurations.According to the test results,dynamic uniaxial tensile strength criterion of the propellant was directly constructed with the master curve of the uniaxial maximum tensile stress.Whereas,a new method was proposed to determine the dynamic uniaxial compressive strength of the propellant in this study.Then uniaxial compressive strength criterion of the propellant was constructed based on the related master curve.Moreover,it found that the uniaxial tensile compressive strength ratio of the propellant is more sensitive to loading temperature under the test conditions.The value of this parameter is about 0.4 at room temperature,and it reduces to 0.2-0.3 at low temperatures.Finally,the theoretical biaxial strength criterion of HTPB propellant under dynamic loading was constructed with the unified strength theory,the uniaxial strength and the typical biaxial tensile strength.In addition,the theoretical limit lines of the principal stress plane for the propellant under dynamic loading at different temperatures were further plotted,and the scope of the limit line increases with decreasing temperature.

    1.Introduction

    Up to now,solid rocket motor(SRM)has found extensively applications in current military and space technologies[1].In addition,the propellant grain serves as the most prime component and the energysource of this motor.In-service SRMs are often stored for long time,and transported from one place to another before operation,thus they are exposed to various environmental conditions,in which the loading rate and temperature play an important role[2-4].When the maximum stress or strain capacities of solid propellants was exceeded under those different conditions,cracks may arise and propagate in the propellant grain,which can further cause the motor to explode and prevent missiles from fulfilling their mission[5,6].Therefore,it is very necessary and important to construct the suitable failure criterion of solid propellant to assess the structural integrity of propellant grain.In general,the failure criterion of solid propellant includes strength criterion and fracture criterion[7],and the later one will be only studied in this investigation.

    With the measured data in laboratory,the strength criterion of solid propellant is usually employed to provide a criterion for evaluating its damage under other loading conditions.Over the last few decades,a considerable amount of experiments have been done in studying the uniaxial properties of solid propellants under various loading conditions,such as the constant strain-rate loading tests,constant stress-rate loading tests,constant strain loading tests,constant stress loading tests and dynamic mechanical analysis(DMA)tests[8-12].These test results indicate that the viscoelastic properties of solid propellant are very complex and significantly dependent on the loading factors(for example strain rate,temperature,aging,and stress state).Moreover,according to these test results and the time-temperature superposition principle(TTSP),the uniaxial strength criterion of solid propellant was constructed,and the analysis of the structural integrity for propellant grain during the lifetime of SRM has been widely performed[13-15].However,for the port pressurization condition during ignition of SRM,the propellant grain experiences a biaxial stress field[16].Hence,the biaxial strength criterion of solid propellant under dynamic loading are more useful for analyzing the structural integrity of propellant grain.Otherwise,using uniaxial test results can result in gross inaccuracies.In recent years,there are strict requirement for the structural integrity of propellant grain during ignition of SRM at low temperatures,with the increasing demand for the multiple military tasks and the continuous development of high performance tactical missiles[17,18].The propellant withstands the coupled effects of low temperature and dynamic loading(1-100 s-1)under this specific engineering condition[19].Therefore,the need to construct the biaxial strength criterion of solid propellant at strain rates(1-100 s-1)and low temperatures becomes more urgent and necessary.However,up to now,the related researches are very inadequate.Wherefore,new test methods and theories should be applied for the further investigation.

    In the presented paper,uniaxial strength criterion of a composite solid propellant under dynamic loading(1-100 s-1)was constructed firstly based on the related test results from our previous works.Afterwards,the effects of loading strain rate and temperature on the uniaxial tensile-compressive strength ratio were discussed.Finally,the theoretical biaxial strength criterion of the propellant under dynamic loading(1-100 s-1)was further constructed with new strength theory.

    2.Experiments

    Hydroxyl-terminated polybutadiene(HTPB,binder fuel)based composite solid propellant has been widely used in current SRM worldwide,thus it was selected for this investigation.Its components are as follows:6.0-7.0 mass-%HTPB,60.0 mass-%larger ammonium perchlorate(AP,oxidizer),9.5 mass-%smaller AP,18.5 mass-%Aluminium(Al,metal fuel)powder,0.05-0.10 mass-%tris 1(2 methylazirindinyl)phosphine oxide(MAPO,bonding agent),1.0-2.0 mass-%toluene diisocyanate(TDI,curative),3.4 mass-%dicapryl sebacate(DOS,plasticizer)and 0.5-1.0 mass-%other liquid additives.

    In general,the uniaxial mechanical properties of materials were investigated based on the uniaxial tensile tests and uniaxial compressive tests.The biaxial tensile tests,biaxial compressive tests and biaxial tensile-compressive tests should be all conducted to study the biaxial mechanical properties of materials.However,up to now,it is very difficult to conduct the dynamic biaxial tests on materials due to the scarcity of suitable testing machine.Therefore,the typical dynamic biaxial test on HTPB propellant was investigated here.

    For dynamic testing,it is very important to design the suitable configuration and dimensions of the sample.According to the Chinese national standard of P.R.C,GJB 770B-2005,the American JANNAF(Joint Army-Navy-NASA-Air Force)standard[20]and the previous researches[21,22],the uniaxial tensile test samples,uniaxial compressive test samples and biaxial tensile test samples were designed as shown in Fig.1.As stated in the introduction section,it is more important to assess the structural integrity of propellant grain during ignition of SRM at low temperatures.Therefore,most tests in this study were conducted to investigate the mechanical properties of solid propellant under dynamic loading at low temperatures.The sample test matrix is shown in Table 1.Furthermore,all tests were performed using the new uniaxial testing machine INSTRON VHS 160/100-20 and different new designed gripping jaws.More detailed information about the test setup and the test processing had been all stated in our previous works[23-25],please refer to them.The results obtained from these tests were further analyzed in this investigation.

    3.Uniaxial strength criterion

    3.1.Uniaxial tensile strength criterion

    According to the Chinese national standard of P.R.C,GJB 770B-2005 and the American JANNAF standard[20],the maximum tensile stress obtained directly from the uniaxial tensile stress-strain curve is defined as the uniaxial tensile strengthσumtof solid propellant.

    Table 1 Sample test matrix.

    In general,the mechanical properties of highly particle- filled elastomers such as solid propellant are sensitive to the loading strain rate and temperature.Thus the effects of strain rate and temperature must be considered when constructing the strength criterion of these materials.Based on lots of test results and some theories,Williams et al.stated that the viscoelastic behavior of materials at one temperature T2can be related to that at another temperature T1by a change in the frequency or time scale only[26].In other words,the viscoelastic behavior of materials at high temperature and fast loading rate can be equivalent to that at low temperature and slow loading rate.This relationship is called the TTSP and can be described with Equation(1).According to this principle,the curve of the typical mechanical parameter versus logarithmic loading frequency or logarithmic time at each temperature,can be horizontally shifted along the frequency(or the reduced time)axis then overlapped on the curve at the reference temperature.Afterwards,a fully overlapped curve could be formed at the reference temperature,which is called the master curve of that typical mechanical parameter.And the shift distance along the logarithmic reduced time axis is called the time-temperature shift factorαT.Therefore,the master curve can be used to describe and predict the mechanical properties of highly particle- filled elastomers such as solid propellant in wide intervals of temperatures and strain rates.

    where P represents the typical viscoelastic behavior of materials.

    The master curve of the uniaxial maximum tensile stress for HTPB propellant under the test conditions was constructed as shown in Fig.2,based on TTSP.To obtain the smoother master curve,the data were firstly multiplied by temperature ratio T0/T(T0=298K)prior to shifting.The related expressions of the master curve are as shown in Equations(2)and(3).Therefore,Equation(4)was further developed to describe the variation of the dynamic uniaxial tensile strength of HTPB propellant with strain rate and temperature in this study:

    whereσYis the strength of the propellant,k1,k2,k3,k4,k5,k6,l1(=k5×k1)and l2(=k5×k2+k6)are material constant,and their values are shown in Table 2,T0is the reference temperature.

    According to Equation(4)and Table 2,the dynamic uniaxial tensile strength criterion of HTPB propellant can be written as follows:

    whereσutis the uniaxial tensile stress of the propellant obtained from the analysis of structural integrity with the finite element method.

    3.2.Uniaxial compressive strength criterion

    Up to now,there has been no standard available for defining the compressive strength of solid propellant.In addition,the trend of the uniaxial compressive stress-strain curves of HTPB propellant is very complex with increasing strain rate and decreasing temperature[25].Therefore,with the test results,a new method as shown in Fig.3 was proposed in this study to determine the dynamic uniaxial compressive strengthσucsof HTPB propellant.

    The master curve of the uniaxial compressive strength for HTPB propellant was constructed as shown in Fig.4,based on TTSP.The reference temperature T0is also defined as 298 K.As can be seen clearly,the trend of the logarithmic shift factor log(αT)is also linear with temperature,which is consistent with that obtained in uniaxial tension(Fig.2).Moreover,all master curves of the propellant in uniaxial loading are nonlinear in form(Figs.2 and 4).Then Equation(4)can be also employed to describe the variation of the dynamic uniaxial compressive strengthσucsof HTPB propellant with strain rate and temperature in this study.The values of material constants are shown in Table 2.

    According to Equation(4)and Table 2,the dynamic uniaxial compressive strength criterion of HTPB propellant can be written as follows:

    whereσucis the uniaxial compressive stress of the propellant obtained from the analysis of structural integrity with the finite element method.

    3.3.Uniaxial tensile-compressive strength ratio

    To further investigate the effect of stress state on the uniaxial strength of solid propellant,the uniaxial tensile-compressive strength ratio(σumt/σucs)of HTPB propellant under the test conditions were obtained as shown in Table 3.It can be found that the value of this parameter is all smaller than 1,which indicates that it is easier for the propellant to fail due to the dynamic tensile loading under the same strain rate and temperature.In addition,the effect of temperature on this parameter is more remarkable.The value ofthis parameter is about 0.4at room temperature,and it reduces to 0.2-0.3 at low temperatures.In other words,the dynamic uniaxial compressive strength of HTPB propellant is 3-5 times of that in tension.

    Table 2 Values of constants of the master curves for HTPB propellant.

    4.Biaxial strength criterion

    In general,the biaxial strength of materials includes the biaxial tensile strength σbmt,biaxial compressive strength σbcsand biaxialtensile-compressive strengthσbmtc.As stated in section 2,it is very difficult to conduct the dynamic biaxial tests on materials.Therefore,the dynamic biaxial tensile strength of HTPB propellant was only investigated here with the typical test results.Whereas,other dynamic biaxial strengths of the propellant were acquired with theoretical method.

    Table 3 Uniaxial tensile-compressive strength ratio of HTPB propellant under the test conditions.

    4.1.Biaxial tensile strength

    The dynamic biaxial tensile tests were conducted on HTPB propellant through the use of a new uniaxial INSTRON testing machine,a new designed gripping apparatus and the strip biaxial tensile sample(as shown in Fig.1(c))[24].Based on the recorded load and displacement along the vertical loading direction(Y direction in Fig.1(c)),the related tensile stress-strain curves of HTPB propellant under the test conditions were obtained.

    According to TTSP,the master curve of the maximum tensile stress along the vertical loading direction for HTPB propellant was constructed as shown in Fig.5,in which the value of the reference temperature T0is also defined as 298 K.It can be seen that the trend of the logarithmic shift factor log(αT)is linear with temperature,which is consistent with that obtained in uniaxial tension(Fig.2).In addition,the master curve of the propellant is also nonlinear in form.Then they can be also described with Equations(2)-(4),and the values of the material constants are shown in Table 2.

    As stated in our previous work[24],the movement of the propellant part for the strip biaxial tensile sample was restrained in the transverse direction(x direction as shown in Fig.1(c))during loading,and the dimension of the sample in the thickness direction(z direction as shown in Fig.1(c))is far smaller than that in other directions.Therefore,the following expressions can be written(σ1≥ σ2≥ σ3):

    whereνis the Poisson's ratio of solid propellant.

    According to the above discussion,the variation of the biaxial tensile strength for the strip sample with strain rate and temperature can be expressed as follows by taking Equation(4)into Equation(7a):

    4.2.Biaxial strength criterion based on the unified strength theory

    When the uniaxial tensile strengthσumtand compressive strengthσucswere used as the basic mechanical parameters,the unified strength theory can be expressed as follows with the principal stress(σ1≥ σ2≥ σ3)[27]:

    where σ1,σ2and σ3are the three principal stress,α(σumt/σucs)is the uniaxial tensile-compressive strength ratio,b is the material constant to describe the effect of intermediate principal stress on the strength.

    Taking Equation(5)into Equation(9),the variation of the biaxial strength for HTPB propellant with strain rate and temperature can be written as follows:

    According to Table 3,the value of the parameterαis about 0.4 at room temperature,and its value is 0.2-0.3at low temperatures.Therefore,the theoretical biaxial strength criterion of HTPB propellant under dynamic loading(1-100 s-1)can be constructed with Equation(10)when the optimal value of the parameter b was determined by fitting the strength of the propellant under the typical stress state.

    According to Equation(7),the principal stress of the unified strength theory can be expressed with Equation(9a)when conducting dynamic biaxial tensile test on HTPB propellant with the strip sample.Then taking Equation(7)into Equation(9a),the following expression can be given:

    Taking the dynamic biaxial tensile strength along the vertical loading direction and dynamic uniaxial tensile strength of HTPB propellant into the left side and right side of Equation(11),respectively.Moreover,the value of the Poisson's ratioνis defined as 0.5.Then,the value of the parameter b is determined as 0.05,0.25 and 0.50at the temperature of 298,243 and 223K,respectively.Now,the theoretical biaxial strength criterion of HTPB propellant under dynamic loading(1-100 s-1)was constructed.

    Substituting the values of the above parameters(αand b)into Equation(9),the limit lines of the principal stress plane for HTPB propellant under dynamic loading were plotted with the unified strength theory,as shown in Fig.6.During this process,data normalization method was employed.In other words,the dynamic uniaxial tensile strengthσumtof HTPB propellant is defined as 1,and the dynamic biaxial tensile strengthσbmt(stress ratio 1:1)is defined as the point(1.0,1.0).Furthermore,the dynamic uniaxial compressive strength σucsof the propellant is defined as 1/α,and the dynamic biaxial compressive strengthσbcs(stress ratio 1:1)is defined as the point(1/α,1/α).It can be seen that the scope of the limit line becomes larger when decreasing temperature,which indicates that the strength of the propellant increases with decreasing temperature.Based on Fig.6,the failure of HTPB propellant under dynamic biaxial loading can be assessed.

    5.Conclusions

    Uniaxial and biaxial strength criterion of HTPB-based composite solid propellant under dynamic loading(1-100 s-1)were investigated for the first time by conducting uniaxial tensile tests,uniaxial compressive tests and biaxial tensile tests with a new uniaxial INSTRON testing machine,different new designed gripping apparatus and samples with different configurations.The following conclusions can be drawn.

    (1)The dynamic uniaxial tensile-compressive strength ratio of HTPB propellant is all smaller than 1.In addition,the effect of loading temperature on this ratio is more remarkable.Its value is about 0.4 at room temperature,and it reduces to 0.2-0.3 at low temperatures.These results are helpful to understand the dynamic uniaxial mechanical properties of the propellant.Moreover,they also indicate that it is still easier for a composite solid propellant to fail because of the tensile stress rather than the compressive stress under dynamic loading.And this failure properties of the propellant is more obvious at low temperatures.Thus,the dynamic uniaxial tensile strength criterion of the propellant can be employed as a uniaxial failure criterion.

    (2)Based on the related master curves and the unified strength theory,the theoretical biaxial strength criterion of HTPB propellant under dynamic loading was constructed.Moreover,the limit lines of the principal stress plane for the propellant under dynamic loading were also plotted.The results indicate that the capacity of the propellant resistance to destroy improved when decreasing temperature.In addition,the effects of strain rate and temperature were considered in the developed dynamic biaxial strength criterion.Therefore,it is more useful to further assess the failure of the propellant under biaxial loading and the structural integrity of propellant grain during ignition of SRM.

    (3)Because it is very difficult to conduct the dynamic biaxial test on materials,the dynamic biaxial tensile strength of HTPB propellant was only investigated with the new test method in this study.Whereas,otherdynamic biaxial strengths of the propellant were acquired with theoretical method.Therefore,it is necessary to propose more suitable test methods to conduct other biaxial loading tests(such as the dynamic biaxial compressive tests and dynamic biaxial tensile compressive tests)on solid propellant.Then the validity of the developed dynamic biaxial strength criterion of HTPB propellant can be further verified.

    Acknowledgments

    The authors gratefully acknowledge the financial support of the National 973 Program in China(No.61338)and the National Funds in China(Nos.11772352,61407200203 and 51328050101).

    国产日韩欧美亚洲二区| 久久午夜综合久久蜜桃| 99久久99久久久精品蜜桃| 国产乱来视频区| 在线观看人妻少妇| 午夜福利在线免费观看网站| 极品人妻少妇av视频| av国产精品久久久久影院| 欧美日韩精品网址| 午夜免费观看性视频| 制服丝袜香蕉在线| 美女扒开内裤让男人捅视频| 国产老妇伦熟女老妇高清| 亚洲图色成人| 九草在线视频观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲av电影在线进入| 男人操女人黄网站| 国产1区2区3区精品| 亚洲成人一二三区av| 18禁国产床啪视频网站| 亚洲人成电影观看| 免费av中文字幕在线| 亚洲欧美清纯卡通| 大片免费播放器 马上看| 亚洲,欧美精品.| 在线观看人妻少妇| 亚洲精品一区蜜桃| 精品亚洲乱码少妇综合久久| 久久久久久人人人人人| 三上悠亚av全集在线观看| 丰满饥渴人妻一区二区三| 欧美 日韩 精品 国产| 老汉色∧v一级毛片| 一级爰片在线观看| 亚洲在久久综合| 亚洲成人av在线免费| 亚洲欧美成人综合另类久久久| 国产av国产精品国产| 老汉色∧v一级毛片| 国产精品二区激情视频| 成人国产麻豆网| 久久97久久精品| 国产成人欧美| 国产高清不卡午夜福利| av网站在线播放免费| www日本在线高清视频| 波多野结衣av一区二区av| 最近中文字幕2019免费版| 亚洲国产av新网站| 久久精品亚洲熟妇少妇任你| 考比视频在线观看| 久久久亚洲精品成人影院| 午夜久久久在线观看| 久久久久网色| 免费看不卡的av| 汤姆久久久久久久影院中文字幕| 青青草视频在线视频观看| 在线观看www视频免费| 亚洲男人天堂网一区| 91国产中文字幕| 久久综合国产亚洲精品| 久久精品国产a三级三级三级| 国产成人精品在线电影| 色综合欧美亚洲国产小说| 在现免费观看毛片| 国产又色又爽无遮挡免| 欧美日韩一级在线毛片| 亚洲精品国产av成人精品| 丝袜喷水一区| 亚洲精品aⅴ在线观看| 国产成人啪精品午夜网站| 曰老女人黄片| 人妻 亚洲 视频| 丝袜人妻中文字幕| 国产成人av激情在线播放| 热re99久久精品国产66热6| 欧美人与善性xxx| 亚洲熟女精品中文字幕| 丝袜美足系列| 极品少妇高潮喷水抽搐| 高清黄色对白视频在线免费看| 色综合欧美亚洲国产小说| 久久久久精品性色| 国产精品二区激情视频| 视频区图区小说| 久久ye,这里只有精品| 久久久国产精品麻豆| 久久女婷五月综合色啪小说| 黄色一级大片看看| 欧美日韩一区二区视频在线观看视频在线| av网站免费在线观看视频| 欧美激情高清一区二区三区 | 欧美精品高潮呻吟av久久| videos熟女内射| 久久久欧美国产精品| 午夜免费男女啪啪视频观看| 成年人免费黄色播放视频| 午夜福利在线免费观看网站| 国产精品久久久久久人妻精品电影 | 少妇的丰满在线观看| 2018国产大陆天天弄谢| 天堂8中文在线网| 亚洲欧美一区二区三区国产| 国产又爽黄色视频| 国产探花极品一区二区| 久久亚洲国产成人精品v| 又黄又粗又硬又大视频| 女人爽到高潮嗷嗷叫在线视频| 美女国产高潮福利片在线看| 亚洲精品自拍成人| 老鸭窝网址在线观看| 成人黄色视频免费在线看| 一区二区三区四区激情视频| 国产深夜福利视频在线观看| 中文天堂在线官网| 最近中文字幕高清免费大全6| 国产爽快片一区二区三区| 免费高清在线观看日韩| 亚洲欧洲日产国产| 纯流量卡能插随身wifi吗| 欧美最新免费一区二区三区| 国产一区亚洲一区在线观看| 亚洲熟女毛片儿| 国产一区二区三区综合在线观看| 国产男人的电影天堂91| 黄色 视频免费看| 90打野战视频偷拍视频| 大片电影免费在线观看免费| 女人被躁到高潮嗷嗷叫费观| 永久免费av网站大全| 久久久久精品国产欧美久久久 | 色吧在线观看| 一级黄片播放器| 不卡视频在线观看欧美| 成人国语在线视频| 性色av一级| 99re6热这里在线精品视频| 亚洲欧洲国产日韩| 下体分泌物呈黄色| 成人免费观看视频高清| 欧美国产精品一级二级三级| 老汉色∧v一级毛片| 成人亚洲欧美一区二区av| av又黄又爽大尺度在线免费看| 少妇 在线观看| 不卡视频在线观看欧美| 国产成人欧美在线观看 | 国产不卡av网站在线观看| 欧美日韩视频精品一区| 最近手机中文字幕大全| 高清视频免费观看一区二区| 亚洲av男天堂| 国产日韩欧美视频二区| 久久国产精品大桥未久av| 午夜激情久久久久久久| 老司机靠b影院| 色网站视频免费| 男女边吃奶边做爰视频| 黑人巨大精品欧美一区二区蜜桃| 日韩av在线免费看完整版不卡| 我的亚洲天堂| 在线观看人妻少妇| 亚洲熟女精品中文字幕| 97人妻天天添夜夜摸| 亚洲成av片中文字幕在线观看| 日韩制服骚丝袜av| 欧美精品亚洲一区二区| 热re99久久国产66热| 新久久久久国产一级毛片| 亚洲激情五月婷婷啪啪| 好男人视频免费观看在线| 国产成人系列免费观看| av福利片在线| 9热在线视频观看99| 中文字幕人妻丝袜一区二区 | 久久毛片免费看一区二区三区| 男人操女人黄网站| 国产精品熟女久久久久浪| 久久亚洲国产成人精品v| 久久久精品国产亚洲av高清涩受| 老司机在亚洲福利影院| 波野结衣二区三区在线| 熟女少妇亚洲综合色aaa.| 麻豆精品久久久久久蜜桃| 90打野战视频偷拍视频| 国产精品免费大片| 激情视频va一区二区三区| 日韩视频在线欧美| 欧美变态另类bdsm刘玥| 老汉色∧v一级毛片| 国产爽快片一区二区三区| 精品少妇黑人巨大在线播放| 男的添女的下面高潮视频| 爱豆传媒免费全集在线观看| 中文精品一卡2卡3卡4更新| 夫妻午夜视频| 国产免费视频播放在线视频| 韩国精品一区二区三区| 免费黄色在线免费观看| 美女国产高潮福利片在线看| 国产精品麻豆人妻色哟哟久久| 国产淫语在线视频| 天堂中文最新版在线下载| 国产极品天堂在线| 亚洲欧洲精品一区二区精品久久久 | 青春草亚洲视频在线观看| 一本久久精品| 亚洲精品国产av成人精品| 免费在线观看视频国产中文字幕亚洲 | 99香蕉大伊视频| 国产精品欧美亚洲77777| 日韩成人av中文字幕在线观看| 韩国高清视频一区二区三区| kizo精华| 国产黄色免费在线视频| 亚洲色图 男人天堂 中文字幕| 亚洲成国产人片在线观看| 午夜久久久在线观看| 亚洲精品久久午夜乱码| 中文字幕亚洲精品专区| 大陆偷拍与自拍| 中文字幕人妻熟女乱码| 国产成人a∨麻豆精品| 国产精品免费视频内射| 97在线人人人人妻| av网站免费在线观看视频| 久久久久人妻精品一区果冻| 天堂俺去俺来也www色官网| 考比视频在线观看| 国产极品天堂在线| 国产亚洲午夜精品一区二区久久| 久久精品亚洲熟妇少妇任你| 妹子高潮喷水视频| 亚洲精品国产色婷婷电影| 亚洲一级一片aⅴ在线观看| 9热在线视频观看99| 欧美变态另类bdsm刘玥| 国产精品无大码| 久久午夜综合久久蜜桃| 丰满饥渴人妻一区二区三| 成年动漫av网址| 国产免费现黄频在线看| 电影成人av| 国产男女内射视频| 欧美另类一区| 丰满少妇做爰视频| 国产精品久久久久久精品古装| 亚洲国产成人一精品久久久| 国产精品一区二区在线观看99| xxx大片免费视频| 亚洲精品久久午夜乱码| www日本在线高清视频| 男人添女人高潮全过程视频| 免费观看av网站的网址| 国产欧美日韩综合在线一区二区| 久久久久视频综合| 高清av免费在线| 亚洲欧美精品综合一区二区三区| 久久婷婷青草| 亚洲国产欧美一区二区综合| 91国产中文字幕| 91老司机精品| 亚洲精品在线美女| 波野结衣二区三区在线| 男女边吃奶边做爰视频| 一级黄片播放器| 日韩,欧美,国产一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 精品卡一卡二卡四卡免费| 2021少妇久久久久久久久久久| 亚洲精品成人av观看孕妇| 亚洲精品美女久久久久99蜜臀 | 又大又爽又粗| 国产男女内射视频| 亚洲婷婷狠狠爱综合网| 亚洲精品在线美女| 国产一区二区三区综合在线观看| 亚洲精品,欧美精品| 久久久久久久精品精品| 国产精品久久久av美女十八| 色94色欧美一区二区| 十八禁人妻一区二区| 人人妻人人澡人人看| 又粗又硬又长又爽又黄的视频| 下体分泌物呈黄色| 不卡视频在线观看欧美| 少妇人妻久久综合中文| av国产久精品久网站免费入址| 久久狼人影院| 国产精品 国内视频| 在线观看国产h片| 少妇 在线观看| 尾随美女入室| 波多野结衣一区麻豆| 在线观看免费高清a一片| 高清在线视频一区二区三区| 精品国产一区二区三区久久久樱花| 国产成人欧美在线观看 | 熟女少妇亚洲综合色aaa.| 最近的中文字幕免费完整| 欧美黑人欧美精品刺激| 少妇人妻 视频| 欧美人与性动交α欧美软件| 一区二区日韩欧美中文字幕| 国产精品人妻久久久影院| 九九爱精品视频在线观看| 国产一区二区三区av在线| 久久人人爽人人片av| 亚洲精品aⅴ在线观看| 中文字幕精品免费在线观看视频| 国产有黄有色有爽视频| 无限看片的www在线观看| 夫妻性生交免费视频一级片| 精品国产国语对白av| 19禁男女啪啪无遮挡网站| 成人漫画全彩无遮挡| 精品一品国产午夜福利视频| 国产男女内射视频| 久久精品aⅴ一区二区三区四区| 可以免费在线观看a视频的电影网站 | 亚洲熟女精品中文字幕| 麻豆精品久久久久久蜜桃| 日韩av不卡免费在线播放| 国产老妇伦熟女老妇高清| 你懂的网址亚洲精品在线观看| 亚洲国产欧美网| 国产精品.久久久| xxxhd国产人妻xxx| 欧美激情极品国产一区二区三区| 看免费av毛片| 国产在线视频一区二区| 日日爽夜夜爽网站| 国产免费现黄频在线看| 9191精品国产免费久久| 久久国产精品大桥未久av| av卡一久久| 国产欧美亚洲国产| 91精品伊人久久大香线蕉| 国产av一区二区精品久久| 亚洲伊人久久精品综合| 亚洲国产欧美网| 伊人久久大香线蕉亚洲五| 国产成人精品久久久久久| 日日摸夜夜添夜夜爱| 国产又爽黄色视频| 人人妻人人澡人人看| 亚洲三区欧美一区| 成人毛片60女人毛片免费| 久久国产亚洲av麻豆专区| 亚洲视频免费观看视频| 91aial.com中文字幕在线观看| 亚洲色图综合在线观看| av在线老鸭窝| 午夜av观看不卡| 亚洲欧美清纯卡通| 亚洲国产看品久久| 久久99精品国语久久久| 精品国产国语对白av| 免费在线观看完整版高清| 久久久精品国产亚洲av高清涩受| 777久久人妻少妇嫩草av网站| 蜜桃在线观看..| 人人妻人人澡人人看| 咕卡用的链子| 免费看不卡的av| 日韩制服骚丝袜av| 国产日韩欧美视频二区| 成人亚洲欧美一区二区av| 久久ye,这里只有精品| 国产亚洲av片在线观看秒播厂| 久久免费观看电影| 9191精品国产免费久久| 免费在线观看完整版高清| 国产97色在线日韩免费| 亚洲熟女毛片儿| 色网站视频免费| 午夜福利视频精品| 老司机影院毛片| 国产视频首页在线观看| 国产精品麻豆人妻色哟哟久久| 国产欧美日韩综合在线一区二区| 黑人巨大精品欧美一区二区蜜桃| 中国三级夫妇交换| 日韩视频在线欧美| 国产片内射在线| 久久天堂一区二区三区四区| 人人澡人人妻人| 男女床上黄色一级片免费看| 啦啦啦视频在线资源免费观看| 精品酒店卫生间| 丝袜美足系列| 亚洲第一区二区三区不卡| av不卡在线播放| 国产成人精品久久二区二区91 | 19禁男女啪啪无遮挡网站| 久久韩国三级中文字幕| 免费观看人在逋| 国产成人免费观看mmmm| 在线观看人妻少妇| 2018国产大陆天天弄谢| 久久亚洲国产成人精品v| 综合色丁香网| 精品酒店卫生间| 王馨瑶露胸无遮挡在线观看| 狠狠婷婷综合久久久久久88av| 久久精品亚洲熟妇少妇任你| 日韩人妻精品一区2区三区| 亚洲精品成人av观看孕妇| 久久性视频一级片| 老司机靠b影院| 成人国产麻豆网| 国产日韩欧美亚洲二区| 美女扒开内裤让男人捅视频| 欧美老熟妇乱子伦牲交| 亚洲 欧美一区二区三区| 性高湖久久久久久久久免费观看| av国产久精品久网站免费入址| 免费女性裸体啪啪无遮挡网站| 国产片特级美女逼逼视频| 伊人亚洲综合成人网| 亚洲五月色婷婷综合| 一区二区三区精品91| 晚上一个人看的免费电影| 日韩不卡一区二区三区视频在线| 在线观看人妻少妇| 国产精品欧美亚洲77777| 亚洲,欧美精品.| 国精品久久久久久国模美| 成人亚洲欧美一区二区av| 亚洲四区av| 男女边摸边吃奶| 青春草国产在线视频| 欧美人与性动交α欧美精品济南到| 国产成人欧美| 最新在线观看一区二区三区 | 国产午夜精品一二区理论片| 国产一区二区 视频在线| 欧美黑人欧美精品刺激| 好男人视频免费观看在线| 制服丝袜香蕉在线| 亚洲精品成人av观看孕妇| 亚洲色图 男人天堂 中文字幕| 久久人人97超碰香蕉20202| 亚洲一级一片aⅴ在线观看| avwww免费| 亚洲国产精品一区三区| 亚洲成色77777| 国产精品久久久久成人av| 交换朋友夫妻互换小说| 咕卡用的链子| 精品国产露脸久久av麻豆| 美女国产高潮福利片在线看| 久久99精品国语久久久| 纯流量卡能插随身wifi吗| 色吧在线观看| 亚洲人成网站在线观看播放| 亚洲精品av麻豆狂野| 国产av码专区亚洲av| 国产精品99久久99久久久不卡 | 十八禁高潮呻吟视频| 国产男人的电影天堂91| 久久av网站| 久久韩国三级中文字幕| 成人毛片60女人毛片免费| 日韩中文字幕欧美一区二区 | netflix在线观看网站| 国产成人精品久久二区二区91 | 亚洲av欧美aⅴ国产| 热re99久久精品国产66热6| 日本wwww免费看| 日韩电影二区| 久久精品久久精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美日韩另类电影网站| 日韩伦理黄色片| 午夜影院在线不卡| 人人澡人人妻人| 免费高清在线观看日韩| 一级a爱视频在线免费观看| av免费观看日本| 午夜福利视频在线观看免费| 国产高清国产精品国产三级| 人人妻人人澡人人爽人人夜夜| 女性被躁到高潮视频| 91国产中文字幕| 国产乱人偷精品视频| √禁漫天堂资源中文www| 日本黄色日本黄色录像| 老司机深夜福利视频在线观看 | 国产精品久久久久久人妻精品电影 | 久久99一区二区三区| 青春草国产在线视频| 亚洲美女视频黄频| av线在线观看网站| 久久这里只有精品19| 少妇 在线观看| 欧美 日韩 精品 国产| 十八禁人妻一区二区| 97人妻天天添夜夜摸| 亚洲欧美精品自产自拍| 丰满少妇做爰视频| 欧美最新免费一区二区三区| av卡一久久| 色94色欧美一区二区| 丝袜美足系列| 大陆偷拍与自拍| 亚洲国产最新在线播放| 51午夜福利影视在线观看| 亚洲欧美精品综合一区二区三区| 中文欧美无线码| 九九爱精品视频在线观看| 亚洲伊人久久精品综合| 高清在线视频一区二区三区| 精品国产乱码久久久久久小说| 女人被躁到高潮嗷嗷叫费观| 99香蕉大伊视频| 亚洲国产欧美日韩在线播放| 超色免费av| 日本欧美国产在线视频| 久久精品人人爽人人爽视色| 卡戴珊不雅视频在线播放| 大香蕉久久网| av卡一久久| 国产精品.久久久| 中文乱码字字幕精品一区二区三区| 国产极品天堂在线| 老熟女久久久| svipshipincom国产片| 黄色一级大片看看| 男人爽女人下面视频在线观看| 国产精品无大码| 男女午夜视频在线观看| 国产亚洲最大av| 亚洲av日韩精品久久久久久密 | 久久精品久久精品一区二区三区| 亚洲欧美精品自产自拍| 免费看av在线观看网站| 少妇的丰满在线观看| 熟女av电影| 大片免费播放器 马上看| 欧美精品人与动牲交sv欧美| 欧美成人精品欧美一级黄| 色综合欧美亚洲国产小说| 国产欧美亚洲国产| 水蜜桃什么品种好| 卡戴珊不雅视频在线播放| 制服丝袜香蕉在线| 国产精品免费视频内射| 如日韩欧美国产精品一区二区三区| 韩国精品一区二区三区| 国产高清国产精品国产三级| 精品人妻熟女毛片av久久网站| 国产99久久九九免费精品| 国产免费现黄频在线看| 少妇 在线观看| 久久这里只有精品19| 亚洲人成网站在线观看播放| av国产久精品久网站免费入址| 亚洲精品视频女| 亚洲伊人色综图| svipshipincom国产片| 人人妻人人澡人人爽人人夜夜| 97人妻天天添夜夜摸| 亚洲欧美成人综合另类久久久| 人妻 亚洲 视频| 热re99久久国产66热| 天天躁夜夜躁狠狠久久av| 自线自在国产av| av一本久久久久| 亚洲人成77777在线视频| 韩国av在线不卡| 日日撸夜夜添| 一本一本久久a久久精品综合妖精| 女人爽到高潮嗷嗷叫在线视频| 十八禁人妻一区二区| 亚洲成人免费av在线播放| 综合色丁香网| 亚洲一码二码三码区别大吗| 999久久久国产精品视频| 久久久精品94久久精品| 免费高清在线观看日韩| 日韩中文字幕欧美一区二区 | 中文字幕高清在线视频| 男女边摸边吃奶| 91成人精品电影| 制服人妻中文乱码| 夫妻性生交免费视频一级片| 久久人人爽人人片av| 亚洲av男天堂| 高清视频免费观看一区二区| 超碰成人久久| 最黄视频免费看| 久久久精品免费免费高清| 午夜91福利影院| av在线观看视频网站免费| av在线老鸭窝| av国产精品久久久久影院| 母亲3免费完整高清在线观看| 纯流量卡能插随身wifi吗| 久久久精品94久久精品| 亚洲成人av在线免费| 蜜桃国产av成人99| 大片电影免费在线观看免费| 亚洲av日韩精品久久久久久密 | 激情视频va一区二区三区| 亚洲国产欧美在线一区| 亚洲国产日韩一区二区| 国产片特级美女逼逼视频| 性少妇av在线| 日韩,欧美,国产一区二区三区| 亚洲精品第二区| 中文精品一卡2卡3卡4更新| 国产精品一区二区在线观看99| 亚洲成人一二三区av|