陳娟 陶亮
摘 要:表面織構(gòu)能有效改善接觸表面的摩擦性能。激光加工技術因具有速度快、精度高等優(yōu)勢,在刀具表面織構(gòu)制備中廣泛應用?;诖?,本文主要介紹激光加工技術制備刀具表面織構(gòu)的研究現(xiàn)狀,并指出當前存在問題,以期為相關學者的研究提供參考。
關鍵詞:織構(gòu)刀具;激光加工;切削性能
中圖分類號:TG356.16文獻標識碼:A文章編號:1003-5168(2018)32-0032-03
Research Progress of Tool Surface Texture Fabricated byLaser Processing
CHEN Juan1 TAO Liang2
(1.College of Chemistry and Materials Science, Guizhou Normal College,Guiyang Guizhou 550018;2.College of Mechanical Engineering, Guizhou Institute of Technology,Guiyang Guizhou 550003)
Abstract: Surface texture can effectively improve the friction properties of contact surfaces. Laser processing technology is widely used in the fabrication of tool surface texture due to its advantages of high speed and accuracy. Based on this, this paper mainly introduced the research status of laser processing technology to fabricate tool surface texture, and pointed out the existing problems, in order to provide reference for the relevant scholars.
Keywords: textured tools;laser processing;cuttingperformance
金屬切削加工是機械制造中最主要的加工方法,而切削刀具在切削過程中因受到高溫、高壓以及劇烈摩擦的作用會加速磨損,導致使用壽命降低。因此,降低切削過程中的摩擦效應、提升切削刀具耐磨性顯得十分重要。
研究表明,摩擦面若形成表面織構(gòu),即具備合理的微凸和較窄凹槽等表面形貌,可有效改善接觸表面的摩擦性能[1,2]。因此,在切削刀具中引入表面織構(gòu)技術,能有效提升刀具切削性能,為刀具設計提供新的研究思路。
目前,刀具表面織構(gòu)的加工方法主要有激光加工、電火花加工、光刻技術及磨削加工等。而激光加工技術因其速度快、精度高、功率密度大、非接觸等優(yōu)勢,幾乎可用于加工所有材料[3],因而被廣泛應用于刀具表面織構(gòu)制備中。
1 激光加工織構(gòu)的尺寸類型
激光加工刀具織構(gòu)的研究目前主要集中在山東大學、南京航空航天大學及日本大阪大學等高校。制備的刀具表面織構(gòu)有微織構(gòu)、納織構(gòu)以及微/納復合織構(gòu)三種類型。其中,微織構(gòu)主要依靠納秒激光加工,而納織構(gòu)則主要靠飛秒激光加工。目前,國內(nèi)外科研機構(gòu)在刀具微織構(gòu)方面研究較多,而在納織構(gòu)和微/納復合織構(gòu)方面的研究則有所欠缺。
1.1 微織構(gòu)激光加工現(xiàn)狀
南京航空航天大學李亮團隊[4-7]采用光纖激光器在聚晶金剛石、硬質(zhì)合金刀具表面制備了各類微溝槽,研究了掃描速度、平均輸出功率、脈沖頻率等激光工藝參數(shù)對微溝槽形貌特征影響的基本規(guī)律。長春理工大學于化東團隊[8-10]也開展了類似的研究,在硬質(zhì)合金刀具上制備了多種形式的微坑、微槽織構(gòu),研究了激光加工參數(shù)對微織構(gòu)形貌、尺寸的影響。
山東大學鄧建新團隊[11-15]利用納秒激光技術在硬質(zhì)合金、陶瓷刀具上加工了多種形式的微槽、微坑織構(gòu),并開展了相應的切削試驗(見圖1和圖2)。印度理工學院[16,17]也在微織構(gòu)提升高速鋼鉆頭鉆削性能方面做了大量研究,采用激光加工技術在鉆頭表面制備了各類微坑織構(gòu)。
日本大阪大學[18,19]在微織構(gòu)提升立方氮化硼刀具、硬質(zhì)合金刀具的切削性能方向開展了大量研究,利用飛秒激光技術在刀具表面加工了各種微溝槽、微孔織構(gòu)。
1.2 納織構(gòu)激光加工現(xiàn)狀
山東大學鄧建新團隊[20-23]利用飛秒激光技術在硬質(zhì)合金、陶瓷刀具表面加工出了納米級微溝槽,研究了微織構(gòu)對刀具切削性能的影響。
1.3 微/納復合織構(gòu)激光加工現(xiàn)狀
微/納復合織構(gòu)的研究目前相對較少,主要集中在山東大學鄧建新團隊[24-26],該團隊利用飛秒和納秒激光技術分別在硬質(zhì)合金刀具的前、后刀面制備了微/納復合織構(gòu),并開展了相關的摩擦磨損和切削試驗。
日本大阪大學[27]也開展了類似的研究,采用飛秒激光技術在硬質(zhì)合金銑刀片表面加工了微/納復合織構(gòu),有效提升了刀具抗磨性能(見圖3)。
2 刀具表面織構(gòu)形貌與分布特征
目前,激光技術制備的織構(gòu)形貌以微坑、微凸點、微溝槽以及各類混合形貌織構(gòu)為主,其中又以微溝槽織構(gòu)最為常見。而織構(gòu)的分布特征又以直線分布、橢圓分布、波紋形分布等為主。
2.1 微坑和微凸點織構(gòu)
Tatsuya Sugihara等[19]利用飛秒激光器在硬質(zhì)合金刀具前刀面制備了不同分布形式的微坑陣列,微坑深5μm,寬30μm。
Fang Zhenglong等[28]在刀具后刀面制備了微坑、微凸點、微溝槽等不同分布形式的微織構(gòu)(寬50μm,制備微坑和微凸點的深度分別為10μm和20μm),如圖4所示。
2.2 微溝槽織構(gòu)
Hao Xiuqing等[6]使用光纖激光器在金剛石刀具上制備了具有親/疏水性的垂直復合微溝槽,親水性溝槽的深度和寬度分別為10μm和60μm[圖5(a)]。
Sarvesh Kumar Mishra等[29]利用納秒激光技術在硬質(zhì)合金刀片上加工了波紋形微溝槽,深度為25μm,單邊長150μm,溝槽夾角為70°[圖5(b)]。
Xing Youqiang等[26]在陶瓷刀具前刀面制備了平行主切削刃、垂直主切削刃以及波紋形三種直線微溝槽(寬40~50μm,深45~50μm),且同時在每種織構(gòu)刀具鈍圓半徑區(qū)域均用飛秒激光技術制備了納織構(gòu)(寬350~400nm,深120~150nm)。
Deng Jianxin等[15]在硬質(zhì)合金前刀面上制備了橢圓形微溝槽,平行于主切削刃微溝槽以及直線溝槽,溝槽寬50μm,深200μm(見圖6)。
2.3 混合織構(gòu)
Sun Jialin等[11]利用Nd:YAG激光器在硬質(zhì)合金刀具前刀面制備了微溝槽、微凸點以及微溝槽/微凸點混合織構(gòu)(寬度與直徑均為40μm,深50μm),如圖7所示。
3 結(jié)語
刀具表面織構(gòu)由于具有存儲潤滑油、減小刀-屑接觸面積等優(yōu)點,對提高工件切削效率、提升產(chǎn)品質(zhì)量有著重要意義。目前,刀具表面織構(gòu)研究主要集中在微織構(gòu)方面,在納織構(gòu)及微/納復合織構(gòu)方面的研究還有所欠缺。因此,今后可加大對納織構(gòu)、微/納復合織構(gòu)的研究力度,以更有效地提升織構(gòu)刀具切削性能。
參考文獻:
[1]林乃明,謝瑞珍,鄒嬌娟,等.表面織構(gòu)改善鈦合金摩擦學性能的研究進展[J].稀有金屬材料與工程,2018(8):2592-2599.
[2]鹿重陽,楊學鋒,王守仁,等.三角溝槽形織構(gòu)化硬質(zhì)合金工作表面動壓潤滑及減摩特性[J].摩擦學學報,2018(5):537-546.
[3]楊奇彪,陳中培,陳列,等.納秒激光加工微凹坑對YG3表面浸潤性的影響[J].中國表面工程,2018(3):1-8.
[4]蘇永生,李亮,高洪,等.超硬刀具激光表面織構(gòu)化及織構(gòu)形貌控制[J].激光與光電子學進展,2017(12):286-292.
[5]蘇永生,李亮,王建彬,等.超硬織構(gòu)化刀具高速切削鈦合金試驗研究[J].表面技術,2018(2):249-254.
[6]Hao X, Cui W, Li L, et al. Cutting performance of textured polycrystalline diamond tools with composite lyophilic/lyophobic wettabilities[J]. Journal of Materials Processing Technology, 2018(260):1-8.
[7]Su Y, Li Z, Li L, et al. Cutting performance of micro-textured polycrystalline diamond tool in dry cutting[J]. Journal of Manufacturing Processes, 2017(27):1-7.
[8]于占江,蔡倩倩,王星星,等.微織構(gòu)車刀制備與SUS304鋼高速微車削試驗[J].中國表面工程,2016(6):1-7.
[9]蔡倩倩,于占江,杜強,等.車刀表面微孔織構(gòu)耐磨性能分析[J].工具技術,2018(3):95-97.
[10]蔡倩倩,于占江,杜強,等.微坑織構(gòu)車刀正交切削鈦合金試驗的研究[J].工具技術,2018(5):47-50.
[11]Sun J, Zhou Y, Deng J, et al. Effect of hybrid texture combining micro-pits and micro-grooves on cutting performance of WC/Co-based tools[J]. The International Journal of Advanced Manufacturing Technology, 2016(9-12):3383-3394.
[12] Zhang K, Deng J, Lei S, et al. Effect of micro/nano-textures and burnished MoS2 addition on the tribological properties of PVD TiAlN coatings against AISI 316 stainless steel[J]. Surface and Coatings Technology, 2016(291):382-395.
[13]Xing Y, Deng J, Wang X, et al. Effect of laser surface textures combined with multi-solid lubricant coatings on the tribological properties of Al2O3/TiCceramic[J]. Wear, 2015(342): 1-12.
[14]Zhang K, Deng J, Xing Y, et al. Effect of microscale texture on cutting performance of WC/Co-based TiAlN coated tools under different lubrication conditions[J]. Applied Surface Science, 2015(326):107-118.
[15]Jianxin D,Ze W,Yunsong L, et al. Performance of carbide tools with textured rake-face filled with solid lubricants in dry cutting processes[J]. International Journal of Refractory Metals and Hard Materials,2012(1):164-172.
[16]Niketh S, Samuel G L. Drilling performance of micro textured tools under dry, wet and MQL condition[J]. Journal of Manufacturing Processes,2018(32):254-268.
[17]Niketh S, Samuel G L. Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy[J]. Journal of Cleaner Production, 2017(167):253-270.
[18]Sugihara T, Nishimoto Y,Enomoto T. Development of a novel cubic boron nitride cutting tool with a textured flank face for high-speed machining of Inconel 718[J]. Precision Engineering, 2017(48):75-82.
[19]Sugihara T,Enomoto T. Performance of cutting tools with dimple textured surfaces:a comparative study of different texture patterns[J]. Precision Engineering,2017(49):52-60.
[20]Zhang K, Deng J, Ding Z, et al. Improving dry machining performance of TiAlN hard-coated tools through combined technology of femtosecond laser-textures and WS2 soft-coatings[J]. Journal of Manufacturing Processes,2017(30):492-501.
[21]Deng J,Lian Y, Wu Z, et al. Performance of femtosecond laser-textured cutting tools deposited with WS2 solid lubricant coatings[J]. Surface and Coatings Technology, 2013(222):135-143.
[22]Xing Y, Deng J, Zhou Y, et al. Fabrication and tribological properties of Al2O3/TiC ceramic with nano-textures and WS2/Zr soft-coatings[J]. Surface and Coatings Technology, 2014(258):699-710.
[23]Lian Y, Deng J, Yan G, et al. Preparation of tungsten disulfide (WS2) soft-coated nano-textured self-lubricating tool and its cutting performance[J]. The International Journal of Advanced Manufacturing Technology,2013(9-12):2033-2042.
[24]Zhang K, Deng J,Guo X, et al. Study on the adhesion and tribological behavior of PVD TiAlN coatings with a multi-scale textured substrate surface[J]. International Journal of Refractory Metals and Hard Materials,2018(72):292-305.
[25]Zhang K, Deng J, Sun J, et al. Effect of micro/nano-scale textures on anti-adhesive wear properties of WC/Co-based TiAlN coated tools in AISI 316 austenitic stainless steel cutting[J]. Applied Surface Science,2015(355):602-614.
[26]Xing Y, Deng J, Zhao J, et al. Cutting performance and wear mechanism of nanoscale and microscale textured Al2O3/TiC ceramic tools in dry cutting of hardened steel[J]. International Journal of Refractory Metals and Hard Materials,2014(43):46-58.
[27]Sugihara T,Enomoto T. Development of a cutting tool with a nano/micro-textured surface—Improvement of anti-adhesive effect by considering the texture patterns[J]. Precision Engineering,2009(4):425-429.
[28]Fang Z,Obikawa T. Cooling performance of micro-texture at the tool flank face under high pressure jet coolant assistance[J]. Precision Engineering, 2017(49): 41-51.
[29]Mishra S K, Ghosh S,Aravindan S. Characterization and machining performance of laser-textured chevron shaped tools coated with AlTiN and AlCrNcoatings[J]. Surface and Coatings Technology, 2018(334):344-356.