• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of spatial distributions of mining-induced stress and fracture fields for three coal mining layouts

    2018-10-17 09:42:52ShengweiLiMingzhongGoXiojunYngRuZhngLiRenZhopengZhngGuoLiZetinZhngJingXie

    Shengwei Li,Mingzhong Go,*,Xiojun Yng,Ru Zhng,Li Ren,Zhopeng Zhng,Guo Li,Zetin Zhng,Jing Xie

    aState Key Laboratory of Hydraulics and Mountain River Engineering,College of Water Resource and Hydropower,Sichuan University,Chengdu,610065,China

    bState Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,Xuzhou,221116,China

    cMOE Laboratory of Deep Underground Science and Engineering,College of Architecture and Environment,Sichuan University,Chengdu,610065,China

    dChina Three Gorges Projects Development Co.,Ltd.,Chengdu,610065,China

    Keywords:Coal mining Mining layouts Mining-induced stress field Mining-induced fracture field Numerical simulation

    A B S T R A C T In this study,the spatial distributions of stress and fracture fields for three typical underground coal mining layouts,i.e.non-pillar mining(NM),top-coal caving mining(TCM)and protective coal-seam mining(PCM),are modeled using discrete element software UDEC.The numerical results show that different mining layouts can lead to different mining-induced stress fields,resulting in diverse fracture fields.For the PCM,the mining influenced area in front of the mining faces is the largest,and the stress concentration factor in front of the mining faces is the lowest.The spatial shapes of the mining-induced fracture fields under NM,TCM and PCM differ,and they are characterized by trapezoidal,triangular and tower shapes,respectively.The fractal dimensions of mining-induced fractures of the three mining layouts decrease in the order of PCM,TCM and NM.It is also shown that the PCM can result in a better gas control effect in coal mines with high outburst potential.The numerical results are expected to provide a basis for understanding of mining-induced gas seepage fields and provide a reference for highefficiency coal mining.

    1.Introduction

    Underground coal mining in highly gassy coal seams can cause stress redistribution and large-scale movement of the strata,which result in the development of fracture field.The complex fracture fields increase stratum permeability and thereby provide the major channels for gas migration and drainage(Qian and Xu,1998;Xie et al.,2011).Therefore,study of stress and fracture fields is critically important to develop techniques for efficient coal mining and gas extraction.

    During mining,the coal and rock in front of the mining face experience dynamic stress changes due to the decrease in confining stress,which will increase stratum deformation induced by in situ stresses in the rock subsequently(Xie et al.,2011,2016).Song et al.(1984)theoretically described the distribution of abutment pressure during coal mining in combination with field application.Singh et al.(2011a,b)studied the evolution of mining-induced stress fields during coal mining under different geological conditions and estimated the range of influenced area and the ultimate mining-induced stress over the coal pillars.Several studies(e.g.Mark et al.,2007;Guo et al.,2012;Jiang et al.,2012;Shabanimashcool and Li,2012,2013)focused on the stress evolution in a longwall mining face and presented the optimum location for gas extraction based on field monitoring and numerical simulations.He et al.(2007,2015)proposed the longwall mining“cutting cantilever beam theory”and formulated the “110 mining method”,which is considered as the third mining science innovation.Using this method,one working face,after the first mining cycle,only needs one advanced roadway excavation;while the other one is automatically formed during the last mining cycle without coal pillars left in the mining area(He et al.,2015).Compared with the conventional pillar mining method,the peak stress in roof cutting non-pillar mining(NM)method can be decreased by 11.8%-20.3%(He et al.,2018).Xie et al.(2011)simulated the mining-induced mechanical behaviors of rock for different mining layouts in the laboratory and revealed the relation between the mining layout and the mechanical behaviors of rock.However,most of these aforementioned studies focused solely on exploring the variation in mining-induced stress,but the spatial distribution and variations in the stress fields for different mining layouts are rarely reported.

    It is known that the stress in front of the working face changes drastically as mining progresses.This provides the basic driving force for fracture generation and development.To understand the mining-induced fracture networks,theoretical analysis,numerical simulation,rock-like material test, field test,and other approaches are basically used.Qian and Xu(1998)studied the distribution characteristics of mining-induced fractures in the overlying strata,and revealed that the fractures are presented in the form of O-shaped circle.Yasitli and Unver(2005)numerically analyzed the deformation,displacement,stress and fracture evolution of a thick coal seam.Due to the complexity of the fracture field and its spatial distribution,fractal geometry provides an alternative to describe the fracture fields.Zhou et al.(2012)presented the self-similarity of fracture distributions in rock masses by means of model experiments on similar materials and fractal geometry.Gao et al.(2013)analyzed the spatial distribution and evolution of mining-induced borehole wall fractures using borehole video equipment.

    The spatial distribution and evolution of fracture fields during coal mining have been studied extensively;however,there are few reports on how fracture fields are produced by different mining layouts.In this context,the mining-induced stress and fracture fields produced by three mining layouts are analyzed using discrete element method,in order to provide the basis for the coupling problem between the mining-induced stress-fracture-seepage fields and different mining layouts for the purpose of highefficiency coal mining.

    2.Analyses of mining-induced stress and fracture fields

    During coal mining,the stress field changes significantly due to rock unloading,providing the conditions for the formation of mining-induced fracture networks.The complex fracture field expands to form gas seepage pathways,which greatly changes the permeability of the coal seam.Unfortunately,the distribution and evolution of the mining-induced stress and fracture fields for different mining layouts are not well known.

    2.1.Mining-induced stress fields

    Various studies(e.g.Xie et al.,2011,2016)discussed the stress fields generated by different mining layouts.NM is a type of mining that removes the coal pillar in a mined-out area(goaf)or leaves small coal pillars between the underground roadway and the goaf(see Fig.1a)(Zhang et al.,2016;He et al.,2018).In Fig.1,γis the bulk density of overlying strata;H is the mining depth;K is the abutment pressure coefficient;and L1and L2are the lengths of the abutment pressure of the decreasing and increasing sections,respectively(Zhang et al.,2016).Top-coal caving mining(TCM)mainly develops a mining face along the bottom of a thick coal seam and loosens the coal at the face by abutment pressure or by blasting with the overlying coal removed after being caved(Fig.1b)(Xie et al.,1999,2016;Alehossein and Poulsen,2010;Zhang et al.,2014;Yu et al.,2015).Protective coal-seam mining(PCM)is the first step of mining performed on a seam to eliminate the risk of gas or rock outbursts during subsequent mining operations(Fig.1c)(Yuan,2008;Yang et al.,2011;Chen et al.,2014).The distribution of the stress field in front of the mining face varies for each of these mining layouts.In the NM,when the coal pillar is removed,the stress imposed by the adjacent goaf will be superimposed on the coal mass in front of the mining face.For the three mining layouts,the stress will be the greatest for the NM.In the TCM,as the goaf is relatively larger,both the scale of the mining-induced stress field and the peak stress are relatively larger.In the PCM,the protective coal-seam yields stress relief during the early stages of mining so that the peak stress is smaller.

    2.2.Mining-induced fracture fields

    For the three mining layouts,it is obvious that fractures can be developed in the overlying strata due to stress changes.As the mining advances,the fracture networks gradually propagate to the overlying strata and along the direction of the working face.In the NM,because the coal pillar is small or absent,the stress field changes significantly.The fracture field is widely distributed and the fractures in the coal near the mining face are frequently observed.In the TCM,due to the intensive mining activities and large mined-out volume generated,coal itself is more fractured and the extent of the fracture field is greater than that of PCM.In the PCM,where the mining width of the protective layer reaches an appropriate size,the volume of protective coal-seam will experience compression and swelling phases,and finally reach a stable stage.The fracture field of the protective layer is fully developed over the goaf,where it provides favorable conditions for gas control of the adjacent seams.

    3.Numerical simulations of mining-induced stress and fracture fields

    3.1.Simulation procedures

    Numerical simulation is carried out using the commercial discrete element software UDEC4.0.The discrete element method allows for limited displacements and rotations of discrete elements including complete separation of elements.Prefabricated fractures are added to the model.The bottom of the model is fixed as shown in Fig.2.Then the tensile stress is applied to both sides of the model,allowing for the coalescence of cracks in the middle of the model.An inverse analysis can be carried out by adjusting the model parameters.It is possible to make the blocks equivalent to the intact module wherethe discrete fractures are added.When the boundary condition is assumed,some cracks will open,propagate and finally coalesce.

    3.2.Model setup

    To minimize the boundary effects on the model,the model length is defined as 300 m,the height of the overlying stratum is assumed to be 50 m,and the height of the underlying rock mass is set to be 15 m.Numerical simulations are conducted based on the geological and mining conditions of the 8212 working face in the Tashan Mine,Shanxi Province,China,where the coal seam is located at the depth of 469.4 m.To compare the three numerical models,three mining layouts(i.e.NM,TCM and PCM)are numerically analyzed at the same depth,as shown in Fig.3.It is assumed that both sides of the model have only vertical displacement and the horizontal displacement is zero.It is also hypothesized that the horizontal and vertical displacements of the underlying rock formations are both zero.The in situ gravitational stress is applied to the upper boundary with respect to the overburden depth.As for the NM model,stress of 1.3 times the original gravitational stress is applied due to the strike abutment pressure.The models for all three mining layouts simulate a mining face advance of 60 m.Simulated transverse and longitudinal fractures are set at a spacing of 1 m.

    Fig.1.Spatial distribution of abutment pressures for three mining layouts:(a)Non-pillar mining,(b)Top-coal caving mining,and(c)Protective coal-seam mining.

    Fig.2.Schematic diagram illustrating fracture field simulation.

    3.3.Parameter selection

    The numerical model employs the Mohr-Coulomb failure criterion.The surface contact Coulomb slip model is adopted for the joint model.The physico-mechanical parameters of the rocks and rock joints used in the simulation are listed in Tables 1 and 2,respectively(Yu et al.,2015).

    4.Results and discussion

    4.1.Distribution of mining-induced stress fields

    Stress field distributions for the three mining layouts are shown in Fig.4.In this figure,it is clear that there is a stressrelief zone above the goaf.Fig.5 shows the comparison of the stresses in the model.For the three mining layouts,the height of the NM stress-relief zone is the minimal and the heights of the TCM and PCM zones are similar but both with higher values.The vertical stress of the NM layout gradually increases above the stress-relief zone,but near the upper edge of the model,the stress begins to decrease,as shown in Fig.5a.At the same horizontal distance,the vertical stress for the NM layout is greater than that for TCM and PCM layouts.To obtain the advanced abutment pressure for three mining layouts,the vertical stresses at the height of 16 m in the model for NM and PCM layouts and 18 m in the model for TCM layout are calculated,as shown in Fig.5b.In this figure,the vertical stresses of three mining layouts first rise and then fall at a considerable distance away from the goaf.The peak value of the advanced abutment pressure in front of working face for NM,TCM and PCM layouts are 42.8 MPa,28.56 MPa and 28.15 MPa,respectively.The in situ stress for NM,TCM and PCM layouts are 14.58 MPa,11.53 MPa and 11.58 MPa,respectively.In terms of the peak values of the advanced abutment pressure and in situ stress,the stress concentration factors for NM,TCM and PCM layouts can be calculated as 2.93,2.48 and 2.43,respectively.Clearly,the stress concentration factors decrease in the order of NM,TCM and PCM.

    Fig.3.Schematic diagrams of numerical models for three mining layouts:(a)Nonpillar mining,(b)Top-coal caving mining,and(c)Protective coal-seam mining.

    Table 1Physico-mechanical parameters of different types of rocks.

    Table 2Physico-mechanical parameters of rock joints.

    4.2.Shapes of fracture fields for different mining layouts

    For all three mining layouts,the open fractures above the goaf are concentrated.On the basis of their orientations,the fractures can be divided into vertical and separation fractures.The vertical and separation fractures together form the open fracture field,which can be divided into following three regions.Region 1,mainly formed from separation fractures,is produced by bending deformation.Region 2 occupies both sides of the fracture field and is the most intensely fractured area.Region 3 is the caving zone,presenting trapezoidal shape distribution.There are marked differences in the regional distribution for three mining layouts.

    (1)Non-pillar mining-induced fracture field

    As shown in Fig.6a,the open fracture field above the goaf is trapezoidal in shape,covering the depths of 17-32 m.Region 1,at the depths of 3-18 m above the goaf,is also trapezoidal in shape with base angle of 30°.Region 2 occupies both sides of the trapezoid.Region 3 is located at the middle of goaf,showing a triangular shape.

    (2)Top-coal caving mining-induced fracture field

    As shown in Fig.6b,this spatial shape of open fracture field presents a triangular shape.Compared with the NM,the range of fracture field in TCM is larger,ranging from 15 m to 57 m in the model.Due to the large mining height,the falling overlying strata result in more mining-induced fractures.

    (3)Protective coal-seam mining-induced fracture field

    As shown in Fig.6c,the open fracture field under the PCM layout is tower-shaped,with a triangle higher than 27 m at the top of a trapezoid that is approximately 15 m high.The PCM is similar to TCM in Region 1,where fracturing in the protective layer is especially intensive.This layer has high connectivity in both horizontal and vertical directions.

    Fig.4.Stress field distributions for three mining layouts:(a)Non-pillar mining,(b)Top-coal caving mining,and(c)Protective coal-seam mining.Unit in MPa.

    In summary,the mining-induced fracture fields in the NM,TCM and PCM layouts are respectively trapezoidal,triangular,and tower in shape,respectively.The shapes and distributions of the fracture fields obtained in this study are basically in agreement with that obtained by means of similarity simulation,as shown in Fig.7 (Wanget al.,2009).In this circumstance,the gas drainage holes should be considered in Region 2 to maximize gas extraction.

    4.3.Quantitative description of fracture fields

    To describe the mining-induced fracture fields quantitatively,the fracture connectivity ratios and the field fractal dimensions are chosen as in dices to evaluate the permeability for gas transmission of the coal and rock mass.In this paper,the fracture connectivity ratio is calculated by(Chen et al.,2005):

    where Niis the number of pixels that represent a single fracture projection,n is the number of fractures,and N is the number of pixels in the horizontal or vertical direction.

    The box dimension method is adopted to calculate the fractal dimension of fracture fields(Falconer,1990):

    where F is the bounding set of fractures for a two-dimensional plane,Nδ(F)is the minimum number of fracture sets covered by the largest diameterδ,and DBis the fractal dimension of the fracture.

    As shown in Fig.8,one-dimensional(1D)connectivity ratio in the vertical direction is the highest for the PCM layout,followed by the TCM and NM layouts.The 1D connectivity ratio in the horizontal direction for the PCM is the largest,and those for the NM and TCM are almost the same(Fig.8).For the three mining layouts,the fractal dimensions are in the order of PCM>TCM>NM(Fig.8).This indicates that development of the fracture fields is in the same order,i.e.PCM>TCM>NM.

    5.Conclusions

    Fig.5.Comparison of stresses in the model for three mining layouts:(a)Perpendicular to the mining direction and(b)Along the mining direction.

    To better understand the stress and fracture fields,numerical simulations are used to analyze the spatial distributions of the stress and fracture fields for three mining layouts.Numerical results show that different mining layouts lead to different mining-induced stress fields and associated fracture fields.The shapes of the mining-induced fracture fields produced by the NM,TCM and PCM are trapezoidal,triangular and tower in shape,respectively.The fractal dimensions of mining-induced fractures under different mining layouts decrease in the order of PCM,TCM and NM.For the PCM layout,the fracturing in the protective coal-seam is quite intensive and the permeability enhancement is remarkable.These results are expected to provide guidance for practical engineering application for the highefficiency coal mining and the simultaneous extraction of coalbed gas.

    Conflicts of interest

    The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Fig.6.Fracture field distributions for three mining layouts:(a)Non-pillar mining,(b)Top-coal caving mining,and(c)Protective coal-seam mining.

    Fig.7.Fracture field distribution based on similarity simulations(Wang et al.,2009).

    Fig.8.Histograms showing the connectivity ratios and fractal dimensions for different mining layouts.

    Acknowledgements

    The study was financially supported by the State Key Research Development Program of China(Grant No.2016YFC0600701)and the National Natural Science Foundation of China(Grant No.51674170).

    十八禁国产超污无遮挡网站| 少妇熟女欧美另类| 2021少妇久久久久久久久久久| 欧美激情在线99| 校园人妻丝袜中文字幕| 日本色播在线视频| 欧美日韩在线观看h| 日韩中字成人| 国产精品国产三级专区第一集| 国产精品综合久久久久久久免费| 在线观看av片永久免费下载| 国产精品不卡视频一区二区| 国产色爽女视频免费观看| av女优亚洲男人天堂| 日韩一区二区三区影片| 欧美高清性xxxxhd video| 尤物成人国产欧美一区二区三区| 中文字幕av在线有码专区| 久久鲁丝午夜福利片| 亚洲电影在线观看av| 日产精品乱码卡一卡2卡三| 久久亚洲精品不卡| 亚州av有码| 免费大片18禁| 偷拍熟女少妇极品色| 岛国在线免费视频观看| 一个人免费在线观看电影| 一区二区三区四区激情视频| 午夜福利在线观看吧| 性色avwww在线观看| 国产淫片久久久久久久久| 国产人妻一区二区三区在| 99热全是精品| 中文字幕制服av| 观看免费一级毛片| 日韩一区二区视频免费看| 欧美日本视频| 一个人看视频在线观看www免费| 久久久久国产网址| 在线天堂最新版资源| 你懂的网址亚洲精品在线观看 | 少妇的逼好多水| 国产黄片视频在线免费观看| 天美传媒精品一区二区| 久久韩国三级中文字幕| 欧美成人a在线观看| 午夜精品在线福利| 亚洲一区高清亚洲精品| 又爽又黄a免费视频| 看黄色毛片网站| av天堂中文字幕网| 天天躁夜夜躁狠狠久久av| 精品久久久久久久久亚洲| 中文精品一卡2卡3卡4更新| 偷拍熟女少妇极品色| 亚洲欧美清纯卡通| 免费在线观看成人毛片| 国产精品久久电影中文字幕| 国产精品电影一区二区三区| 在线a可以看的网站| 久久婷婷人人爽人人干人人爱| 毛片一级片免费看久久久久| 精品久久久久久久久久久久久| 波野结衣二区三区在线| 五月玫瑰六月丁香| 中文字幕精品亚洲无线码一区| 日韩一区二区视频免费看| 久久久亚洲精品成人影院| 国产一区二区在线av高清观看| 亚洲国产色片| 久久久久免费精品人妻一区二区| 亚洲欧美成人综合另类久久久 | 午夜福利在线观看免费完整高清在| av免费在线看不卡| 成人av在线播放网站| 久久精品熟女亚洲av麻豆精品 | 婷婷色综合大香蕉| 亚洲国产最新在线播放| 国产色爽女视频免费观看| 午夜福利在线观看免费完整高清在| 亚洲18禁久久av| 午夜精品在线福利| 久久久久免费精品人妻一区二区| 日韩制服骚丝袜av| 免费观看的影片在线观看| av在线老鸭窝| 欧美又色又爽又黄视频| 一区二区三区四区激情视频| 亚洲在线自拍视频| 久久久午夜欧美精品| 综合色av麻豆| 欧美另类亚洲清纯唯美| 免费观看在线日韩| 亚洲av电影在线观看一区二区三区 | 国产一区二区在线观看日韩| 久久午夜福利片| 精品久久久久久久久久久久久| 亚洲电影在线观看av| 长腿黑丝高跟| 成人鲁丝片一二三区免费| 尾随美女入室| 亚洲成人中文字幕在线播放| 91久久精品国产一区二区成人| 内地一区二区视频在线| 亚洲欧美精品自产自拍| 成人特级av手机在线观看| 韩国高清视频一区二区三区| 一个人看的www免费观看视频| 久久久久久久久大av| 99久国产av精品国产电影| 国产精品电影一区二区三区| 日产精品乱码卡一卡2卡三| 搡老妇女老女人老熟妇| 亚洲不卡免费看| 精品不卡国产一区二区三区| 欧美一区二区国产精品久久精品| 欧美丝袜亚洲另类| 三级经典国产精品| 麻豆国产97在线/欧美| 午夜激情福利司机影院| 亚洲成色77777| 久久久久久久久久黄片| 久久99热6这里只有精品| 天美传媒精品一区二区| 又黄又爽又刺激的免费视频.| 麻豆久久精品国产亚洲av| 精品久久久久久久久av| 色视频www国产| 黄色配什么色好看| 床上黄色一级片| 中文字幕精品亚洲无线码一区| 欧美人与善性xxx| 91av网一区二区| 一区二区三区免费毛片| 精品久久久久久久人妻蜜臀av| 婷婷色麻豆天堂久久 | 一级黄色大片毛片| 色综合站精品国产| 成年av动漫网址| 亚洲国产高清在线一区二区三| 成年女人永久免费观看视频| 韩国高清视频一区二区三区| 亚洲电影在线观看av| 欧美性猛交黑人性爽| 国产精品伦人一区二区| 国产免费福利视频在线观看| 亚洲精品成人久久久久久| av在线天堂中文字幕| 极品教师在线视频| 大话2 男鬼变身卡| 美女xxoo啪啪120秒动态图| 欧美极品一区二区三区四区| 日本免费一区二区三区高清不卡| 一二三四中文在线观看免费高清| 丝袜喷水一区| 欧美日韩在线观看h| av国产久精品久网站免费入址| 久久久精品大字幕| 哪个播放器可以免费观看大片| 欧美xxxx黑人xx丫x性爽| 国产免费又黄又爽又色| 国内揄拍国产精品人妻在线| 国产美女午夜福利| 免费av不卡在线播放| 亚洲国产欧美在线一区| 青春草国产在线视频| 国产精品.久久久| 亚洲av免费在线观看| 三级毛片av免费| 亚洲性久久影院| 久久久成人免费电影| 国产美女午夜福利| 国产老妇女一区| 亚洲欧洲日产国产| av线在线观看网站| 日本五十路高清| 99久久无色码亚洲精品果冻| 97超碰精品成人国产| 热99在线观看视频| 在线免费十八禁| 欧美激情国产日韩精品一区| 国产黄a三级三级三级人| 欧美丝袜亚洲另类| 大话2 男鬼变身卡| av卡一久久| 久久精品熟女亚洲av麻豆精品 | 丰满人妻一区二区三区视频av| 国产黄色视频一区二区在线观看 | 日本一二三区视频观看| 看免费成人av毛片| 亚洲国产欧美在线一区| 亚洲国产精品久久男人天堂| 国产亚洲5aaaaa淫片| 亚洲高清免费不卡视频| 久久久久久久久久成人| 久久精品影院6| 亚洲精品456在线播放app| 你懂的网址亚洲精品在线观看 | 色网站视频免费| 亚洲国产欧美人成| videos熟女内射| 亚洲精品日韩在线中文字幕| 六月丁香七月| 欧美激情国产日韩精品一区| 国产亚洲91精品色在线| 欧美高清性xxxxhd video| 久久热精品热| 美女内射精品一级片tv| 久久久久久久久中文| 最新中文字幕久久久久| 桃色一区二区三区在线观看| 男的添女的下面高潮视频| 久久韩国三级中文字幕| 国产亚洲精品av在线| 色综合亚洲欧美另类图片| 99热全是精品| 国产高潮美女av| 岛国在线免费视频观看| 亚洲欧美成人精品一区二区| 日日撸夜夜添| 欧美成人免费av一区二区三区| 身体一侧抽搐| 成人无遮挡网站| 国产伦理片在线播放av一区| 黑人高潮一二区| 亚洲精品456在线播放app| 三级国产精品欧美在线观看| 日韩欧美精品免费久久| 国产激情偷乱视频一区二区| 国产精品国产三级国产av玫瑰| 女人被狂操c到高潮| 国产一级毛片七仙女欲春2| 国产黄片视频在线免费观看| 亚洲精华国产精华液的使用体验| 99在线人妻在线中文字幕| 蜜桃久久精品国产亚洲av| 国产三级中文精品| 男人和女人高潮做爰伦理| 久久精品国产亚洲av涩爱| 高清av免费在线| 欧美另类亚洲清纯唯美| 国产 一区精品| 1024手机看黄色片| 最近中文字幕2019免费版| 深爱激情五月婷婷| 日本一本二区三区精品| 国产精品av视频在线免费观看| 久久精品国产亚洲网站| av在线蜜桃| 丝袜美腿在线中文| 高清视频免费观看一区二区 | av女优亚洲男人天堂| 亚洲成色77777| 深爱激情五月婷婷| 中文字幕久久专区| 免费av毛片视频| 亚洲精品456在线播放app| 成人毛片a级毛片在线播放| 国产成人a∨麻豆精品| kizo精华| 一级毛片电影观看 | 最新中文字幕久久久久| 久久精品国产99精品国产亚洲性色| 人妻夜夜爽99麻豆av| 久久韩国三级中文字幕| 日韩成人伦理影院| 国产高清视频在线观看网站| 成年av动漫网址| 亚洲精品,欧美精品| 99久国产av精品国产电影| 成年版毛片免费区| 69人妻影院| 亚洲人成网站在线观看播放| 久久人人爽人人爽人人片va| 久久久久国产网址| 搡老妇女老女人老熟妇| 国产伦一二天堂av在线观看| 嫩草影院精品99| 亚洲人成网站高清观看| 少妇被粗大猛烈的视频| 干丝袜人妻中文字幕| 国产高潮美女av| 亚洲综合精品二区| 亚洲成色77777| 午夜亚洲福利在线播放| 中文资源天堂在线| 青春草亚洲视频在线观看| 精品久久久噜噜| 国内揄拍国产精品人妻在线| 午夜福利成人在线免费观看| 3wmmmm亚洲av在线观看| 特大巨黑吊av在线直播| 国产精品无大码| 午夜激情福利司机影院| 日韩av在线免费看完整版不卡| 国内精品宾馆在线| 免费观看在线日韩| 毛片女人毛片| 日本-黄色视频高清免费观看| 亚洲aⅴ乱码一区二区在线播放| 97超碰精品成人国产| 九色成人免费人妻av| 又爽又黄a免费视频| 日韩中字成人| 亚洲av不卡在线观看| 国产精品福利在线免费观看| 精品无人区乱码1区二区| 午夜福利网站1000一区二区三区| 99在线视频只有这里精品首页| 老司机影院毛片| 99国产精品一区二区蜜桃av| 99久久精品一区二区三区| 日本午夜av视频| 免费大片18禁| 亚洲乱码一区二区免费版| 乱人视频在线观看| 最近2019中文字幕mv第一页| 国产又色又爽无遮挡免| 成人国产麻豆网| 99热全是精品| 欧美日韩综合久久久久久| 淫秽高清视频在线观看| 乱码一卡2卡4卡精品| 亚洲自拍偷在线| 亚洲最大成人手机在线| 人妻制服诱惑在线中文字幕| 亚洲国产欧美在线一区| 中文字幕精品亚洲无线码一区| 成人高潮视频无遮挡免费网站| 高清日韩中文字幕在线| 亚洲欧美一区二区三区国产| 女人久久www免费人成看片 | 国产精品美女特级片免费视频播放器| 特级一级黄色大片| av免费在线看不卡| 国产视频内射| 最近中文字幕2019免费版| 国国产精品蜜臀av免费| 高清毛片免费看| 久久精品人妻少妇| 免费搜索国产男女视频| 国产在线男女| 亚洲欧洲国产日韩| 大香蕉97超碰在线| 天堂av国产一区二区熟女人妻| 免费观看a级毛片全部| 成人无遮挡网站| 国产探花极品一区二区| 亚洲欧美精品专区久久| 午夜免费激情av| 精品久久久噜噜| 日本黄色视频三级网站网址| 嫩草影院入口| 国产午夜精品一二区理论片| 免费播放大片免费观看视频在线观看 | 日韩欧美精品免费久久| 久久久久久久久中文| 精品久久久久久电影网 | 亚洲经典国产精华液单| 欧美性猛交╳xxx乱大交人| 亚洲久久久久久中文字幕| 我的老师免费观看完整版| 长腿黑丝高跟| 中文字幕人妻熟人妻熟丝袜美| 国产精品综合久久久久久久免费| 嫩草影院新地址| 成人美女网站在线观看视频| 国产av在哪里看| 日本av手机在线免费观看| 欧美97在线视频| 中文欧美无线码| 欧美xxxx黑人xx丫x性爽| 国产午夜精品一二区理论片| 日韩精品有码人妻一区| 非洲黑人性xxxx精品又粗又长| 免费观看在线日韩| 欧美一区二区国产精品久久精品| 99久国产av精品| 2022亚洲国产成人精品| 91久久精品国产一区二区成人| 中文字幕久久专区| 国产一区二区在线观看日韩| 午夜爱爱视频在线播放| 精品国产露脸久久av麻豆 | 亚洲精品乱久久久久久| 久久久久性生活片| 免费观看在线日韩| 亚洲欧美日韩卡通动漫| 成年免费大片在线观看| 日韩视频在线欧美| 日本五十路高清| 午夜老司机福利剧场| 亚洲无线观看免费| 97超视频在线观看视频| 午夜精品国产一区二区电影 | 国产精品爽爽va在线观看网站| 欧美成人免费av一区二区三区| 身体一侧抽搐| 日韩成人av中文字幕在线观看| 联通29元200g的流量卡| 3wmmmm亚洲av在线观看| 狂野欧美白嫩少妇大欣赏| 日本-黄色视频高清免费观看| 欧美性感艳星| 男女那种视频在线观看| 精品久久久久久久久亚洲| 成人av在线播放网站| 日韩国内少妇激情av| 国产精品一区二区三区四区久久| 免费黄网站久久成人精品| 国产高潮美女av| 插阴视频在线观看视频| 欧美日本视频| 国产欧美另类精品又又久久亚洲欧美| 99热6这里只有精品| 人妻制服诱惑在线中文字幕| 亚洲国产欧美人成| 国产色婷婷99| 国产精品一及| 别揉我奶头 嗯啊视频| 亚洲欧美日韩无卡精品| 国产精品一区www在线观看| 日本黄色视频三级网站网址| 精品久久久久久久末码| 午夜福利高清视频| 男女国产视频网站| 国产综合懂色| 男女下面进入的视频免费午夜| 麻豆精品久久久久久蜜桃| 纵有疾风起免费观看全集完整版 | 超碰av人人做人人爽久久| 少妇的逼水好多| 丰满人妻一区二区三区视频av| 日本三级黄在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲成人久久爱视频| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 国内精品一区二区在线观看| 狂野欧美激情性xxxx在线观看| av专区在线播放| 亚洲自偷自拍三级| 免费黄网站久久成人精品| 国产三级中文精品| 一本一本综合久久| 女人久久www免费人成看片 | 天堂中文最新版在线下载 | 在线播放国产精品三级| 日产精品乱码卡一卡2卡三| 禁无遮挡网站| 国产精品一区二区在线观看99 | 菩萨蛮人人尽说江南好唐韦庄 | 国产伦在线观看视频一区| 丰满人妻一区二区三区视频av| 高清毛片免费看| 国产一区二区三区av在线| 99久久精品国产国产毛片| 岛国毛片在线播放| 一级毛片久久久久久久久女| 波多野结衣巨乳人妻| 国产高清视频在线观看网站| 最近最新中文字幕大全电影3| 欧美日韩精品成人综合77777| 三级国产精品片| 日韩一本色道免费dvd| 2021少妇久久久久久久久久久| 夜夜看夜夜爽夜夜摸| av视频在线观看入口| 欧美高清成人免费视频www| 黄色欧美视频在线观看| 日产精品乱码卡一卡2卡三| 亚洲欧美中文字幕日韩二区| 成人毛片a级毛片在线播放| 乱系列少妇在线播放| 日日啪夜夜撸| 国产麻豆成人av免费视频| 日本黄大片高清| 视频中文字幕在线观看| 精品久久久久久久末码| 亚洲成av人片在线播放无| 久久久久久久午夜电影| 晚上一个人看的免费电影| 看黄色毛片网站| 亚洲自偷自拍三级| 亚洲在线观看片| 国产成人福利小说| 老女人水多毛片| 亚洲18禁久久av| 亚洲av成人精品一区久久| 国产精品,欧美在线| 99久国产av精品| 日本色播在线视频| 女人被狂操c到高潮| 国产三级中文精品| 最近的中文字幕免费完整| 欧美一区二区精品小视频在线| 亚洲国产色片| 午夜福利高清视频| 狂野欧美白嫩少妇大欣赏| 久久久久久九九精品二区国产| 亚洲国产色片| 久久久久久九九精品二区国产| 乱系列少妇在线播放| 中文天堂在线官网| 禁无遮挡网站| 成年女人看的毛片在线观看| 最后的刺客免费高清国语| 在线观看66精品国产| 国产成人a∨麻豆精品| 麻豆成人av视频| 国产一区二区在线av高清观看| 成人综合一区亚洲| 高清av免费在线| 欧美潮喷喷水| 国产一区二区在线av高清观看| 国产探花在线观看一区二区| 国产精品av视频在线免费观看| 国产成人福利小说| 色尼玛亚洲综合影院| 婷婷色综合大香蕉| 日本三级黄在线观看| 久久99热这里只有精品18| 精品久久久久久久久久久久久| 七月丁香在线播放| 一级爰片在线观看| 国产高清视频在线观看网站| 亚洲三级黄色毛片| 国产精品爽爽va在线观看网站| 精品少妇黑人巨大在线播放 | 久久久a久久爽久久v久久| 高清日韩中文字幕在线| 观看免费一级毛片| 国产亚洲91精品色在线| av专区在线播放| 久久久久久久午夜电影| 小蜜桃在线观看免费完整版高清| 久久久久久国产a免费观看| 欧美变态另类bdsm刘玥| 亚洲av电影在线观看一区二区三区 | 亚洲av.av天堂| 国产成人精品一,二区| 久久人人爽人人爽人人片va| 欧美潮喷喷水| 舔av片在线| 亚洲无线观看免费| 免费观看性生交大片5| h日本视频在线播放| 丰满少妇做爰视频| 国产一级毛片七仙女欲春2| 亚洲欧美中文字幕日韩二区| 亚洲av中文av极速乱| 干丝袜人妻中文字幕| 免费观看a级毛片全部| 蜜桃久久精品国产亚洲av| 99久久精品热视频| 国产色爽女视频免费观看| 亚洲美女视频黄频| 日日干狠狠操夜夜爽| 黄色配什么色好看| 国产精品久久视频播放| 日本-黄色视频高清免费观看| 亚洲欧美中文字幕日韩二区| 2022亚洲国产成人精品| 男人狂女人下面高潮的视频| 黄片wwwwww| 干丝袜人妻中文字幕| 哪个播放器可以免费观看大片| 如何舔出高潮| 久久婷婷人人爽人人干人人爱| 国语自产精品视频在线第100页| 色播亚洲综合网| 三级男女做爰猛烈吃奶摸视频| 一本久久精品| 精品人妻偷拍中文字幕| 日本黄色片子视频| 亚洲欧洲国产日韩| 国产成人a区在线观看| 欧美性猛交黑人性爽| 久久精品国产亚洲av涩爱| 嫩草影院入口| av在线蜜桃| a级毛色黄片| 国产一区二区在线观看日韩| 老女人水多毛片| 欧美一区二区国产精品久久精品| 欧美+日韩+精品| 毛片一级片免费看久久久久| 欧美三级亚洲精品| 99热这里只有是精品在线观看| 色噜噜av男人的天堂激情| 老女人水多毛片| 亚洲国产欧美人成| 欧美激情国产日韩精品一区| 天天躁日日操中文字幕| 午夜福利网站1000一区二区三区| 亚洲国产精品久久男人天堂| 久久综合国产亚洲精品| 亚洲中文字幕一区二区三区有码在线看| 18禁动态无遮挡网站| 日韩强制内射视频| av.在线天堂| 成年av动漫网址| 99九九线精品视频在线观看视频| 成人毛片60女人毛片免费| 亚洲国产精品国产精品| 观看美女的网站| 日韩一本色道免费dvd| 久久人妻av系列| 欧美zozozo另类| 久久99精品国语久久久| 午夜精品一区二区三区免费看| 亚洲五月天丁香| 黄片无遮挡物在线观看| 亚洲av中文字字幕乱码综合| 韩国av在线不卡|