• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural evolution,optoelectrical and corrosion properties of electrodeposited WO3integration on Zn-TiO2electrolyte for defence super application

    2018-10-18 05:27:36DniynUmoruFyomiPopool
    Defence Technology 2018年5期

    A.A.Dniyn,L.E.Umoru,O.S.I.Fyomi,A.P.I.Popool

    a Department of Materials Science and Engineering,Obafemi Awolowo University,Ile-Ife,Nigeria

    bDepartment of Chemical,Metallurgical and Materials Engineering,Tshwane University of Technology,P.M.B.X680,Pretoria,South Africa

    cDepartment of Mechanical Engineering,Covenant University,P.M.B 1023,Ota,Ogun State,Nigeria

    Keywords:Nano-composite Electrocodeposition Corrosion Conductivity and resistance

    ABSTRACT Multifunctional nano composite coatings of Zn-TiO2-WO3were deposited electrolytically on mild steel(MS)from Zn bath,having Zn2+ions and uniform dispersion of TiO2and WO3nano particulates.The electrical,optical and corrosion resistance characteristics of the electrocodeposited coatings were assessed by Keithley 2400 Series Source meter with Multimeters,Newport Solar Simulator and a PGSTAT30 Autolab potentiostat respectively.The morphological characteristics of the composite coatings were characterized by scanning electron microscope(SEM)equipped with energy dispersive spectrometer(EDS).The result revealed that the electrocodeposits showed good stability and Zn-TiO2-WO3 nanocomposite deposits displayed enhanced microstructural qualities,good electrical conductivity and exhibited enriched corrosion resistance.

    1.Introduction

    Metal oxides displayed many important physical and chemical properties in which many of them are semiconductors with large bandgap compounds of conductivity which is n-type.For instance,WO3and TiO2have bandgaps in the range between 3.0-3.4eV[1-3].WO3and TiO2and are two metal oxides with related conducting properties.Recently,great attentions are now drawn to mixed oxides,ever since,it has been established that mixed compounds of TiO2/WO3enhanced electrical charge separation observed under illumination,which has been verified with diverse systems[4,5]and it has been revealed that TiO2-WO3mixed compound found applications in varistor with an electrical behaviour that is not mere linear[6].

    Electrocodeposition provides a suitable and multipurpose way to the synthesis of composites of many metal with inorganic oxides[7,8]including Metal with WO3[9]and metal with TiO2[10].Currently,there is wide interest in composite coatings comprising TiO2and WO3in optoelectrical applications.For instance,a greater photo-response was experienced when bilayered composite of TiO2and WO3coatings,compared to the single-component films of each of the constituents[11,12].It has been observed that the photocatalytic activity of TiO2-WO3coatings was found to triple that of pure TiO2coatings in oxidation applications[13].An electron pool observed when WO3was coupled with TiO2coating in the construction of a sensitive PECAS(photoelectrochemical anticorrosion system)with in-built energy storage ability[14].

    Apart from the fact that combination of TiO2and WO3is a great asset in the design of photoelectrochromic devices[15],It has also been established that TiO2and WO3possess electrochromic properties that are complementary to each other[16].Nevertheless Nanostructured TiO2-WO3coatings have now be discovered to displayed more excellent electrochromic and photoelectrochemical properties compared to the bulk of their particles,because theycan be brilliantly controlled by adjusting the particle size and some electrocodeposition parameters for coatings,Therefore,this work studied the Structural Evolution,Opto electrical and Corrosion Properties of Electrocodeposited composite of nanostructured TiO2and WO3in Zn matrix for the purpose of developing advance active coating for engineering applications.The focus of this study is the optimization of the WO3nanoparticulates on Zn-TiO2Nanocomposite so achieve enhanced photoelectricity and better energy storage.

    2.Material and methods

    2.1.Preparation of substrate

    The dimension of the mild steel(substrate)used was 45×40×2 mm3sheet and zinc sheets of 85×45×5mm3were prepared as anodes.The cathode was mild steel coupons and anode was commercially pure zinc(99.99%).The mild steel specimens were polished mechanically and chemically pre-treated as described[17].Table 1 shows the chemical analysis of the mild steel substrate used for this study and Fig.1 presents the SEM/EDS spectrum of the mild steel which further revealed its morphology.The EDS analysis established the essential elemental compositions with Fe being the major constituent.

    Table 1 Chemical composition of as-received mild steel[18].

    The mild steel substrate prepared earlier was activated by dipping into 10%HCl solution for about 5s,thereafter rinsed in deionized water.Chemicals of analar grade and deionized water were used in preparing the coating solution at ordinary(room)temperature before coating.The bath formulation was prepared a day before the coating process and subjected to continuous stirring at 400 rpm and 70oC constant heating throughout the coating process,to obtain suspension stability(so as to prevent particles' agglomeration)and to enhance the mobility electrophoresis of the solution.The compositions of bath used for the diverse coating matrix were as presented inTable 2.KCl was included principally to increase the conductivity of the prepared electrolyte,2-Butyne 1,4 diol and Cetylpridinium Chloride were incorporated to serve as surfactants in order to reduce the surface tension of the suspension which in actual sense lowering the surface energy,so as to aid good adhesion.Thiourea was added to facilitate coating's stability(to promote particles incorporation).Table 3 further presents the concise formulation of the nanocomposites.This is in line with[18-20].

    The deposition parameters were chosen in accordance with the electrocodeposition mechanism and based on the previous works[19].The arranged zinc electrodes were connected to the d.c source at different current between 1.0 and 1.5 A(i.e.,current density 560 and 830 A/m2)for constant 20 min as displayed in Fig.2.After each coating exercise,the coated samples were rinsed in water and air dried.Afterwards,parts of the coated steel were sectioned for the microstructures,electrical and optical properties of the nanocrystalline composite coatings.

    Table 2 Bath composition of Zn-TiO2/WO3co-depostion[18].

    Table 3 Formulation designed bath composition for Zn-TiO2/WO3nano-composites.

    2.2.Characterization of the coated samples

    The surface adhesion and chemical reaction of the electrocodeposits on the substrate resulted to the development of different phases.These phases formed were studied;the microstructural evaluation of the phases were carried out by optical and scanning electron microscope,and Potentiodynamics assessment were used to characterize the corrosion properties of the coated steel.

    2.2.1.Structural test

    The coated materials synthesized were characterized with JEOL FIELD EMMISSION JSM-7600F Scanning electron microscope coupled with EDS.

    2.2.2.Corrosion test

    The electrochemical corrosion measurements were carried with an Autolab potentiostat(PGSTAT30 computer controlled)furnished with the General Purpose Electrochemical Software(GPES)package version 4.9.Potentials were plotted against the logarithmic values of corrosion current.All the measurements were taken at room temperature using 3.5%NaCl solution.The solution for the study was prepared from analytical grade reagents and distilled water.An electrochemical cell consisting of the working electrode(samples)graphite rods as the counter electrodes and a silver/silver chloride reference electrode(SCE).The corrosion potential(Ecorr),corrosion current density(Icorr)and corrosion rate were evaluated afterwards.

    2.2.3.Electrical and optical characterization

    The electrical studies were achieved using four-point probe system with Keithley 2400 Series Source meter,interfaced by a Lab View Tracer software coupled with multimeters.Keithley 2400 Series Source meter is specifically designed for systems that demand tight connection with measuring source.It is likewise used for measuring sheet resistance and I-V characteristic.It has precision,low noise and read back power source characteristics whereas the multimeter abilities include low noise and high reproducibility.It offers quicker test times.

    3.Theory/calculation

    3.1.The electrocodeposition of metal oxide nanoceramics

    The chosen deposition admixes nano powders used for this work are:Titanium oxide(TiO2),tungsten oxide(WO3),with average particle sizes of 40 nm and 70 nm,respectively(from Sigma-Aldrich)were used to form an electrocodeposition formulation.TiO2was chosen because of its distinctive anticorrosion properties.When a metal coated with TiO2is excited with ultra violetlight(sunlight),photogenerated electrons are released into the metal.WO3was selected for the energy storage ability.It has the ability to store photogenerated electrons during the day and gradually release it when it is dark.It can also control corrosion via barrier.All the powders are in nanoparticles because of the exceptionality of nanostructured particles.When reducing materials to nanoparticulates,they exhibited distinctive properties that are quite different from what they show in their bulk form[22,23].

    Where t is the thickness of the thin film,ρin Ω·cm Then the sheet resistance is

    RSinΩ.

    The electrical resistivity can then be obtained by the equation

    Therefore,the electrical conductivity is given as

    The optical monitoring was done with the aid of a solar simulator.A solar simulator(artificial sun)is a device that gives illumination which is approximate to the natural sunlight.The purpose of using solar simulator is to provide an adjustable indoor test capability applying laboratory environments.

    The solar simulator machine used for this study has optimum intensity of 1000 Watt per square metre nevertheless,the experiment was done at 750 Watt per square metre working intensity with 1.5 A.M air mass(equivalent to that of actual atmosphere).

    4.Results and discussion

    4.1.SEM/EDS of deposited nanocomposite

    Figs.3 and 4 display the SEM/EDS of Zn-TiO2and Zn-TiO2/WO3structures nano-composites matrices coated at 830 A/m2respectively on mild steel.Considering the two Figs,it is clear that the crystallites of the electrocodeposits are uniformly distributed on the substrates.Figs.5 and 6 further revealed the spot analysis of SEM/EDS Spectrum showing TiO2-riched and WO3-riched portions with Tables 4 and 5 showing the percentage of different elements present in the EDS spot analysis on the coating respectively.It is quite obvious that with the integration of WO3nanoparticulates,a visible crystallite of the nanocomposite structure along the boundary was noticed.Moreover,there are two typical phases,one is unvaryingly alike and the second consisting of network of aggregate nodules.Evidently,the integration of the WO3in the zinc interface could be clear to display networks of structures with better nodular structures.

    The plating surface and the interface of Zn-TiO2/WO3are reasonably attractive with good adhesion due to synergistic and complementary of the WO3and TiO2nano ceramics particles incorporated to strengthen the coating system.This result was as anticipated since the route of nucleation commenced from the zinc metal as load bearer,the dissemination of the particulates involves the nucleation domains and improved the formed nanocomposites[24-26].Furthermore,it is imperative to indicate that the microstructure change might be traceable to the presence of WO3nanoparticulates integrated in the nanocomposite coatings resulting to enriched precipitation and improved reinforcement.Also,with reference to[27],the induced current density together with other coating constraints in conjunction with the amount of surfactant can also play a very important contribution in modification of the coating and surface quality of an electrocodeposited material.

    Table 6 and Fig.7 present the hardness trend for the coatings before and after the annealing heat treatment at 250oC.The graph is plotted in sequential trend from sample 1 to 6.The highest value of hardness achieved was Zn-TiO2/WO3coated at 1.0 A.This can be correlated with the fact that an increase in the bath loading provides more number of particles for adsorption at the cathode leading to a large number of particles getting codeposited and this has resulted in increased hardness of the composites,as stressed in adsorption theory by Achi[19].The grain filling and dispersive strengthening effects become stronger with increase in WO3particles thus the hardness of the composite coatings increased with the incorporation of WO3particles in the coating and is in accordance with the results reported by other authors[21,25].It is clear that,virtually all the coatings' hardness increased after the annealing heat treatment,which could be attributed to the homogenizing effect in the structure of the coatings system,though the little discrepancy experienced by samples 6 could be as a result of insufficient homogenizing of some localized spots in the coatings structure.

    Table 4 Percentage of different elements present in the EDS spot analysis of TiO2-riched portion.

    Table 5 Percentage of different elements present in the EDS spot analysis of WO3-riched portion.

    4.2.Electrical characterization

    Figs.8 and 9 displayed the characteristic I-R(current-resistance)plots of nano-composites coatings of Zn-TiO2and Zn-TiO2/WO3on mild steel during light and dark environments.Table 7 showed of the electrical conductivity of nano-composites coatings in line with deposition parameters.The value of conductivity was higher for Zn-TiO2/WO3sample which was 24.5 Ω-1?cm-1compared to the value of 4.47 Ω-1?cm-1for Zn-TiO2sample.The reason for this improvement might be due to better stability of photon current by the active nature of ZnTiO2/WO3coating system.The plots show the pattern in which the electric current flows through the nanocomposites coating at different resistance during light and dark environments.It was observed that the presence of light enhances the flow of current in the coatings.Both the nano-composites coating showed better performance under the light than the dark position.This could be traceable to the improved electrons that were photo generated during illumination[26-30].Likewise,it can also be observed from the Figs that the current flow under light decreases more linearly with resistance when compared to the dark situation.This could be attributed to the photo electron stability of light energy from the Solar Simulator[28].More so,a kind of sinusoidal plot was observed when it was dark condition(Fig.9)which could be attributed to the presence of a material that stores energy(WO3)in the coating matrix.The result is also in good agreement with that of Okada et al.[31]and Chong and his group[32]who revealed that composite of TiO2as an electrode for high electron injection as well as multi-layered structures in devices that are photovoltaic,offers direct electrical conduit for photogenerated electrons which increases the electron transport rate and leads to a greater efficiency.

    Table 6 The values of the coatings' hardness before and after annealing thermal treatment at 250oC for 5 h.

    Table 7Electrical properties of the coated nano-composite.

    4.3.Polarization studies

    Fig.10 presents the polarization curves of the mild steel(control),Zn-TiO2and Zn-TiO2/WO3nano-composites coatings on mild steel.The accompanied summary of the results for the polarization measurements are shown in Table 8 which were obtained from Tafel plots.The values of Ecorr,Icorr,corrosion rate(CR)and polarization resistance(RP)of the samples in 1M HCl are extrapolated from Tafel slope.The results revealed the corrosion resistance behaviour of the coatings in the test solutions.It was found that the addition of the nanoparticles in the coating altered the shape of the polarization curve but causes a considerable increase in the value of the Ecorrinthetestmedia.The characteristic shapes of the polarization curve differ in the solution and there is noticeable passivity of the anodic polarization of all the samples in the acidic solution.These characteristics indicate the behaviour of each material in the medium and that,an increase in additive concentration enhances this process.Also the additions of these nanoparticulates provide better effect of corrosion resistant property.The trend of corrosion resistance of the specimens in the acid medium for the samples was Zn-TiO2/WO3-1.5A>Zn-TiO2/WO3-1.0A>Zn-TiO2-1.5A>Zn-TiO2-1.0A>Control.

    Therefore,the optimal performance for the coating with least corrosion rate of 0.23677 mm/yr in the acidic solution.This implies that addition of WO3,nanoceramics loaded at 1.5 A(870 A/m2current density)during electrocodeposition provides best effect of corrosion resistant property in the acidic environment.It is worth noting that increase in current density during the electrocodeposition of the coating enhances the coating performance in the service environment,thus increase in the current density reduces the corrosion rate and increases polarization resistance.According to[33]this could be attributed to the type and effectiveness of the passive film formed by the nano composites film on the surface of the coated steel.Generally,appreciable improvement in potential was observed for all the coatings,which may primarily be due to creation of barrier by the film,between the steel surface and the corrosive environment[34].These results were in good agreement with the results obtained[34-36].

    5.Conclusions

    (1)TiO2and WO3nanoparticulates were used to produce Zn-TiO2/WO3nanocomposite coating from chloride bath.

    Table 8 Polarization data extrapolated from Tafel slope for matrix Zn-TiO2/WO3composite coating.

    (2)The incorporation of TiO2and WO3in Zn matrix of the coating was confirmed by EDX

    (3)The integration of the TiO2/WO3nanoceramics composite particles in the zinc matrix as reinforcement improved the structural morphology of nanocomposite.

    Acknowledgement

    The work is based on the financial support by National Research Foundation and the equipment support by Surface Engineering Research Centre,Tshwane University of Technology,Pretoria,South Africa.

    婷婷色综合www| 午夜福利一区二区在线看| 性高湖久久久久久久久免费观看| 久久精品国产亚洲av高清一级| 中文字幕人妻熟女乱码| 免费观看无遮挡的男女| 另类精品久久| 午夜免费男女啪啪视频观看| 日韩一本色道免费dvd| 国产精品人妻久久久影院| 精品国产国语对白av| 成人二区视频| 伦精品一区二区三区| 天天躁夜夜躁狠狠久久av| 少妇的丰满在线观看| 男男h啪啪无遮挡| 丝袜脚勾引网站| 新久久久久国产一级毛片| 亚洲精品美女久久av网站| 这个男人来自地球电影免费观看 | 高清欧美精品videossex| 久久久久久人人人人人| 国产欧美亚洲国产| 婷婷色综合大香蕉| 黄片播放在线免费| 飞空精品影院首页| 日韩熟女老妇一区二区性免费视频| 亚洲熟女精品中文字幕| 9色porny在线观看| 国产精品久久久久久久久免| 久久久久久久久久久免费av| 国产成人91sexporn| 少妇猛男粗大的猛烈进出视频| 一区二区三区激情视频| 尾随美女入室| 免费观看a级毛片全部| 久久综合国产亚洲精品| 女人被躁到高潮嗷嗷叫费观| 国产在线视频一区二区| 日本av免费视频播放| 夫妻午夜视频| 亚洲国产精品成人久久小说| 国产一区有黄有色的免费视频| 免费高清在线观看日韩| 国产精品人妻久久久影院| 一本大道久久a久久精品| 伊人久久国产一区二区| 国产av精品麻豆| 国产欧美日韩综合在线一区二区| 午夜日韩欧美国产| 国产成人精品一,二区| 亚洲成国产人片在线观看| 黄片播放在线免费| 韩国精品一区二区三区| 肉色欧美久久久久久久蜜桃| 亚洲国产欧美在线一区| 免费黄色在线免费观看| 久久亚洲国产成人精品v| 久久久久久久久久久久大奶| 亚洲欧洲精品一区二区精品久久久 | 亚洲内射少妇av| 在现免费观看毛片| 蜜桃在线观看..| 天天躁夜夜躁狠狠久久av| √禁漫天堂资源中文www| a级毛片黄视频| 青春草视频在线免费观看| 亚洲av日韩在线播放| 十分钟在线观看高清视频www| av国产久精品久网站免费入址| 欧美日韩亚洲高清精品| 女性生殖器流出的白浆| 久久久久久伊人网av| 一级毛片我不卡| 亚洲伊人色综图| 老司机影院毛片| 亚洲美女视频黄频| 亚洲婷婷狠狠爱综合网| 日本欧美视频一区| 一级片免费观看大全| 夫妻午夜视频| 婷婷色av中文字幕| 亚洲人成77777在线视频| 性少妇av在线| 日韩欧美精品免费久久| 秋霞伦理黄片| 大香蕉久久成人网| 精品少妇内射三级| 成年动漫av网址| 日韩av不卡免费在线播放| 男女高潮啪啪啪动态图| 婷婷色av中文字幕| 精品国产乱码久久久久久男人| 99久久中文字幕三级久久日本| 夜夜骑夜夜射夜夜干| 国产野战对白在线观看| 亚洲欧美精品自产自拍| 制服人妻中文乱码| 日韩制服丝袜自拍偷拍| 国产成人精品久久二区二区91 | 黄色怎么调成土黄色| 麻豆精品久久久久久蜜桃| 亚洲精品美女久久久久99蜜臀 | 汤姆久久久久久久影院中文字幕| 国产人伦9x9x在线观看 | 日日撸夜夜添| 97精品久久久久久久久久精品| 两个人免费观看高清视频| 婷婷色麻豆天堂久久| 亚洲精品国产色婷婷电影| 欧美精品亚洲一区二区| 久久av网站| 欧美日韩成人在线一区二区| 午夜免费鲁丝| 999精品在线视频| av有码第一页| 有码 亚洲区| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av涩爱| 香蕉国产在线看| 亚洲精品av麻豆狂野| 精品亚洲乱码少妇综合久久| 熟女电影av网| 制服人妻中文乱码| 三上悠亚av全集在线观看| 99国产综合亚洲精品| 亚洲综合色惰| 亚洲 欧美一区二区三区| 麻豆乱淫一区二区| 日韩精品免费视频一区二区三区| 久久99精品国语久久久| 亚洲成人手机| 精品一区二区三卡| 久久99蜜桃精品久久| 啦啦啦视频在线资源免费观看| 天天躁夜夜躁狠狠躁躁| 男女啪啪激烈高潮av片| 亚洲婷婷狠狠爱综合网| 精品一区二区三卡| 久久久久久久久久久久大奶| 爱豆传媒免费全集在线观看| 久久精品久久精品一区二区三区| 亚洲av欧美aⅴ国产| 国产成人91sexporn| 久久久久人妻精品一区果冻| 九色亚洲精品在线播放| 男女无遮挡免费网站观看| 女人久久www免费人成看片| 午夜日本视频在线| 高清av免费在线| 五月天丁香电影| 如何舔出高潮| 国产成人一区二区在线| 亚洲精品日韩在线中文字幕| 日韩制服骚丝袜av| 精品一区在线观看国产| 中文字幕av电影在线播放| 在线观看www视频免费| 久久精品熟女亚洲av麻豆精品| 国产白丝娇喘喷水9色精品| 久久99蜜桃精品久久| 久久午夜综合久久蜜桃| 狂野欧美激情性bbbbbb| 久久久a久久爽久久v久久| 亚洲中文av在线| 日韩一本色道免费dvd| 又粗又硬又长又爽又黄的视频| 国产免费视频播放在线视频| 亚洲精品在线美女| 亚洲,欧美,日韩| 黄片无遮挡物在线观看| 国产精品久久久久久av不卡| 久久精品熟女亚洲av麻豆精品| 国产精品国产三级专区第一集| 两个人看的免费小视频| 十八禁高潮呻吟视频| 欧美xxⅹ黑人| 中国国产av一级| 美女视频免费永久观看网站| 丝袜美腿诱惑在线| 2018国产大陆天天弄谢| 精品少妇一区二区三区视频日本电影 | 欧美 亚洲 国产 日韩一| 国产精品麻豆人妻色哟哟久久| 国产av码专区亚洲av| 亚洲av男天堂| 一级a爱视频在线免费观看| kizo精华| 七月丁香在线播放| 99久国产av精品国产电影| 人妻 亚洲 视频| 亚洲av中文av极速乱| 两个人看的免费小视频| 久久精品国产亚洲av天美| 欧美日韩一区二区视频在线观看视频在线| 欧美国产精品一级二级三级| www.自偷自拍.com| 老司机影院毛片| 久久久久视频综合| 青春草国产在线视频| 午夜影院在线不卡| 欧美精品一区二区大全| 在线观看免费高清a一片| 伊人久久大香线蕉亚洲五| 黄频高清免费视频| 免费观看性生交大片5| 熟妇人妻不卡中文字幕| 国产女主播在线喷水免费视频网站| 欧美另类一区| 日韩 亚洲 欧美在线| 丝瓜视频免费看黄片| 亚洲国产成人一精品久久久| 亚洲成av片中文字幕在线观看 | 2021少妇久久久久久久久久久| 波多野结衣av一区二区av| 日韩一本色道免费dvd| 免费观看性生交大片5| 乱人伦中国视频| 国产成人精品无人区| 成人漫画全彩无遮挡| av线在线观看网站| freevideosex欧美| av卡一久久| 精品国产一区二区三区四区第35| 久久精品国产自在天天线| 国产 精品1| www.av在线官网国产| www.精华液| 黑人巨大精品欧美一区二区蜜桃| 成人手机av| 夜夜骑夜夜射夜夜干| 熟女av电影| 日韩制服骚丝袜av| 18禁动态无遮挡网站| 亚洲国产精品一区二区三区在线| av国产久精品久网站免费入址| 少妇被粗大的猛进出69影院| 久久久久国产一级毛片高清牌| 香蕉精品网在线| 天堂中文最新版在线下载| 两个人看的免费小视频| 午夜福利一区二区在线看| 99热网站在线观看| 熟妇人妻不卡中文字幕| 视频在线观看一区二区三区| 在现免费观看毛片| 一级毛片黄色毛片免费观看视频| 男女边吃奶边做爰视频| 亚洲第一av免费看| 少妇被粗大猛烈的视频| 日韩一区二区三区影片| 男女啪啪激烈高潮av片| 亚洲国产精品成人久久小说| 久久精品人人爽人人爽视色| 美女xxoo啪啪120秒动态图| 欧美av亚洲av综合av国产av | 看免费av毛片| 少妇被粗大的猛进出69影院| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久久久久免| 中文欧美无线码| 色婷婷久久久亚洲欧美| 亚洲中文av在线| 欧美另类一区| 国产精品久久久av美女十八| 国产一区二区在线观看av| 麻豆精品久久久久久蜜桃| 在线天堂最新版资源| 人人妻人人添人人爽欧美一区卜| av视频免费观看在线观看| 少妇被粗大猛烈的视频| 国产日韩欧美视频二区| 欧美精品人与动牲交sv欧美| 日韩成人av中文字幕在线观看| 成年av动漫网址| 亚洲av电影在线进入| 一本色道久久久久久精品综合| 激情五月婷婷亚洲| 亚洲av免费高清在线观看| 天天影视国产精品| 国产免费现黄频在线看| 99热国产这里只有精品6| 9色porny在线观看| 亚洲美女搞黄在线观看| 精品国产露脸久久av麻豆| 日韩中文字幕视频在线看片| 亚洲欧美一区二区三区国产| 午夜福利一区二区在线看| 成人手机av| 卡戴珊不雅视频在线播放| 欧美成人精品欧美一级黄| 伦理电影大哥的女人| av免费在线看不卡| 又黄又粗又硬又大视频| 欧美老熟妇乱子伦牲交| 纵有疾风起免费观看全集完整版| 国产人伦9x9x在线观看 | 久久久久人妻精品一区果冻| 一级爰片在线观看| 久久久精品国产亚洲av高清涩受| 天天躁夜夜躁狠狠躁躁| 国产黄频视频在线观看| 国产精品久久久久久av不卡| 黄色配什么色好看| 国产综合精华液| 999久久久国产精品视频| 欧美日韩成人在线一区二区| 国产精品国产三级国产专区5o| 国产男女超爽视频在线观看| 亚洲精品久久午夜乱码| 美女中出高潮动态图| 母亲3免费完整高清在线观看 | 精品一品国产午夜福利视频| 黄色配什么色好看| 中文字幕av电影在线播放| 伦精品一区二区三区| 欧美精品av麻豆av| 精品一品国产午夜福利视频| 欧美bdsm另类| 男人舔女人的私密视频| 26uuu在线亚洲综合色| 婷婷色av中文字幕| 免费观看a级毛片全部| 国产亚洲一区二区精品| 婷婷色麻豆天堂久久| 日韩免费高清中文字幕av| 不卡视频在线观看欧美| 精品少妇久久久久久888优播| 秋霞伦理黄片| 国产男人的电影天堂91| 免费少妇av软件| 日韩不卡一区二区三区视频在线| 久久久久久人人人人人| 国产极品粉嫩免费观看在线| 亚洲五月色婷婷综合| 欧美日韩一区二区视频在线观看视频在线| 好男人视频免费观看在线| 亚洲中文av在线| 黄片播放在线免费| 老汉色av国产亚洲站长工具| 久久久久人妻精品一区果冻| 亚洲人成网站在线观看播放| av天堂久久9| 午夜免费男女啪啪视频观看| 久久久久人妻精品一区果冻| 另类亚洲欧美激情| 黑人猛操日本美女一级片| 亚洲欧美色中文字幕在线| 女人精品久久久久毛片| tube8黄色片| 精品一区二区三区四区五区乱码 | 男男h啪啪无遮挡| 亚洲久久久国产精品| 欧美另类一区| 久热这里只有精品99| 爱豆传媒免费全集在线观看| 97在线人人人人妻| 日韩一卡2卡3卡4卡2021年| av线在线观看网站| 亚洲国产av新网站| 丝瓜视频免费看黄片| 日本午夜av视频| 青春草国产在线视频| 一级片免费观看大全| 人妻少妇偷人精品九色| 欧美xxⅹ黑人| 欧美国产精品va在线观看不卡| 免费女性裸体啪啪无遮挡网站| 亚洲欧美清纯卡通| 国产免费福利视频在线观看| 不卡av一区二区三区| 亚洲国产精品一区二区三区在线| a 毛片基地| 最近最新中文字幕大全免费视频 | 久久韩国三级中文字幕| 亚洲男人天堂网一区| 一边亲一边摸免费视频| 免费黄色在线免费观看| 精品少妇久久久久久888优播| 亚洲伊人色综图| 久久99精品国语久久久| 下体分泌物呈黄色| 成人亚洲精品一区在线观看| 成人影院久久| 蜜桃国产av成人99| a级毛片在线看网站| 亚洲国产最新在线播放| 久久久久国产一级毛片高清牌| av国产精品久久久久影院| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩在线中文字幕| 久久久久国产精品人妻一区二区| 亚洲精品aⅴ在线观看| 99久国产av精品国产电影| 最近最新中文字幕大全免费视频 | 午夜久久久在线观看| 秋霞伦理黄片| www.熟女人妻精品国产| 深夜精品福利| 国产免费视频播放在线视频| 伦理电影大哥的女人| 色播在线永久视频| 一级毛片黄色毛片免费观看视频| 不卡av一区二区三区| 边亲边吃奶的免费视频| 少妇人妻精品综合一区二区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产精品成人久久小说| 边亲边吃奶的免费视频| 亚洲三区欧美一区| 一区在线观看完整版| 美女视频免费永久观看网站| av福利片在线| 国产亚洲av片在线观看秒播厂| 女人精品久久久久毛片| 日韩精品免费视频一区二区三区| 久久影院123| 亚洲视频免费观看视频| av国产精品久久久久影院| 在线天堂中文资源库| 嫩草影院入口| 国产福利在线免费观看视频| 国产精品99久久99久久久不卡 | 多毛熟女@视频| 日韩制服丝袜自拍偷拍| 免费在线观看黄色视频的| 韩国精品一区二区三区| 少妇人妻 视频| 少妇 在线观看| 国产成人精品久久二区二区91 | 久久精品国产亚洲av天美| 中国三级夫妇交换| 久久国产精品男人的天堂亚洲| 国产成人精品婷婷| 亚洲,欧美精品.| 精品少妇久久久久久888优播| 日韩,欧美,国产一区二区三区| 亚洲,一卡二卡三卡| 国产在线免费精品| 亚洲国产欧美网| 亚洲欧美一区二区三区黑人 | 欧美日韩一级在线毛片| 一个人免费看片子| 国产激情久久老熟女| 久久亚洲国产成人精品v| 一区二区三区四区激情视频| 日韩熟女老妇一区二区性免费视频| 午夜老司机福利剧场| 亚洲精品aⅴ在线观看| 日韩 亚洲 欧美在线| 国产精品无大码| 亚洲美女搞黄在线观看| 一级片'在线观看视频| 精品一品国产午夜福利视频| 国产日韩一区二区三区精品不卡| 国产精品.久久久| 日韩免费高清中文字幕av| 久久精品国产亚洲av高清一级| 免费黄色在线免费观看| 欧美日韩视频精品一区| 自线自在国产av| 中文字幕色久视频| 国产成人午夜福利电影在线观看| 一二三四中文在线观看免费高清| 欧美日韩综合久久久久久| 青春草国产在线视频| 久久人妻熟女aⅴ| 美女国产高潮福利片在线看| av在线观看视频网站免费| 久久人人97超碰香蕉20202| 少妇的丰满在线观看| 久久毛片免费看一区二区三区| 成人漫画全彩无遮挡| 国产精品.久久久| 国产精品嫩草影院av在线观看| 亚洲精品视频女| 亚洲成人一二三区av| 免费播放大片免费观看视频在线观看| 高清在线视频一区二区三区| 国产精品人妻久久久影院| 国产不卡av网站在线观看| 中文字幕av电影在线播放| 熟女电影av网| 国产精品国产三级国产专区5o| 观看av在线不卡| 欧美成人午夜免费资源| 少妇的丰满在线观看| 亚洲视频免费观看视频| 99久久综合免费| 亚洲欧美精品自产自拍| 啦啦啦啦在线视频资源| 久久久久久伊人网av| 考比视频在线观看| 在线观看免费高清a一片| 中文字幕另类日韩欧美亚洲嫩草| 人妻系列 视频| 国产麻豆69| 一区二区日韩欧美中文字幕| 黄色毛片三级朝国网站| 天天操日日干夜夜撸| 另类精品久久| 亚洲成国产人片在线观看| 宅男免费午夜| 亚洲国产欧美网| 国产精品 国内视频| 纯流量卡能插随身wifi吗| 日日撸夜夜添| 久久亚洲国产成人精品v| 精品国产国语对白av| 久久久亚洲精品成人影院| 老汉色∧v一级毛片| 日日撸夜夜添| 亚洲,欧美精品.| 天天躁日日躁夜夜躁夜夜| 欧美精品一区二区大全| 如何舔出高潮| 高清av免费在线| 人人妻人人爽人人添夜夜欢视频| 亚洲精品国产av成人精品| 巨乳人妻的诱惑在线观看| 在线观看美女被高潮喷水网站| 国产有黄有色有爽视频| 亚洲精品第二区| 哪个播放器可以免费观看大片| 久久久a久久爽久久v久久| 久久热在线av| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品在线美女| av又黄又爽大尺度在线免费看| 久久久欧美国产精品| 好男人视频免费观看在线| 亚洲一区二区三区欧美精品| 国产爽快片一区二区三区| 久久久久国产一级毛片高清牌| 亚洲久久久国产精品| 亚洲国产最新在线播放| 午夜福利网站1000一区二区三区| 一级黄片播放器| 色婷婷av一区二区三区视频| 成年动漫av网址| 久久久久久久久免费视频了| 永久网站在线| 热re99久久精品国产66热6| 99热网站在线观看| 久久av网站| 亚洲国产最新在线播放| 亚洲精品自拍成人| 乱人伦中国视频| 国产视频首页在线观看| 精品国产露脸久久av麻豆| 亚洲欧美日韩另类电影网站| 日日撸夜夜添| 亚洲久久久国产精品| 最近手机中文字幕大全| 亚洲熟女精品中文字幕| 一级爰片在线观看| 国产成人av激情在线播放| 国产成人精品久久久久久| 国产精品久久久久久精品古装| 久久久久久伊人网av| 国产毛片在线视频| 亚洲欧美清纯卡通| 一区在线观看完整版| 免费少妇av软件| 综合色丁香网| 亚洲精品aⅴ在线观看| 香蕉精品网在线| 亚洲av福利一区| 人人妻人人爽人人添夜夜欢视频| 免费日韩欧美在线观看| 69精品国产乱码久久久| 日韩电影二区| 啦啦啦视频在线资源免费观看| 永久免费av网站大全| 国产一级毛片在线| 欧美中文综合在线视频| 欧美最新免费一区二区三区| 激情视频va一区二区三区| 在线观看三级黄色| 欧美日本中文国产一区发布| 九色亚洲精品在线播放| 日韩一卡2卡3卡4卡2021年| 国产毛片在线视频| 免费在线观看视频国产中文字幕亚洲 | av电影中文网址| 国产精品成人在线| 丁香六月天网| 久久精品久久精品一区二区三区| 亚洲一码二码三码区别大吗| 久久久久久人妻| 丰满乱子伦码专区| 欧美日韩一区二区视频在线观看视频在线| 国产精品一二三区在线看| 自拍欧美九色日韩亚洲蝌蚪91| 国产白丝娇喘喷水9色精品| 青春草国产在线视频| 18禁裸乳无遮挡动漫免费视频| 亚洲第一青青草原| 成年人午夜在线观看视频| 看非洲黑人一级黄片| 蜜桃在线观看..| 一本久久精品| 精品国产乱码久久久久久小说| 日韩欧美一区视频在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲精品久久久久久婷婷小说| 国产野战对白在线观看| av在线播放精品| 亚洲精品久久久久久婷婷小说| 午夜福利视频在线观看免费| 日日爽夜夜爽网站| 久久99精品国语久久久| 日韩精品免费视频一区二区三区| 咕卡用的链子| 美女主播在线视频|