• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    M oO3-C3N4復(fù)合光催化劑的可見(jiàn)光下高效催化降解甲基橙

    2018-10-12 09:44:50馬令娟侯夢(mèng)寧馬宏彬陸玥汝
    關(guān)鍵詞:曲阜化工學(xué)院光催化劑

    馬令娟 侯夢(mèng)寧 馬宏彬 曹 震 薛 振 陸玥汝

    (曲阜師范大學(xué)化學(xué)與化工學(xué)院,曲阜 273165)

    0 Introduction

    With the rapid growth and development of the world economy,an increasing number of people recognize the importance of the threat of water pollution,which results from industrial and mining activities.Water pollution has increased people concerns about its negative consequences for health and public safety as well as its impact on environment.Over the past decades,as far as control and increasing regulation over contaminants,a wide range ofmethods including chemical precipitation,biological treatment,adsorption and photocatalysts have been proposed for wastewater treatment[1-4].However,several drawbacks are needed to overcome:biological processes are not efficient for degrading complex and biorecalcitrant contaminants,while chemical precipitation is severely affected by pH and complexing agent.Additionally,expensive regeneration of adsorbents restricts the development of adsorption processes[2,5-7].On the contrary,semiconductor photocatalysts have been proposed to degrade and remove contaminants from wastewater due to their high efficiency,nontoxic and feasibility with sunlight[8-10].Among various developed semiconductor photocatalysts,TiO2is one of the most widely used photocatalyst for water remediation because of nontoxicity,low processing cost and high stability in aqueousmedium[11-14].However,TiO2has several disadvantages such as that it only absorbs UV photons as it has a large band gap about 3.2 eV,and it has a short lifetime of the photo-generated electronhole pairs[15-16].Therefore,to overcome such drawbacks and increase photocatalytic activity,researches have focused on doping TiO2surface with metals or nonmetal ions,combination with other semiconductors or development of non-TiO2based and novel photocatalyticmaterials[17-19].

    Recently,Wang et al.first used metal-free polymeric graphite-like carbon nitride (g-C3N4)as photocatalyst,which exhibits high photocatalytic performance for hydrogen generation[20].C3N4photocatalyst can be prepared by directly heating N-rich precursors(such asmelamine,urea)at different temperature and heating rate[21-23].Although g-C3N4has been regarded as attractive photocatalyst due to its unique properties,such as facile preparation,low processing cost,moderate band gap and high chemical stability,the poor absorptivity and low electron mobility rate restrict the developmentofg-C3N4[24-26].Therefore,among the various strategies for improving photocatalytic performance of g-C3N4,its combination with transition metal oxides is a feasible one[27-29].For example,Zhang et al.synthesized g-C3N4/TiO2(B)nanofibers with exposed (001)plane and the composites exhibited enhanced visible-lightactivity[30].Hu etal.reported Fe3+doped g-C3N4and Fe2O3/g-C3N4catalystsusingmelamine and ferric nitrate as precursors[31]. C3N4/CoO was designed and fabricated for the first time and exhibit more-efficient utilization of solar energy than pure g-C3N4[27].Furthermore,it was found that MoO3has a band gap of 2.8~3.2 eV and can be active in both UV and visible light[32].Cu0.33MoO3nanorod was synthesized via hydrothermal route and used for degradation of toluidine blue“O”and chlorobenzene[33].MoO3/polymer polyimidewas synthesized via an in situ crystal growth approach,the obtained composite exhibits enhanced photocatalytic activity for H2evolution[34].Li et al.prepared MoO3-g-C3N4which show high efficiency for the degradation ofmethylene blue[32].He etal.prepared MoO3-g-C3N4composites exhibiting higher activity than pure g-C3N4,which is attributed to the strong and wide adsorption of visible light and high separation of photogenerated electron-hole pairs[35].Although MoO3-C3N4composite catalyst has better catalytic activity under visible light irradiation,there are few reports about the photocatalytic mechanism over MoO3-C3N4composites prepared by differentmethods.

    In thiswork,a series of MoO3-C3N4photocatalysts were successfully synthesized by impregnation method using(NH4)6Mo7O24·4H2O and C3N4as precursors.The microstructure and photocatalytic efficiency of MoO3-C3N4under visible lightwere investigated.Particularly,1.60%(w/w)MoO3-C3N4catalysts exhibited high photocatalytic activity in the degradation of MO under visible light irradiation.The synergic effect between MoO3and C3N4and the possible mechanisms of enhancement of photoactivity were also investigated.

    1 Experimental

    1.1 Preparation of the catalysts

    Pure C3N4powder was prepared by directly heatingmelamine at 500℃for 4 h with a heating rate of 2.5℃·min-1in air.

    The MoO3-C3N4photocatalysts were synthesized by impregnation method.In a typical synthesis,the desired amount(NH4)6Mo7O24·4H2O(0.003~0.094 g)was dissolved in 0.7 mL of deionized water.Subsequently,the solution was added drop-wise to C3N4powder in a porcelain crucible under stirring and then dried at 80℃for 6 h.Finally,the obtained powder was calcined at 500℃for 2 h.The final products were denoted as x%MoO3-C3N4,where x%is themass fraction of MoO3.

    Selective deposition of noble metal Pt was performed.50 mg of 1.60%MoO3-C3N4catalyst was dispersed in 80mL of 15%(V/V)lactic acid solution and ultrasonically dispersed for 5 min.Then,300μL of 0.02 g·mL-1H2PtCl6aqueous solution was added to the suspension and ultrasonically dispersed for 3 min.Finally,a 300W xenon lamp was used as light source and themixturewas irradiated for 0.5 h under stirring.

    1.2 Characterization methods

    XRDmeasurementswere recorded on a RigakuD/MAXRB diffractometer with Cu Kα radiation(λ=0.154 18 nm)within the range of 2θ=10°~70°at a voltage of 40 kV and a current of 300 mA.HR-TEM images were obtained on a JEM-2100 PLUS transmission electron microscope at an accelerating voltage of 200 kV.Fourier transform infrared (FT-IR)spectra of the catalysts were recorded on a Nicolet Nexus-670 spectrometer.The specific surface area and pore size of the samples were measured by a SSA-4200 pore size specific surface area analyzer (Beijing builder electronic technology).Ultraviolet visible(UV-Vis)diffuse reflection spectra were measured using a UVVis spectrophotometer (Shimadzu UV 3600,Japan)within the range of 200~800 nm.X-ray photoemission spectroscopy (XPS)was measured in a PHI5300 ESCA system.The beam voltage was 3.0 eV,and the energy of Ar ion beam was 1.0 keV.The binding energieswere normalized to the signal for adventitious carbon at 284.8 eV.

    1.3 Evaluation of the photocatalytic activity

    The photocatalytic activity of MoO3-C3N4nanocomposites was evaluated by degradation of MO(10 mg·L-1)aqueous solution in a quartz glass reactor under visible light irradiation.Before irradiation,40 mg ofMoO3-C3N4sampleswere ultrasonically dispersed in 80 mL MO solution for 10 min and the suspension was stirred in the dark for 30 min to establish an adsorption-desorption equilibrium.The visible light used for photocatalytic degradation was generated with a CEL-HXUV 300 Xe lamp coupled with UV cutoff filter (λ>420 nm,Zhongjiao Jinyuan Technology).During the photocatalytic reaction,the reaction system was magnetically stirred and 5 mL liquids were collected at specific reaction time.Then,the collected sampleswere centrifuged.Finally,the concentration of catalyst-free MO solution was analyzed by recording variations of the absorbance maximum (λ=463 nm)using a 754PCUV/Visible spectrophotometer(Shanghai Jinghua Group Corporation).As a comparison,photocatalytic degradations of MO in the presence of MoO3or C3N4were also performed under visible light irradiation.

    Hole and free radical trapping experiment was similar to the photocatalytic degradation experiment.1,4-benzoquinone (BQ,·O2-scavenger),tert-butyl alcohol(TBA,·OH scavenger)or ammonium oxalate(AO,h+scavenger)were added to MO(10mg·L-1)aqueous solution with 40 mg of 1.60%MoO3-C3N4photocatalyst before ultrasound[36].

    2 Results and discussion

    2.1 Structure of the photocatalysts

    The XRD patterns of MoO3,C3N4and x%MoO3-C3N4composites are shown in Fig.1.It can be seen that all the diffraction peaks of pure MoO3can be indexed as the orthorhombic structure (PDF No.99-0080).The main peaks at 12.77°,23.33°,25.65°,27.33°and 39.04°correspond to the (020),(110),(040),(021)and(060)planes,respectively[37].Pure g-C3N4exhibited two diffraction peaks at 13.11°and 27.43°,corresponding to the in-plane repeated units of(100)and the inter-layer structural packing of(002)planes,respectively[38].g-C3N4can be detected in all MoO3-C3N4composites.However,diffraction peaks of MoO3were not observed in samples of 0.16%~0.80%MoO3-C3N4composites,which should be due to the low content of MoO3and homogeneously dispersion in composites.Further increasing the contents of MoO3to 1.6%and 5.0%,the MoO3phase can be detected by XRD.The diffraction peaks of g-C3N4phase were gradually weakened with the introduction of MoO3,may be attributed to the reduced crystallinity of g-C3N4.Interestingly,the diffraction peaks of the(002)plane of g-C3N4in MoO3-C3N4composites shifted to a higher 2θvalue by about 0.45°compared to pure g-C3N4,indicating the decreased interlayer distance of C3N4[38].

    Fig.1 XRD patterns ofMoO3,C3N4 and x%MoO3-C3N4

    Themorphology and structure of pure g-C3N4and 1.60%MoO3-C3N4were also characterized by TEM.As shown in Fig.2a,pure g-C3N4exhibits typical twodimensional lamellar structure.The TEM image of 1.60%MoO3-C3N4(Fig.2b)displays that the surfaces ofMoO3nanoparticleswere coated with thin amorphous layers of C3N4,leading to the formation of MoO3-C3N4heterostructure.This hybrid structure will decrease the recombination rate of photogenerated electron-hole pairs as well as prolong lifetime of charge carriers during the photocatalytic reaction.Moreover,EDS(Fig.2c)exhibited that the selected areas of the sample are composed with Mo,O,C and N elements.More detailed structural characteristics for 1.60%MoO3-C3N4were studied by HR-TEM as shown in Fig.2d.The fringes with an interplanar spacing of about 0.350 nm correspond to (040)crystal plane of MoO3,which is in consistent with the XRD patterns.In addition,another phase without fringes can be assigned to C3N4.

    Fig.2 TEM images of C3N4(a)and 1.60%MoO3-C3N4(b);EDS spectrum of 1.60%MoO3-C3N4(c)and HRTEM image of 1.60%MoO3-C3N4 photocatalyst(d)

    Fig.3 shows the FT-IR spectra of MoO3,C3N4and MoO3-C3N4heterojunctions with different MoO3contents.For the pure C3N4,the peaks at 1 242~1 636 cm-1are assigned to typical CN heterocycle stretching vibration modes,while the sharp peak located at 810 cm-1is related to the characteristic vibrational mode of triazine units[38].The peaks observed at 993 cm-1corresponds to Mo=O stretching mode.The peaks at 562 and 867 cm-1are ascribed to the stretchingmode of oxygen linked with threemetal atoms in the Mo-OMo units,respectively[39].Themain characteristic peaks of C3N4appeared in all MoO3-C3N4photocatalysts.The infrared-active modes of MoO3were not detected in 0.16%~1.6%MoO3-C3N4composites due to the low concentration of MoO3,which is in consistent with XRD patterns.

    Fig.3 FT-IR spectra of synthesized MoO3,C3N4 and x%MoO3-C3N4

    XPSmeasurements were performed to determine the valence states of various species.Fig.4 shows the XPS spectra of MoO3,g-C3N4and 1.6%MoO3-C3N4.C1s high resolution XPS spectra are shown in Fig.4A and it was found that pure g-C3N4has two C1s peaks centered at 284.8 and 288.3 eV which could be attributed to adventitious carbon on the surface and N-C-N coordination in graphitic carbon nitride,respectively[40-41].The N1s binding energy of pure g-C3N4was observed at 398.6 eV,which can be assigned to the presence of sp2-bonded graphitic carbon nitride[42].The observed slight shift of N1s peak (398.4 eV)in 1.6%Mo-C3N4composite can be attributed to the interaction between Mo and N atoms.MoO3has a strong O1s peak at 531.2 eV which could be attributed to the O2-species in molybdenum oxide,while pure g-C3N4has a low intensity O1s peak produced by adsorbed H2O.The O1s peak of 1.6%Mo-C3N4composite can be thought to be the overlap of the two oxygen species.The Mo3d5/2(233.2 eV)and the Mo3d3/2peaks of pure MoO3showed that only Mo6+species are detected;while,the Mo3d peaks of 1.6%Mo-C3N4composite shift to 232.3 and 235.5 eV,which could be attributed to the existence of both Mo5+and Mo6+species on the surface[43].

    Fig.4 XPS spectra ofMoO3,C3N4 and 1.60%MoO3-C3N4 composite

    The UV-Vis DRS spectra of MoO3,C3N4,1.60%MoO3-C3N4and 5.00%MoO3-C3N4compositesare shown in Fig.5.As can be seen in Fig.5A,MoO3and g-C3N4had absorption edge at approximate 440 and 470 nm,respectively.The absorption edge of MoO3-C3N4composite isweaker than that of pure g-C3N4while the absorbance of composite is obviously higher than pure g-C3N4.Opticalband gaps(Eg)were obtained via Taucplots,amethod invented by the physicist[44].The band gap energy of a semiconductor can be estimated by the following: αhν=A(hν-Eg)n/2,where α,h,ν,A and Egare the adsorption coefficient,Planck constant,light frequency,a proportionality constant and band gap energy,respectively.Considering that MoO3and C3N4are direct transition and indirect transition semiconductors,respectively,for MoO3and C3N4,the values of n are 1 and 4,respectively[39,45].The Egcan be obtained from the plot of(αhν)2/nversus hν,by extrapolation of the linear part near the onset of the absorption edge to intersect the energy axis.As shown in Fig.5B,the Egof MoO3was 2.86 eV according to a plot of(αhν)2versus energy(hν)and the Egof C3N4was estimated to be 2.60 eV according to a plot of(αhν)1/2versus energy(hν).The valence bands(VB)of MoO3and C3N4are shown in Fig.6.The position of the VB edges of MoO3and C3N4were 3.28 and 1.58 eV,respectively.

    Fig.5 UV-Vis spectra ofMoO3,C3N4,1.60%MoO3-C3N4 and 5.00%MoO3-C3N4 composites(A)and the estimated band gaps ofMoO3 and C3N4(B)

    Fig.6 Valence band XPSofMoO3 and C3N4

    Generally,the ability of adsorption,desorption and diffusion of reactants and products are mainly determined by the SBETand pore volume of the catalyst.Therefore,a catalyst with high specific surface area (SBET)and big pore volume is significant to the enhancement of catalytic performance.The surface area and pore volume of the prepared samples were obtained from N2adsorption-desorption isotherms.As shown in Fig.7,all samples except MoO3exhibit a typeⅣisotherm with H3 hysteresis loop,suggesting the presence of mesopores. The high-pressure hysteresis loop(0.9<P/P0<1)is related to the larger pores formed between secondary particles,suggesting the presence of lamellar pore structures.MoO3shows a typeⅢisotherm without hysteresis loop,which means MoO3sample do not have pore structure.As listed in Table 1,pure MoO3and g-C3N4show relatively low specific surface area (7 and 8 m2·g-1,respectively).Compared with pure phases,all MoO3-C3N4composites exhibit high BET surface areas,which might be attributed to thermal exfoliation of g-C3N4into thinner nanosheets during compositing process.With increase of the MoO3concentration,BET surface areas of samples increased from 8 to 131 m2·g-1until the content reached 1.60%.While further increasing of MoO3content to 5% will induce dramatic reduction of BET surface area,whichmay be due to that MoO3can promote the combustion of g-C3N4.The pore volume of samples showed a similar change tendency and 1.60%MoO3-C3N4catalyst has the highest pore volume which was 0.893 mL·g-1.1.60%MoO3-C3N4catalyst shows the highest specific surface area and pore volume.

    Fig.7 Nitrogen adsorption-desorption isotherms of the samples

    Table 1 Specific surface areas and pore volumes of the sam ples

    2.2 Photocatalytic test

    For evaluation of photocatalytic performances of MoO3,pure C3N4and MoO3-C3N4composites,asprepared materials were used for degradation of MO under visible-light irradiation.As illustrated in Fig.8A,under visible light irradiation,the self-degradation of MO is negligible in the absence of catalyst,indicating that the photolysis could be ignored.In the presence of pure MoO3or C3N4catalysts,5%or 17%of MO was degraded under visible-light irradiation in 120 min,respectively.However,obvious degradation of MO was observed in the presence of the composition catalysts.When the proportion ofMoO3reached 1.60%,the as-prepared photocatalyst exhibited highest photocatalytic activity,reaching 100%MO conversion.The photocatalytic activity began to decreasewhen the content of MoO3was higher than 1.60%.So,it can be concluded that the effective degradation of MO occurs when MoO3-C3N4composites take part in the photocatalytic reaction and the 1.6% MoO3-C3N4sample displayed the highest photocatalytic activity of degradation of MO under visible-light.It has been discussed that 1.6%MoO3-C3N4photocatalyst has the highest BET surface area and pore volume,so the surface area and pore volume must be one of the reasons why 1.6%MoO3-C3N4photocatalyst showed the highest photocatalytic activity.High surface area will increase the number of surface active sites and diffusion of the MO toward the active sites.Additionally,this increased photocatalytic performance should be ascribed to the effective separation of electrons holes pairs and transfer of photogenerated charges[35,39].

    It can be found that with the presence of photocatalysts the degradation data of MO showed exponential relationship with irradiation time,suggesting the reaction follows a first order kinetics.Thus the rate was based on performance equation which could bewritten as follow[46]:

    Fig.8 Photocatalytic degradation ofMO over MoO3,C3N4 and MoO3-C3N4 under visible light irradiation(A)and the corresponding kinetic studies(B)

    Where C0is the concentration of MO after adsorptiondesorption equilibrium,Ctrepresents the concentration of remaining MO after photocatalytic degradation at irradiation time(t)and k is the corresponding rate constant.So,the degradation rate constant of MoO3,C3N4and a series of MoO3-C3N4photocatalysts(Fig.8B)can be obtained according to linear fit of plot of ln(C0/Ct)vs t,respectively.The k of pure g-C3N4is 0.001 9 min-1.While,the rate constant of 1.60%MoO3-C3N4photocatalyst is up to 50 times higher than that of pure g-C3N4.In other words,the prepared MoO3-C3N4heterostructure is much more effective than g-C3N4and there is an optimum content of MoO3to obtain an active heterostructure for degradation ofmethyl orange under visible light.

    As shown in Fig.9,the photocatalytic degradation efficiency over the prepared MoO3-C3N4samples depended on the MoO3content under visible-light irradiation of 40 min.Increasing the content of MoO3within the range of 0 to 1.60%,the degradation efficiency of MO on MoO3-C3N4composites increased rapidly,while the degradation efficiency began to decrease when the content of MoO3was higher than 1.6%.The possible reason might be excessive MoO3can cause aggregation of C3N4,so the BET surface area started to decrease when content of MoO3is higher than 1.60%.Therefore,1.60%is a suitable content of MoO3in the MO photocatalytic degradation.

    Fig.9 Degradation efficiency changes ofMO with the contentof MoO3 in the presence ofMoO3-C3N4 composites at themomentof visible-light irradiation of 40min

    The influence of the initial MO concentration for degradation of MO over 1.60% MoO3-C3N4under visible-light irradiation was also studied as shown in Fig.10a.The degradation efficiency decreased with the increase of initial MO concentration,which might be ascribed to the light screening effect in high concentration of MO solution.The influence of different dyes was also investigated and the results are shown in Fig.10b.Actually,the MoO3-C3N4photocatalysts prepared by impregnation method exhibited high photoactivity for degradation of MO,rhodamine B (RhB)and methylene blue (MB)dyes,indicating the synthesized MoO3-C3N4composite is a universal photocatalyst for degradation of organic dyes.

    Fig.10 Influence of initial MO concentration(a)and different dyes for degradation(b)

    To investigate the catalytic stability of MoO3-C3N4heterojunctions,the photocatalytic performance of 1.60%MoO3-C3N4was investigated in three cycles.As shown in Fig.11,the degradation efficiency of 1.60%MoO3-C3N4photocatalyst decreased gradually with the increase of cyclic times,which might be due to the solubility of MoO3during water purification.

    Fig.11 Catalytic stability test of 1.6%MoO3-C3N4 composite

    2.3 Possiblemechanism of M oO3-C3N4 com posite

    Fig.12 shows the kinetic constants of MoO3-C3N4photocatalyst in the presence of different quenchers.After adding TBA to the reaction system,the constant rate was decreased a little,indicating that·OH was not the dominant active species.In contrast,the degradation rate declined sharply after addition of BQ or AO,indicating that both·O2-and h+are mainly responsible in the hole and free radical trapping experiment,as BQ and AQ are·O2-and h+scavenger,respectively.

    The bottom energy of the conduction band(CB)positions of C3N4and MoO3were calculated by the following empirical equation[47]:ECB=EVB-Eg.

    According to the above equation,the energy of the conduction band (CB)of C3N4and MoO3were determined to be-1.02 and 0.42 eV,respectively.Under light irradiation,both MoO3and C3N4could absorb photons of energy to provide the driving force for excited electrons (e-)in the VB to CB and leave holes(h+)in the VB.The reduction potential of CB in C3N4was more negative than the standard reduction potential of O2/·O2-,which could reduce O2to form·O2-.In addition,the CB in MoO3was more positive than O2/·O2-,the electron would only be transferred from the CB of MoO3to the VB of C3N4.TEM image(Fig.13a)displayed that the Pt4+easily combines with the photogenerated e-in C3N4.The Pt nanoparticles deposited on 1.60%MoO3-C3N4was further identified(Fig.13b).The lattice spacing of 0.225 nm was corresponding to the Pt(111)crystal[48].The result of selective deposition of noblemetal Pt experimentswas in consistentwith above analysis.

    Fig.12 Kinetic constants of 1.60%MoO3-C3N4 photocatalystwith differentquenchers

    Fig.13 HRTEM images of Pt-1.60%MoO3-C3N4 sample

    On the basis of previous analysis,the possible Z-scheme charge carrier transfer mechanism in photocatalysis was proposed as showed in Fig.14.Initially,under visible light irradiation,C3N4absorbs photons of energy for generate electrons and holes(Eq.1).At the same time,electrons and holes are generated on MoO3as it has suitable band gap to absorb visible light(Eq.2).Subsequently,the photogenerated electrons in the conduction band (CB)of C3N4are scavenged by adsorbed oxygen to form superoxide radicals(·O2-)(Eq.3).The surface adsorbed MO molecules can capture the short-lived superoxide radicals to initiate MO degradation (Eq.4).On the other hand,the electrons in the CB of MoO3transfer to the photo excited holes(h+)of C3N4(Eq.5)and the h+in the VB of MoO3may be able to react with MO molecules(Eq.6).Finally,repeated attacks dyemolecules by h+in the VB of MoO3and·O2-lead to successful degradation of MO.

    Fig.14 diagram of energy band structure and the possible photocatalytic mechanism of MoO3-C3N4

    3 Conclusions

    In summary,MoO3-C3N4photocatalysts prepared by impregnation method exhibited much higher visible-light catalytic activity than that of pure MoO3and C3N4.Particularly,when the content of MoO3is 1.60%,the MoO3-C3N4composite has biggest BET surface area and exhibited high catalytic activity in the degradation of MO under visible light irradiation.According to the photocatalytic results,the synergistic mechanism between C3N4and MoO3were proposed.A Z-scheme charge carrier transfer mechanism was confirmed for the photocatalytic reaction. The nanostructured layered MoO3-C3N4heterojunction is low costs,easy preparation and high catalytic activity under visible light radiation,and therefore,ready for application in other related areas,such as solar energy conversion,photovoltaic devices and large scale environmental application.

    Acknow ledgements:This work is supported by the National Natural Science Foundation of China (Grant No.21403124)and NaturalScience Foundation ofShandong Province(GrantNo.ZR2014JL014).

    猜你喜歡
    曲阜化工學(xué)院光催化劑
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    曲阜之旅
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    可見(jiàn)光響應(yīng)的ZnO/ZnFe2O4復(fù)合光催化劑的合成及磁性研究
    曲阜:“居家醫(yī)康養(yǎng)”新模式
    Pr3+/TiO2光催化劑的制備及性能研究
    《化工學(xué)報(bào)》贊助單位
    曲阜行政服務(wù)中心打造為民服務(wù)“升級(jí)版”
    BiVO4光催化劑的改性及其在水處理中的應(yīng)用研究進(jìn)展
    又爽又黄无遮挡网站| 在线a可以看的网站| 一区二区三区高清视频在线| 日韩三级视频一区二区三区| 久久午夜亚洲精品久久| 高清在线国产一区| 国语自产精品视频在线第100页| 久久欧美精品欧美久久欧美| 国产一区二区激情短视频| 色播亚洲综合网| 久久久国产成人精品二区| 亚洲av片天天在线观看| 亚洲精品一区av在线观看| 亚洲精品色激情综合| 亚洲精华国产精华精| 精品日产1卡2卡| 一本综合久久免费| 五月伊人婷婷丁香| 亚洲aⅴ乱码一区二区在线播放| 在线观看日韩欧美| 中文字幕最新亚洲高清| 欧美三级亚洲精品| 亚洲精品色激情综合| 桃红色精品国产亚洲av| 精品久久久久久久久久免费视频| 国内精品美女久久久久久| 久久精品国产清高在天天线| cao死你这个sao货| 国产久久久一区二区三区| 日本熟妇午夜| 欧美在线黄色| 久久亚洲真实| 国产aⅴ精品一区二区三区波| 老熟妇乱子伦视频在线观看| 久久久成人免费电影| 香蕉丝袜av| 在线看三级毛片| 99国产精品99久久久久| 日本黄色视频三级网站网址| 欧美一区二区精品小视频在线| 老司机在亚洲福利影院| 在线观看舔阴道视频| 免费无遮挡裸体视频| 亚洲专区国产一区二区| 亚洲 欧美 日韩 在线 免费| 午夜福利高清视频| 在线视频色国产色| 91麻豆精品激情在线观看国产| 男女床上黄色一级片免费看| 国产精品精品国产色婷婷| 天天躁日日操中文字幕| 亚洲人成电影免费在线| 精品午夜福利视频在线观看一区| 亚洲av成人精品一区久久| 好看av亚洲va欧美ⅴa在| 在线a可以看的网站| 国产蜜桃级精品一区二区三区| 欧美黑人巨大hd| 欧美极品一区二区三区四区| 国产精品一区二区三区四区免费观看 | 久久久久国产一级毛片高清牌| 久久精品亚洲精品国产色婷小说| 色噜噜av男人的天堂激情| 亚洲av熟女| 欧美日韩亚洲国产一区二区在线观看| 婷婷精品国产亚洲av| 国产精品av视频在线免费观看| 色播亚洲综合网| 色尼玛亚洲综合影院| 变态另类成人亚洲欧美熟女| 国产精品一区二区三区四区久久| 狂野欧美白嫩少妇大欣赏| 一级毛片高清免费大全| 在线视频色国产色| 久久久久国内视频| 男女那种视频在线观看| av在线蜜桃| 亚洲精品美女久久av网站| 亚洲人成电影免费在线| 色综合婷婷激情| 女人高潮潮喷娇喘18禁视频| 色播亚洲综合网| 国产精品永久免费网站| 1000部很黄的大片| 91av网站免费观看| 99久国产av精品| 99热精品在线国产| 亚洲在线观看片| 啦啦啦韩国在线观看视频| 免费在线观看视频国产中文字幕亚洲| 熟妇人妻久久中文字幕3abv| 日韩欧美三级三区| 变态另类丝袜制服| 久久亚洲真实| 亚洲成a人片在线一区二区| 国产 一区 欧美 日韩| 国产熟女xx| 欧美日韩黄片免| 日韩 欧美 亚洲 中文字幕| 日韩三级视频一区二区三区| 日本 欧美在线| 欧美丝袜亚洲另类 | 国产欧美日韩精品亚洲av| 成人av在线播放网站| 小蜜桃在线观看免费完整版高清| 午夜福利欧美成人| 欧美色视频一区免费| 国产欧美日韩精品一区二区| 久久人人精品亚洲av| 18禁美女被吸乳视频| 精品99又大又爽又粗少妇毛片 | 一级作爱视频免费观看| 国产精品亚洲美女久久久| 亚洲成人中文字幕在线播放| 青草久久国产| 少妇的逼水好多| 人人妻人人澡欧美一区二区| 欧美zozozo另类| 中文字幕最新亚洲高清| 午夜福利在线在线| 免费人成视频x8x8入口观看| 国内精品久久久久精免费| 大型黄色视频在线免费观看| 99国产精品一区二区蜜桃av| 欧美一级a爱片免费观看看| 日本免费一区二区三区高清不卡| 亚洲av日韩精品久久久久久密| 亚洲成人久久爱视频| 真人做人爱边吃奶动态| 久久久国产欧美日韩av| 国产精品久久久久久人妻精品电影| 婷婷丁香在线五月| 女同久久另类99精品国产91| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| 欧美乱码精品一区二区三区| 最新中文字幕久久久久 | 欧美在线一区亚洲| 久久久久久大精品| 国产黄色小视频在线观看| 搡老妇女老女人老熟妇| 国产精品爽爽va在线观看网站| 欧美在线一区亚洲| 欧美日韩一级在线毛片| 日本在线视频免费播放| 在线观看舔阴道视频| 日本黄色视频三级网站网址| 美女午夜性视频免费| 叶爱在线成人免费视频播放| 国产淫片久久久久久久久 | 久久精品夜夜夜夜夜久久蜜豆| 亚洲精华国产精华精| 国产精品一区二区免费欧美| 欧美日本亚洲视频在线播放| 高清毛片免费观看视频网站| 国产成+人综合+亚洲专区| 精品国产三级普通话版| 精品欧美国产一区二区三| 在线观看舔阴道视频| 热99在线观看视频| 国产真实乱freesex| 黑人操中国人逼视频| 99re在线观看精品视频| 国产真实乱freesex| 特级一级黄色大片| 一二三四社区在线视频社区8| 99久久精品国产亚洲精品| h日本视频在线播放| 日本精品一区二区三区蜜桃| 免费看日本二区| 麻豆成人av在线观看| 日韩三级视频一区二区三区| 国产久久久一区二区三区| 12—13女人毛片做爰片一| 十八禁网站免费在线| 欧美黑人巨大hd| 男人舔奶头视频| 黄色视频,在线免费观看| 国产成人av教育| 怎么达到女性高潮| 男人舔女人的私密视频| 琪琪午夜伦伦电影理论片6080| 一本一本综合久久| 亚洲 欧美一区二区三区| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 亚洲精华国产精华精| 亚洲欧美精品综合久久99| 亚洲自偷自拍图片 自拍| 中文字幕人成人乱码亚洲影| 我要搜黄色片| 国产成人欧美在线观看| 亚洲无线观看免费| 精华霜和精华液先用哪个| 岛国在线免费视频观看| av片东京热男人的天堂| 国产亚洲精品av在线| 亚洲欧美日韩无卡精品| 免费观看人在逋| 在线看三级毛片| 丁香六月欧美| 精品国产亚洲在线| 国产91精品成人一区二区三区| a在线观看视频网站| 伦理电影免费视频| 757午夜福利合集在线观看| 亚洲欧美日韩无卡精品| 观看美女的网站| 免费看日本二区| 不卡av一区二区三区| 丁香欧美五月| 国产成人精品久久二区二区91| 一卡2卡三卡四卡精品乱码亚洲| 身体一侧抽搐| 国产成人精品无人区| 最近在线观看免费完整版| 超碰成人久久| 欧美性猛交黑人性爽| svipshipincom国产片| 97碰自拍视频| 高清毛片免费观看视频网站| 国产精品乱码一区二三区的特点| 深夜精品福利| 欧美中文综合在线视频| 日本五十路高清| www.www免费av| 国产熟女xx| 国产精品,欧美在线| 美女 人体艺术 gogo| 夜夜躁狠狠躁天天躁| 亚洲av五月六月丁香网| 看片在线看免费视频| 国产亚洲精品久久久久久毛片| 波多野结衣高清无吗| 波多野结衣高清作品| 亚洲黑人精品在线| 热99re8久久精品国产| 九色国产91popny在线| 国产精品99久久99久久久不卡| 少妇人妻一区二区三区视频| 美女免费视频网站| 国产av不卡久久| 俺也久久电影网| 国产综合懂色| 精品国产超薄肉色丝袜足j| 久久精品国产清高在天天线| 啪啪无遮挡十八禁网站| 男人和女人高潮做爰伦理| x7x7x7水蜜桃| 9191精品国产免费久久| 欧美日韩黄片免| 丁香欧美五月| 露出奶头的视频| 欧美色欧美亚洲另类二区| 久久久久免费精品人妻一区二区| 午夜福利18| 日韩欧美免费精品| 亚洲avbb在线观看| 在线观看66精品国产| 国产伦精品一区二区三区视频9 | 国产精华一区二区三区| 香蕉丝袜av| 久9热在线精品视频| 欧美大码av| 老熟妇乱子伦视频在线观看| 久久亚洲精品不卡| 母亲3免费完整高清在线观看| 精品久久久久久成人av| 亚洲中文字幕日韩| 久久香蕉国产精品| 97超级碰碰碰精品色视频在线观看| 又黄又爽又免费观看的视频| 国产91精品成人一区二区三区| 十八禁人妻一区二区| 欧美中文综合在线视频| 免费无遮挡裸体视频| 国产精品一及| 麻豆国产av国片精品| 午夜久久久久精精品| 999精品在线视频| 国产三级中文精品| 婷婷六月久久综合丁香| 天天添夜夜摸| 制服丝袜大香蕉在线| 国产美女午夜福利| 啦啦啦观看免费观看视频高清| 国产午夜福利久久久久久| 99在线人妻在线中文字幕| 一进一出抽搐动态| 麻豆一二三区av精品| 日韩欧美精品v在线| a在线观看视频网站| 国产激情偷乱视频一区二区| 精品久久久久久,| 久久亚洲真实| 一本精品99久久精品77| 欧美激情久久久久久爽电影| 一进一出抽搐gif免费好疼| 国产不卡一卡二| 观看美女的网站| 亚洲精品456在线播放app | 国产激情偷乱视频一区二区| 2021天堂中文幕一二区在线观| 啪啪无遮挡十八禁网站| 一级毛片女人18水好多| av中文乱码字幕在线| 精品久久久久久久末码| 免费看日本二区| netflix在线观看网站| 国产99白浆流出| 欧美日本亚洲视频在线播放| 国产精品女同一区二区软件 | 欧美性猛交黑人性爽| www国产在线视频色| 黑人巨大精品欧美一区二区mp4| 国产一区二区激情短视频| 国产v大片淫在线免费观看| 国产精品亚洲一级av第二区| 淫秽高清视频在线观看| 亚洲avbb在线观看| 动漫黄色视频在线观看| 免费av毛片视频| 日日干狠狠操夜夜爽| 色视频www国产| 少妇的逼水好多| 日韩欧美 国产精品| 深夜精品福利| 午夜精品在线福利| 国产av麻豆久久久久久久| 亚洲国产精品sss在线观看| 天天躁日日操中文字幕| 可以在线观看毛片的网站| 日韩成人在线观看一区二区三区| 亚洲精品久久国产高清桃花| 亚洲午夜理论影院| 免费av毛片视频| aaaaa片日本免费| 曰老女人黄片| 在线永久观看黄色视频| a级毛片在线看网站| 欧美3d第一页| 色在线成人网| 亚洲精品美女久久久久99蜜臀| 欧美乱妇无乱码| 日韩大尺度精品在线看网址| www.自偷自拍.com| 色综合站精品国产| 成熟少妇高潮喷水视频| 免费在线观看影片大全网站| 一夜夜www| 久久久精品大字幕| 日韩欧美精品v在线| 久久九九热精品免费| 好看av亚洲va欧美ⅴa在| 久久久成人免费电影| 俺也久久电影网| 一夜夜www| 国产精品一区二区免费欧美| 免费在线观看影片大全网站| 日韩欧美免费精品| 99久久成人亚洲精品观看| 午夜影院日韩av| 久99久视频精品免费| 国内精品一区二区在线观看| 哪里可以看免费的av片| 欧美中文综合在线视频| 999久久久精品免费观看国产| 国产精品精品国产色婷婷| 日本在线视频免费播放| 久久久久久九九精品二区国产| 亚洲性夜色夜夜综合| 免费观看精品视频网站| 国产不卡一卡二| 日韩有码中文字幕| 国产亚洲精品一区二区www| 久久婷婷人人爽人人干人人爱| 成人性生交大片免费视频hd| 99国产精品一区二区三区| 19禁男女啪啪无遮挡网站| 校园春色视频在线观看| ponron亚洲| 一本久久中文字幕| 久久国产精品影院| 色在线成人网| 久久久久国内视频| 午夜日韩欧美国产| 美女免费视频网站| 久久性视频一级片| 免费在线观看视频国产中文字幕亚洲| 草草在线视频免费看| 在线观看免费午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产欧美日韩精品亚洲av| 可以在线观看的亚洲视频| 成人高潮视频无遮挡免费网站| 99在线人妻在线中文字幕| 亚洲国产精品久久男人天堂| 婷婷精品国产亚洲av在线| 国产精品精品国产色婷婷| 国产成人啪精品午夜网站| 午夜福利成人在线免费观看| 人人妻人人看人人澡| 1024香蕉在线观看| 三级毛片av免费| 亚洲无线观看免费| 国产蜜桃级精品一区二区三区| 青草久久国产| 搡老熟女国产l中国老女人| 午夜a级毛片| 欧美日韩一级在线毛片| 国产精品乱码一区二三区的特点| 国产私拍福利视频在线观看| 一个人观看的视频www高清免费观看 | 听说在线观看完整版免费高清| 蜜桃久久精品国产亚洲av| 亚洲专区国产一区二区| 女生性感内裤真人,穿戴方法视频| 精品日产1卡2卡| 国产高清视频在线播放一区| 亚洲av成人av| 中文字幕熟女人妻在线| 老司机午夜十八禁免费视频| 日本成人三级电影网站| 日韩av在线大香蕉| 好看av亚洲va欧美ⅴa在| 日韩欧美三级三区| 亚洲av电影不卡..在线观看| 精品人妻1区二区| 色精品久久人妻99蜜桃| 国产亚洲精品av在线| 在线永久观看黄色视频| 国产97色在线日韩免费| 美女被艹到高潮喷水动态| 国产黄a三级三级三级人| www国产在线视频色| 我的老师免费观看完整版| 亚洲欧美日韩卡通动漫| 黑人操中国人逼视频| avwww免费| 亚洲av电影不卡..在线观看| 最好的美女福利视频网| 熟女人妻精品中文字幕| 亚洲人成网站在线播放欧美日韩| 久久精品影院6| 黄色丝袜av网址大全| 一级a爱片免费观看的视频| 在线免费观看不下载黄p国产 | 国产三级中文精品| 亚洲成av人片免费观看| 亚洲成人免费电影在线观看| 免费人成视频x8x8入口观看| 无限看片的www在线观看| 91麻豆精品激情在线观看国产| 一卡2卡三卡四卡精品乱码亚洲| 一级a爱片免费观看的视频| 性欧美人与动物交配| 好男人电影高清在线观看| 亚洲欧美日韩高清专用| 亚洲国产高清在线一区二区三| 色精品久久人妻99蜜桃| 成人国产综合亚洲| a级毛片a级免费在线| 国产av麻豆久久久久久久| 无遮挡黄片免费观看| av女优亚洲男人天堂 | 在线观看午夜福利视频| 免费在线观看视频国产中文字幕亚洲| 免费大片18禁| 久久久久久久久中文| 国产黄a三级三级三级人| 国产又黄又爽又无遮挡在线| 美女免费视频网站| 中出人妻视频一区二区| 久久久久亚洲av毛片大全| 女人高潮潮喷娇喘18禁视频| 极品教师在线免费播放| 怎么达到女性高潮| 色综合亚洲欧美另类图片| 一本一本综合久久| 波多野结衣巨乳人妻| 宅男免费午夜| 色综合欧美亚洲国产小说| 亚洲欧美日韩无卡精品| 免费在线观看成人毛片| 我的老师免费观看完整版| 日本一二三区视频观看| 成年版毛片免费区| 亚洲欧美日韩卡通动漫| 国产伦一二天堂av在线观看| 波多野结衣高清作品| 日韩大尺度精品在线看网址| 国产免费av片在线观看野外av| 欧美黄色淫秽网站| 无遮挡黄片免费观看| 成年免费大片在线观看| 成人国产一区最新在线观看| 国产精品美女特级片免费视频播放器 | 亚洲熟妇熟女久久| 少妇的逼水好多| 亚洲精品粉嫩美女一区| 真人做人爱边吃奶动态| 久久香蕉国产精品| 一级毛片高清免费大全| 国产黄a三级三级三级人| 国产精品电影一区二区三区| 一二三四社区在线视频社区8| 亚洲人成网站高清观看| 91麻豆精品激情在线观看国产| av黄色大香蕉| 久久中文看片网| 久久人妻av系列| 久久久水蜜桃国产精品网| 日日夜夜操网爽| 最新中文字幕久久久久 | 小蜜桃在线观看免费完整版高清| 国产精品免费一区二区三区在线| 国产aⅴ精品一区二区三区波| 宅男免费午夜| 啦啦啦观看免费观看视频高清| 中文字幕人成人乱码亚洲影| 婷婷丁香在线五月| 国产高清激情床上av| 国产久久久一区二区三区| 1024香蕉在线观看| 国产aⅴ精品一区二区三区波| 久久婷婷人人爽人人干人人爱| 国产高清videossex| 国产成年人精品一区二区| 最新美女视频免费是黄的| 岛国视频午夜一区免费看| 制服人妻中文乱码| 99热只有精品国产| 国产综合懂色| 丰满人妻一区二区三区视频av | 亚洲人成电影免费在线| 12—13女人毛片做爰片一| 成人av在线播放网站| e午夜精品久久久久久久| 两个人的视频大全免费| 亚洲人成电影免费在线| 免费在线观看影片大全网站| 欧美乱妇无乱码| 悠悠久久av| 女警被强在线播放| 99国产极品粉嫩在线观看| 国产成人欧美在线观看| 国产一区在线观看成人免费| 亚洲精品456在线播放app | 久久中文字幕一级| 韩国av一区二区三区四区| 极品教师在线免费播放| 好看av亚洲va欧美ⅴa在| 亚洲av第一区精品v没综合| 757午夜福利合集在线观看| 啪啪无遮挡十八禁网站| 黑人巨大精品欧美一区二区mp4| 久久久久九九精品影院| 亚洲电影在线观看av| 熟女人妻精品中文字幕| av天堂在线播放| 亚洲成a人片在线一区二区| 啦啦啦免费观看视频1| 中出人妻视频一区二区| 中文字幕人成人乱码亚洲影| 日本三级黄在线观看| 久久这里只有精品中国| 国产精品 欧美亚洲| 国产蜜桃级精品一区二区三区| 日本一本二区三区精品| 特级一级黄色大片| 国产精品久久久久久亚洲av鲁大| 亚洲av电影不卡..在线观看| 亚洲中文字幕日韩| 精品无人区乱码1区二区| 2021天堂中文幕一二区在线观| 中出人妻视频一区二区| 美女黄网站色视频| 看免费av毛片| 舔av片在线| 日韩精品中文字幕看吧| a在线观看视频网站| av在线蜜桃| 国产日本99.免费观看| 在线观看一区二区三区| 精品国产乱子伦一区二区三区| 香蕉丝袜av| 99视频精品全部免费 在线 | 99国产精品一区二区三区| 亚洲黑人精品在线| 999久久久精品免费观看国产| 久久午夜亚洲精品久久| 亚洲精品在线观看二区| 国产成人欧美在线观看| 国内揄拍国产精品人妻在线| 制服人妻中文乱码| 亚洲精品国产精品久久久不卡| 超碰成人久久| 无人区码免费观看不卡| 18禁国产床啪视频网站| 岛国在线观看网站| 免费在线观看亚洲国产| 五月玫瑰六月丁香| 国产黄片美女视频| 欧美黄色淫秽网站| 女生性感内裤真人,穿戴方法视频| 又紧又爽又黄一区二区| 老司机午夜福利在线观看视频| 老汉色av国产亚洲站长工具| 黄色日韩在线| 国产成人欧美在线观看| 国产精品日韩av在线免费观看| 一区二区三区激情视频| 欧美成人免费av一区二区三区| or卡值多少钱| 身体一侧抽搐|