• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of spatial distributions of mining-induced stress and fracture fields for three coal mining layouts

    2018-10-17 09:42:52ShengweiLiMingzhongGoXiojunYngRuZhngLiRenZhopengZhngGuoLiZetinZhngJingXie

    Shengwei Li,Mingzhong Go,*,Xiojun Yng,Ru Zhng,Li Ren,Zhopeng Zhng,Guo Li,Zetin Zhng,Jing Xie

    aState Key Laboratory of Hydraulics and Mountain River Engineering,College of Water Resource and Hydropower,Sichuan University,Chengdu,610065,China

    bState Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,Xuzhou,221116,China

    cMOE Laboratory of Deep Underground Science and Engineering,College of Architecture and Environment,Sichuan University,Chengdu,610065,China

    dChina Three Gorges Projects Development Co.,Ltd.,Chengdu,610065,China

    Keywords:Coal mining Mining layouts Mining-induced stress field Mining-induced fracture field Numerical simulation

    A B S T R A C T In this study,the spatial distributions of stress and fracture fields for three typical underground coal mining layouts,i.e.non-pillar mining(NM),top-coal caving mining(TCM)and protective coal-seam mining(PCM),are modeled using discrete element software UDEC.The numerical results show that different mining layouts can lead to different mining-induced stress fields,resulting in diverse fracture fields.For the PCM,the mining influenced area in front of the mining faces is the largest,and the stress concentration factor in front of the mining faces is the lowest.The spatial shapes of the mining-induced fracture fields under NM,TCM and PCM differ,and they are characterized by trapezoidal,triangular and tower shapes,respectively.The fractal dimensions of mining-induced fractures of the three mining layouts decrease in the order of PCM,TCM and NM.It is also shown that the PCM can result in a better gas control effect in coal mines with high outburst potential.The numerical results are expected to provide a basis for understanding of mining-induced gas seepage fields and provide a reference for highefficiency coal mining.

    1.Introduction

    Underground coal mining in highly gassy coal seams can cause stress redistribution and large-scale movement of the strata,which result in the development of fracture field.The complex fracture fields increase stratum permeability and thereby provide the major channels for gas migration and drainage(Qian and Xu,1998;Xie et al.,2011).Therefore,study of stress and fracture fields is critically important to develop techniques for efficient coal mining and gas extraction.

    During mining,the coal and rock in front of the mining face experience dynamic stress changes due to the decrease in confining stress,which will increase stratum deformation induced by in situ stresses in the rock subsequently(Xie et al.,2011,2016).Song et al.(1984)theoretically described the distribution of abutment pressure during coal mining in combination with field application.Singh et al.(2011a,b)studied the evolution of mining-induced stress fields during coal mining under different geological conditions and estimated the range of influenced area and the ultimate mining-induced stress over the coal pillars.Several studies(e.g.Mark et al.,2007;Guo et al.,2012;Jiang et al.,2012;Shabanimashcool and Li,2012,2013)focused on the stress evolution in a longwall mining face and presented the optimum location for gas extraction based on field monitoring and numerical simulations.He et al.(2007,2015)proposed the longwall mining“cutting cantilever beam theory”and formulated the “110 mining method”,which is considered as the third mining science innovation.Using this method,one working face,after the first mining cycle,only needs one advanced roadway excavation;while the other one is automatically formed during the last mining cycle without coal pillars left in the mining area(He et al.,2015).Compared with the conventional pillar mining method,the peak stress in roof cutting non-pillar mining(NM)method can be decreased by 11.8%-20.3%(He et al.,2018).Xie et al.(2011)simulated the mining-induced mechanical behaviors of rock for different mining layouts in the laboratory and revealed the relation between the mining layout and the mechanical behaviors of rock.However,most of these aforementioned studies focused solely on exploring the variation in mining-induced stress,but the spatial distribution and variations in the stress fields for different mining layouts are rarely reported.

    It is known that the stress in front of the working face changes drastically as mining progresses.This provides the basic driving force for fracture generation and development.To understand the mining-induced fracture networks,theoretical analysis,numerical simulation,rock-like material test, field test,and other approaches are basically used.Qian and Xu(1998)studied the distribution characteristics of mining-induced fractures in the overlying strata,and revealed that the fractures are presented in the form of O-shaped circle.Yasitli and Unver(2005)numerically analyzed the deformation,displacement,stress and fracture evolution of a thick coal seam.Due to the complexity of the fracture field and its spatial distribution,fractal geometry provides an alternative to describe the fracture fields.Zhou et al.(2012)presented the self-similarity of fracture distributions in rock masses by means of model experiments on similar materials and fractal geometry.Gao et al.(2013)analyzed the spatial distribution and evolution of mining-induced borehole wall fractures using borehole video equipment.

    The spatial distribution and evolution of fracture fields during coal mining have been studied extensively;however,there are few reports on how fracture fields are produced by different mining layouts.In this context,the mining-induced stress and fracture fields produced by three mining layouts are analyzed using discrete element method,in order to provide the basis for the coupling problem between the mining-induced stress-fracture-seepage fields and different mining layouts for the purpose of highefficiency coal mining.

    2.Analyses of mining-induced stress and fracture fields

    During coal mining,the stress field changes significantly due to rock unloading,providing the conditions for the formation of mining-induced fracture networks.The complex fracture field expands to form gas seepage pathways,which greatly changes the permeability of the coal seam.Unfortunately,the distribution and evolution of the mining-induced stress and fracture fields for different mining layouts are not well known.

    2.1.Mining-induced stress fields

    Various studies(e.g.Xie et al.,2011,2016)discussed the stress fields generated by different mining layouts.NM is a type of mining that removes the coal pillar in a mined-out area(goaf)or leaves small coal pillars between the underground roadway and the goaf(see Fig.1a)(Zhang et al.,2016;He et al.,2018).In Fig.1,γis the bulk density of overlying strata;H is the mining depth;K is the abutment pressure coefficient;and L1and L2are the lengths of the abutment pressure of the decreasing and increasing sections,respectively(Zhang et al.,2016).Top-coal caving mining(TCM)mainly develops a mining face along the bottom of a thick coal seam and loosens the coal at the face by abutment pressure or by blasting with the overlying coal removed after being caved(Fig.1b)(Xie et al.,1999,2016;Alehossein and Poulsen,2010;Zhang et al.,2014;Yu et al.,2015).Protective coal-seam mining(PCM)is the first step of mining performed on a seam to eliminate the risk of gas or rock outbursts during subsequent mining operations(Fig.1c)(Yuan,2008;Yang et al.,2011;Chen et al.,2014).The distribution of the stress field in front of the mining face varies for each of these mining layouts.In the NM,when the coal pillar is removed,the stress imposed by the adjacent goaf will be superimposed on the coal mass in front of the mining face.For the three mining layouts,the stress will be the greatest for the NM.In the TCM,as the goaf is relatively larger,both the scale of the mining-induced stress field and the peak stress are relatively larger.In the PCM,the protective coal-seam yields stress relief during the early stages of mining so that the peak stress is smaller.

    2.2.Mining-induced fracture fields

    For the three mining layouts,it is obvious that fractures can be developed in the overlying strata due to stress changes.As the mining advances,the fracture networks gradually propagate to the overlying strata and along the direction of the working face.In the NM,because the coal pillar is small or absent,the stress field changes significantly.The fracture field is widely distributed and the fractures in the coal near the mining face are frequently observed.In the TCM,due to the intensive mining activities and large mined-out volume generated,coal itself is more fractured and the extent of the fracture field is greater than that of PCM.In the PCM,where the mining width of the protective layer reaches an appropriate size,the volume of protective coal-seam will experience compression and swelling phases,and finally reach a stable stage.The fracture field of the protective layer is fully developed over the goaf,where it provides favorable conditions for gas control of the adjacent seams.

    3.Numerical simulations of mining-induced stress and fracture fields

    3.1.Simulation procedures

    Numerical simulation is carried out using the commercial discrete element software UDEC4.0.The discrete element method allows for limited displacements and rotations of discrete elements including complete separation of elements.Prefabricated fractures are added to the model.The bottom of the model is fixed as shown in Fig.2.Then the tensile stress is applied to both sides of the model,allowing for the coalescence of cracks in the middle of the model.An inverse analysis can be carried out by adjusting the model parameters.It is possible to make the blocks equivalent to the intact module wherethe discrete fractures are added.When the boundary condition is assumed,some cracks will open,propagate and finally coalesce.

    3.2.Model setup

    To minimize the boundary effects on the model,the model length is defined as 300 m,the height of the overlying stratum is assumed to be 50 m,and the height of the underlying rock mass is set to be 15 m.Numerical simulations are conducted based on the geological and mining conditions of the 8212 working face in the Tashan Mine,Shanxi Province,China,where the coal seam is located at the depth of 469.4 m.To compare the three numerical models,three mining layouts(i.e.NM,TCM and PCM)are numerically analyzed at the same depth,as shown in Fig.3.It is assumed that both sides of the model have only vertical displacement and the horizontal displacement is zero.It is also hypothesized that the horizontal and vertical displacements of the underlying rock formations are both zero.The in situ gravitational stress is applied to the upper boundary with respect to the overburden depth.As for the NM model,stress of 1.3 times the original gravitational stress is applied due to the strike abutment pressure.The models for all three mining layouts simulate a mining face advance of 60 m.Simulated transverse and longitudinal fractures are set at a spacing of 1 m.

    Fig.1.Spatial distribution of abutment pressures for three mining layouts:(a)Non-pillar mining,(b)Top-coal caving mining,and(c)Protective coal-seam mining.

    Fig.2.Schematic diagram illustrating fracture field simulation.

    3.3.Parameter selection

    The numerical model employs the Mohr-Coulomb failure criterion.The surface contact Coulomb slip model is adopted for the joint model.The physico-mechanical parameters of the rocks and rock joints used in the simulation are listed in Tables 1 and 2,respectively(Yu et al.,2015).

    4.Results and discussion

    4.1.Distribution of mining-induced stress fields

    Stress field distributions for the three mining layouts are shown in Fig.4.In this figure,it is clear that there is a stressrelief zone above the goaf.Fig.5 shows the comparison of the stresses in the model.For the three mining layouts,the height of the NM stress-relief zone is the minimal and the heights of the TCM and PCM zones are similar but both with higher values.The vertical stress of the NM layout gradually increases above the stress-relief zone,but near the upper edge of the model,the stress begins to decrease,as shown in Fig.5a.At the same horizontal distance,the vertical stress for the NM layout is greater than that for TCM and PCM layouts.To obtain the advanced abutment pressure for three mining layouts,the vertical stresses at the height of 16 m in the model for NM and PCM layouts and 18 m in the model for TCM layout are calculated,as shown in Fig.5b.In this figure,the vertical stresses of three mining layouts first rise and then fall at a considerable distance away from the goaf.The peak value of the advanced abutment pressure in front of working face for NM,TCM and PCM layouts are 42.8 MPa,28.56 MPa and 28.15 MPa,respectively.The in situ stress for NM,TCM and PCM layouts are 14.58 MPa,11.53 MPa and 11.58 MPa,respectively.In terms of the peak values of the advanced abutment pressure and in situ stress,the stress concentration factors for NM,TCM and PCM layouts can be calculated as 2.93,2.48 and 2.43,respectively.Clearly,the stress concentration factors decrease in the order of NM,TCM and PCM.

    Fig.3.Schematic diagrams of numerical models for three mining layouts:(a)Nonpillar mining,(b)Top-coal caving mining,and(c)Protective coal-seam mining.

    Table 1Physico-mechanical parameters of different types of rocks.

    Table 2Physico-mechanical parameters of rock joints.

    4.2.Shapes of fracture fields for different mining layouts

    For all three mining layouts,the open fractures above the goaf are concentrated.On the basis of their orientations,the fractures can be divided into vertical and separation fractures.The vertical and separation fractures together form the open fracture field,which can be divided into following three regions.Region 1,mainly formed from separation fractures,is produced by bending deformation.Region 2 occupies both sides of the fracture field and is the most intensely fractured area.Region 3 is the caving zone,presenting trapezoidal shape distribution.There are marked differences in the regional distribution for three mining layouts.

    (1)Non-pillar mining-induced fracture field

    As shown in Fig.6a,the open fracture field above the goaf is trapezoidal in shape,covering the depths of 17-32 m.Region 1,at the depths of 3-18 m above the goaf,is also trapezoidal in shape with base angle of 30°.Region 2 occupies both sides of the trapezoid.Region 3 is located at the middle of goaf,showing a triangular shape.

    (2)Top-coal caving mining-induced fracture field

    As shown in Fig.6b,this spatial shape of open fracture field presents a triangular shape.Compared with the NM,the range of fracture field in TCM is larger,ranging from 15 m to 57 m in the model.Due to the large mining height,the falling overlying strata result in more mining-induced fractures.

    (3)Protective coal-seam mining-induced fracture field

    As shown in Fig.6c,the open fracture field under the PCM layout is tower-shaped,with a triangle higher than 27 m at the top of a trapezoid that is approximately 15 m high.The PCM is similar to TCM in Region 1,where fracturing in the protective layer is especially intensive.This layer has high connectivity in both horizontal and vertical directions.

    Fig.4.Stress field distributions for three mining layouts:(a)Non-pillar mining,(b)Top-coal caving mining,and(c)Protective coal-seam mining.Unit in MPa.

    In summary,the mining-induced fracture fields in the NM,TCM and PCM layouts are respectively trapezoidal,triangular,and tower in shape,respectively.The shapes and distributions of the fracture fields obtained in this study are basically in agreement with that obtained by means of similarity simulation,as shown in Fig.7 (Wanget al.,2009).In this circumstance,the gas drainage holes should be considered in Region 2 to maximize gas extraction.

    4.3.Quantitative description of fracture fields

    To describe the mining-induced fracture fields quantitatively,the fracture connectivity ratios and the field fractal dimensions are chosen as in dices to evaluate the permeability for gas transmission of the coal and rock mass.In this paper,the fracture connectivity ratio is calculated by(Chen et al.,2005):

    where Niis the number of pixels that represent a single fracture projection,n is the number of fractures,and N is the number of pixels in the horizontal or vertical direction.

    The box dimension method is adopted to calculate the fractal dimension of fracture fields(Falconer,1990):

    where F is the bounding set of fractures for a two-dimensional plane,Nδ(F)is the minimum number of fracture sets covered by the largest diameterδ,and DBis the fractal dimension of the fracture.

    As shown in Fig.8,one-dimensional(1D)connectivity ratio in the vertical direction is the highest for the PCM layout,followed by the TCM and NM layouts.The 1D connectivity ratio in the horizontal direction for the PCM is the largest,and those for the NM and TCM are almost the same(Fig.8).For the three mining layouts,the fractal dimensions are in the order of PCM>TCM>NM(Fig.8).This indicates that development of the fracture fields is in the same order,i.e.PCM>TCM>NM.

    5.Conclusions

    Fig.5.Comparison of stresses in the model for three mining layouts:(a)Perpendicular to the mining direction and(b)Along the mining direction.

    To better understand the stress and fracture fields,numerical simulations are used to analyze the spatial distributions of the stress and fracture fields for three mining layouts.Numerical results show that different mining layouts lead to different mining-induced stress fields and associated fracture fields.The shapes of the mining-induced fracture fields produced by the NM,TCM and PCM are trapezoidal,triangular and tower in shape,respectively.The fractal dimensions of mining-induced fractures under different mining layouts decrease in the order of PCM,TCM and NM.For the PCM layout,the fracturing in the protective coal-seam is quite intensive and the permeability enhancement is remarkable.These results are expected to provide guidance for practical engineering application for the highefficiency coal mining and the simultaneous extraction of coalbed gas.

    Conflicts of interest

    The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

    Fig.6.Fracture field distributions for three mining layouts:(a)Non-pillar mining,(b)Top-coal caving mining,and(c)Protective coal-seam mining.

    Fig.7.Fracture field distribution based on similarity simulations(Wang et al.,2009).

    Fig.8.Histograms showing the connectivity ratios and fractal dimensions for different mining layouts.

    Acknowledgements

    The study was financially supported by the State Key Research Development Program of China(Grant No.2016YFC0600701)and the National Natural Science Foundation of China(Grant No.51674170).

    九色亚洲精品在线播放| 黑人巨大精品欧美一区二区mp4| 黑人欧美特级aaaaaa片| 91九色精品人成在线观看| www日本在线高清视频| 国产精品电影一区二区三区| 人人妻人人添人人爽欧美一区卜| 女人爽到高潮嗷嗷叫在线视频| 老熟妇乱子伦视频在线观看| 男人舔女人的私密视频| 久久香蕉精品热| 夫妻午夜视频| 欧美乱码精品一区二区三区| 国产无遮挡羞羞视频在线观看| 日本五十路高清| 他把我摸到了高潮在线观看| 婷婷精品国产亚洲av在线| 精品一区二区三卡| 免费高清在线观看日韩| 80岁老熟妇乱子伦牲交| 久久精品国产亚洲av高清一级| 精品久久久久久久毛片微露脸| 黑丝袜美女国产一区| 日韩精品青青久久久久久| 在线观看免费视频日本深夜| 男人舔女人下体高潮全视频| 香蕉丝袜av| 久9热在线精品视频| 少妇的丰满在线观看| 黄色片一级片一级黄色片| av福利片在线| 精品午夜福利视频在线观看一区| 亚洲av片天天在线观看| 丝袜美足系列| 两个人看的免费小视频| 最新在线观看一区二区三区| 一级毛片精品| 777久久人妻少妇嫩草av网站| av国产精品久久久久影院| 成熟少妇高潮喷水视频| 制服诱惑二区| 欧美精品一区二区免费开放| 男人的好看免费观看在线视频 | 久久精品国产清高在天天线| 80岁老熟妇乱子伦牲交| 国产视频一区二区在线看| 国产精品免费视频内射| 日本黄色视频三级网站网址| 精品一区二区三区视频在线观看免费 | 高清毛片免费观看视频网站 | 国产国语露脸激情在线看| 国产精品 欧美亚洲| 欧洲精品卡2卡3卡4卡5卡区| 黑人操中国人逼视频| 国产视频一区二区在线看| 黄网站色视频无遮挡免费观看| 丰满人妻熟妇乱又伦精品不卡| 色播在线永久视频| 亚洲国产欧美日韩在线播放| 精品国产亚洲在线| 男女下面进入的视频免费午夜 | 亚洲 欧美一区二区三区| 国产精品亚洲一级av第二区| 国产精品香港三级国产av潘金莲| 香蕉丝袜av| 99在线视频只有这里精品首页| 亚洲第一欧美日韩一区二区三区| 久久久久久亚洲精品国产蜜桃av| 精品高清国产在线一区| 一级a爱视频在线免费观看| 亚洲 国产 在线| 国产精品久久久人人做人人爽| 午夜福利在线免费观看网站| 男女之事视频高清在线观看| 很黄的视频免费| 久久这里只有精品19| 成人18禁高潮啪啪吃奶动态图| 咕卡用的链子| 成人精品一区二区免费| 国产99白浆流出| 美国免费a级毛片| 99久久久亚洲精品蜜臀av| 久久久久久人人人人人| 天天躁狠狠躁夜夜躁狠狠躁| 黄色女人牲交| 少妇被粗大的猛进出69影院| 老熟妇乱子伦视频在线观看| 高清av免费在线| 久久久国产欧美日韩av| 亚洲一区中文字幕在线| 男男h啪啪无遮挡| www.www免费av| 99国产综合亚洲精品| 精品免费久久久久久久清纯| 俄罗斯特黄特色一大片| 日韩av在线大香蕉| 啪啪无遮挡十八禁网站| 日日干狠狠操夜夜爽| 精品久久久久久久毛片微露脸| 91精品三级在线观看| 啦啦啦 在线观看视频| av天堂在线播放| 在线视频色国产色| 日本欧美视频一区| av天堂在线播放| 女性被躁到高潮视频| 777久久人妻少妇嫩草av网站| 国产亚洲精品久久久久久毛片| 黄网站色视频无遮挡免费观看| 国产深夜福利视频在线观看| 国产无遮挡羞羞视频在线观看| 女同久久另类99精品国产91| 一二三四在线观看免费中文在| 一级黄色大片毛片| 妹子高潮喷水视频| 男女午夜视频在线观看| 淫秽高清视频在线观看| 精品一品国产午夜福利视频| 国产av一区二区精品久久| 啦啦啦 在线观看视频| 国产伦人伦偷精品视频| 在线看a的网站| 欧美黄色淫秽网站| 在线十欧美十亚洲十日本专区| 日韩欧美国产一区二区入口| 日韩三级视频一区二区三区| 又大又爽又粗| 欧美另类亚洲清纯唯美| 99热国产这里只有精品6| ponron亚洲| 欧美一区二区精品小视频在线| 久热这里只有精品99| 久久人妻熟女aⅴ| 桃色一区二区三区在线观看| 亚洲自偷自拍图片 自拍| 嫩草影视91久久| 久久精品影院6| 国产精华一区二区三区| 日韩欧美在线二视频| 99国产精品一区二区三区| 色在线成人网| 满18在线观看网站| 久久久国产一区二区| 国产精品久久久久成人av| ponron亚洲| 在线天堂中文资源库| 在线观看午夜福利视频| 一级片'在线观看视频| 中文字幕精品免费在线观看视频| 日本五十路高清| 亚洲狠狠婷婷综合久久图片| 一区在线观看完整版| 丰满迷人的少妇在线观看| 国产精品一区二区精品视频观看| 国产av一区二区精品久久| 啪啪无遮挡十八禁网站| 日韩欧美在线二视频| 亚洲av五月六月丁香网| 在线观看一区二区三区| 麻豆av在线久日| 丰满人妻熟妇乱又伦精品不卡| 97人妻天天添夜夜摸| 国产又色又爽无遮挡免费看| 在线看a的网站| 国产单亲对白刺激| 欧美乱色亚洲激情| 啦啦啦免费观看视频1| 亚洲九九香蕉| 最新在线观看一区二区三区| 欧美激情久久久久久爽电影 | 97超级碰碰碰精品色视频在线观看| 欧美另类亚洲清纯唯美| 亚洲欧美激情在线| 亚洲av美国av| a级毛片在线看网站| 日韩欧美在线二视频| 欧美精品亚洲一区二区| 啦啦啦免费观看视频1| 欧美日本中文国产一区发布| 夜夜夜夜夜久久久久| 超碰成人久久| 日韩欧美一区二区三区在线观看| 欧美乱妇无乱码| 怎么达到女性高潮| 女人被躁到高潮嗷嗷叫费观| 老汉色av国产亚洲站长工具| 99香蕉大伊视频| 50天的宝宝边吃奶边哭怎么回事| 男人舔女人的私密视频| 五月开心婷婷网| 无人区码免费观看不卡| 欧美日韩国产mv在线观看视频| 91字幕亚洲| 国产黄a三级三级三级人| bbb黄色大片| 男男h啪啪无遮挡| 日韩精品青青久久久久久| 久久久久久久午夜电影 | 老熟妇乱子伦视频在线观看| 日韩欧美三级三区| 女警被强在线播放| 咕卡用的链子| 一a级毛片在线观看| 高清黄色对白视频在线免费看| 一级片'在线观看视频| 一级a爱视频在线免费观看| 18禁国产床啪视频网站| 这个男人来自地球电影免费观看| 我的亚洲天堂| 欧美+亚洲+日韩+国产| 成人亚洲精品一区在线观看| 中出人妻视频一区二区| 久热爱精品视频在线9| 欧美老熟妇乱子伦牲交| 久久久久九九精品影院| 午夜免费鲁丝| 黑人巨大精品欧美一区二区mp4| 国产成年人精品一区二区 | 亚洲国产中文字幕在线视频| 国产精品免费视频内射| 国产高清国产精品国产三级| 成人av一区二区三区在线看| 久久亚洲真实| 高清欧美精品videossex| 国产精品 国内视频| 久久 成人 亚洲| 亚洲国产看品久久| 久久这里只有精品19| 一边摸一边做爽爽视频免费| 黄色视频,在线免费观看| 精品第一国产精品| 久久精品aⅴ一区二区三区四区| 久9热在线精品视频| 在线十欧美十亚洲十日本专区| 国产欧美日韩一区二区三| 很黄的视频免费| 又紧又爽又黄一区二区| 一夜夜www| 午夜免费鲁丝| 99re在线观看精品视频| 国产精品秋霞免费鲁丝片| 国产精品1区2区在线观看.| av有码第一页| 怎么达到女性高潮| 18禁国产床啪视频网站| 亚洲第一欧美日韩一区二区三区| 久久久久久人人人人人| 午夜精品在线福利| 国产亚洲精品久久久久久毛片| 国产有黄有色有爽视频| 日日摸夜夜添夜夜添小说| av欧美777| 久99久视频精品免费| 777久久人妻少妇嫩草av网站| 99精国产麻豆久久婷婷| 免费观看精品视频网站| 欧美老熟妇乱子伦牲交| 在线播放国产精品三级| 在线观看免费视频网站a站| 中文字幕人妻熟女乱码| 久久久国产一区二区| 亚洲一区中文字幕在线| 亚洲第一av免费看| 国产精品 国内视频| 久久久久精品国产欧美久久久| 侵犯人妻中文字幕一二三四区| 一进一出好大好爽视频| 男人的好看免费观看在线视频 | 中文字幕精品免费在线观看视频| 国产又色又爽无遮挡免费看| 18美女黄网站色大片免费观看| 制服人妻中文乱码| 亚洲一区二区三区色噜噜 | 成人国语在线视频| 亚洲色图av天堂| 日韩欧美三级三区| 18禁黄网站禁片午夜丰满| 国产精品1区2区在线观看.| 91av网站免费观看| 丁香六月欧美| 长腿黑丝高跟| 人妻丰满熟妇av一区二区三区| 两个人免费观看高清视频| 亚洲成国产人片在线观看| 12—13女人毛片做爰片一| 亚洲精华国产精华精| 香蕉久久夜色| 国产精品爽爽va在线观看网站 | 久久久久九九精品影院| 一级a爱视频在线免费观看| 18禁美女被吸乳视频| 91精品国产国语对白视频| 国产一卡二卡三卡精品| 男女高潮啪啪啪动态图| 男女下面进入的视频免费午夜 | 99国产综合亚洲精品| 可以在线观看毛片的网站| 免费av毛片视频| 国产成人一区二区三区免费视频网站| 国产成人欧美| 国产色视频综合| 激情在线观看视频在线高清| 亚洲精品中文字幕一二三四区| 男男h啪啪无遮挡| 在线永久观看黄色视频| 欧美另类亚洲清纯唯美| 亚洲国产精品sss在线观看 | 999精品在线视频| 日韩大码丰满熟妇| 亚洲成人免费电影在线观看| 99riav亚洲国产免费| 亚洲va日本ⅴa欧美va伊人久久| 国产精品爽爽va在线观看网站 | 精品一区二区三区四区五区乱码| 伊人久久大香线蕉亚洲五| 午夜精品在线福利| 国产成人欧美| 中文字幕人妻熟女乱码| 亚洲专区中文字幕在线| 免费在线观看黄色视频的| 亚洲精品中文字幕在线视频| 欧美色视频一区免费| 国产亚洲av高清不卡| a级毛片在线看网站| 色老头精品视频在线观看| 少妇裸体淫交视频免费看高清 | 19禁男女啪啪无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| av视频免费观看在线观看| 精品日产1卡2卡| 午夜影院日韩av| 无人区码免费观看不卡| 欧美一区二区精品小视频在线| 久久午夜亚洲精品久久| 国产成人欧美| 在线观看免费午夜福利视频| 好男人电影高清在线观看| 久9热在线精品视频| 国产99白浆流出| 国产精华一区二区三区| 欧美亚洲日本最大视频资源| 欧美日韩一级在线毛片| 纯流量卡能插随身wifi吗| 国产av又大| 天堂俺去俺来也www色官网| 在线观看午夜福利视频| 亚洲 欧美 日韩 在线 免费| 欧美成狂野欧美在线观看| 黄网站色视频无遮挡免费观看| 在线观看午夜福利视频| 动漫黄色视频在线观看| 成年人黄色毛片网站| 天堂俺去俺来也www色官网| 久久久久九九精品影院| 身体一侧抽搐| 女警被强在线播放| 国产男靠女视频免费网站| 老司机午夜十八禁免费视频| 亚洲成人精品中文字幕电影 | 三上悠亚av全集在线观看| 麻豆国产av国片精品| 999久久久精品免费观看国产| 十八禁人妻一区二区| 亚洲欧美日韩另类电影网站| 日韩大码丰满熟妇| 999精品在线视频| 波多野结衣一区麻豆| 热re99久久精品国产66热6| a在线观看视频网站| 亚洲三区欧美一区| 两性夫妻黄色片| 国产一区二区三区视频了| 国产精品偷伦视频观看了| 欧美成人午夜精品| 成人黄色视频免费在线看| 悠悠久久av| 一区在线观看完整版| 午夜视频精品福利| 99久久国产精品久久久| 村上凉子中文字幕在线| 中文字幕色久视频| 久久精品aⅴ一区二区三区四区| 国产精品 欧美亚洲| 另类亚洲欧美激情| 久久热在线av| 亚洲精品粉嫩美女一区| 在线观看舔阴道视频| 国产av精品麻豆| 一本综合久久免费| av中文乱码字幕在线| 精品熟女少妇八av免费久了| ponron亚洲| 99热国产这里只有精品6| 97碰自拍视频| 中文字幕色久视频| 亚洲欧美日韩无卡精品| 法律面前人人平等表现在哪些方面| 久久精品国产亚洲av香蕉五月| 午夜成年电影在线免费观看| 91麻豆精品激情在线观看国产 | 亚洲av日韩精品久久久久久密| 国产1区2区3区精品| 美女高潮到喷水免费观看| 国产成人精品久久二区二区免费| 久久中文字幕一级| 欧美日韩av久久| 一级片免费观看大全| 精品福利观看| 午夜精品在线福利| 亚洲国产欧美日韩在线播放| aaaaa片日本免费| 亚洲国产精品sss在线观看 | 亚洲欧美日韩无卡精品| 欧洲精品卡2卡3卡4卡5卡区| 欧美黑人欧美精品刺激| 丝袜美足系列| 日日干狠狠操夜夜爽| 亚洲精品一卡2卡三卡4卡5卡| 亚洲人成电影观看| 天天躁夜夜躁狠狠躁躁| 女人精品久久久久毛片| 欧美黑人精品巨大| 精品第一国产精品| 久久精品人人爽人人爽视色| 香蕉久久夜色| 亚洲精华国产精华精| 精品国产超薄肉色丝袜足j| 真人一进一出gif抽搐免费| 国产精品综合久久久久久久免费 | 夫妻午夜视频| 十八禁网站免费在线| 免费一级毛片在线播放高清视频 | 欧美激情高清一区二区三区| 制服人妻中文乱码| 人人妻,人人澡人人爽秒播| 久久精品成人免费网站| 又黄又粗又硬又大视频| 亚洲精品粉嫩美女一区| 亚洲欧洲精品一区二区精品久久久| 成人三级黄色视频| 免费在线观看黄色视频的| 热re99久久精品国产66热6| 电影成人av| 欧美性长视频在线观看| 一个人免费在线观看的高清视频| 亚洲在线自拍视频| 久热这里只有精品99| 色综合欧美亚洲国产小说| 欧美一区二区精品小视频在线| 久久九九热精品免费| 中文字幕精品免费在线观看视频| 亚洲av日韩精品久久久久久密| 夜夜躁狠狠躁天天躁| 男人舔女人下体高潮全视频| 可以免费在线观看a视频的电影网站| 人人妻,人人澡人人爽秒播| 男人的好看免费观看在线视频 | 老熟妇乱子伦视频在线观看| 视频区图区小说| 亚洲精品av麻豆狂野| 国产高清激情床上av| 国产成人一区二区三区免费视频网站| 在线观看66精品国产| 精品免费久久久久久久清纯| 国产成+人综合+亚洲专区| 电影成人av| 欧美亚洲日本最大视频资源| aaaaa片日本免费| 在线观看免费视频网站a站| 黄片播放在线免费| 叶爱在线成人免费视频播放| 久久国产精品影院| 精品熟女少妇八av免费久了| 国产又爽黄色视频| 91老司机精品| 天天添夜夜摸| 亚洲色图av天堂| 后天国语完整版免费观看| 免费看a级黄色片| svipshipincom国产片| 老汉色av国产亚洲站长工具| 欧美 亚洲 国产 日韩一| 中亚洲国语对白在线视频| 国产高清视频在线播放一区| 精品欧美一区二区三区在线| 深夜精品福利| 韩国av一区二区三区四区| 亚洲一码二码三码区别大吗| 麻豆久久精品国产亚洲av | 亚洲精品中文字幕在线视频| 色婷婷av一区二区三区视频| 久久亚洲精品不卡| 日韩大尺度精品在线看网址 | 丝袜人妻中文字幕| 亚洲成人久久性| 99久久精品国产亚洲精品| 欧美在线黄色| 久久久久久久久免费视频了| 国产免费现黄频在线看| 美女国产高潮福利片在线看| 久久精品亚洲av国产电影网| 好男人电影高清在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲国产毛片av蜜桃av| 多毛熟女@视频| 91精品三级在线观看| 精品卡一卡二卡四卡免费| 狠狠狠狠99中文字幕| 黄网站色视频无遮挡免费观看| 操出白浆在线播放| 美女午夜性视频免费| 精品第一国产精品| 亚洲性夜色夜夜综合| 久久久久国产精品人妻aⅴ院| 在线观看午夜福利视频| 伊人久久大香线蕉亚洲五| 精品日产1卡2卡| 欧美激情 高清一区二区三区| 窝窝影院91人妻| 亚洲九九香蕉| 亚洲三区欧美一区| 日本撒尿小便嘘嘘汇集6| 日韩精品免费视频一区二区三区| 亚洲精品久久午夜乱码| 久久中文字幕人妻熟女| 亚洲专区国产一区二区| 国产国语露脸激情在线看| 国产真人三级小视频在线观看| xxx96com| 中文字幕人妻丝袜制服| 亚洲中文字幕日韩| 人人妻人人澡人人看| 国产精品香港三级国产av潘金莲| 一级毛片女人18水好多| 欧美激情高清一区二区三区| 亚洲欧美日韩另类电影网站| bbb黄色大片| 男女下面进入的视频免费午夜 | 亚洲av电影在线进入| 水蜜桃什么品种好| 国产成人一区二区三区免费视频网站| 日韩欧美一区视频在线观看| 在线国产一区二区在线| 十八禁人妻一区二区| 久久人人精品亚洲av| 级片在线观看| 黑丝袜美女国产一区| 亚洲熟女毛片儿| av片东京热男人的天堂| 91麻豆精品激情在线观看国产 | 亚洲人成电影观看| 村上凉子中文字幕在线| 高潮久久久久久久久久久不卡| 欧美激情高清一区二区三区| 色哟哟哟哟哟哟| 欧美日韩亚洲国产一区二区在线观看| 五月开心婷婷网| 久热爱精品视频在线9| 免费不卡黄色视频| 男女床上黄色一级片免费看| 又黄又爽又免费观看的视频| 99久久国产精品久久久| 国产一卡二卡三卡精品| 欧美 亚洲 国产 日韩一| 午夜精品久久久久久毛片777| 一区福利在线观看| 一区二区三区国产精品乱码| 在线观看午夜福利视频| 无遮挡黄片免费观看| xxxhd国产人妻xxx| av超薄肉色丝袜交足视频| 波多野结衣高清无吗| 成人18禁高潮啪啪吃奶动态图| 免费女性裸体啪啪无遮挡网站| 国产无遮挡羞羞视频在线观看| 成熟少妇高潮喷水视频| 午夜福利免费观看在线| 欧美成人午夜精品| 中出人妻视频一区二区| 国产亚洲欧美在线一区二区| 国产精品亚洲一级av第二区| 成人国语在线视频| 国产黄a三级三级三级人| 一级a爱视频在线免费观看| e午夜精品久久久久久久| 男女床上黄色一级片免费看| 女性被躁到高潮视频| 久久久精品国产亚洲av高清涩受| 欧美成人免费av一区二区三区| 18禁国产床啪视频网站| 香蕉久久夜色| 别揉我奶头~嗯~啊~动态视频| 黄色女人牲交| 又黄又粗又硬又大视频| 精品熟女少妇八av免费久了| 免费av毛片视频| 国产亚洲精品综合一区在线观看 | 国产三级在线视频| 人人澡人人妻人| 国产成人精品久久二区二区91| 波多野结衣高清无吗| 国产高清videossex| 日韩三级视频一区二区三区| 精品久久久精品久久久| 黑人巨大精品欧美一区二区蜜桃| 亚洲一区二区三区欧美精品| 一区二区三区激情视频| 日韩有码中文字幕| 丁香欧美五月| 脱女人内裤的视频| 99国产精品一区二区蜜桃av| 少妇粗大呻吟视频| 人妻久久中文字幕网| 99在线人妻在线中文字幕| 色婷婷久久久亚洲欧美|