• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    M oO3-C3N4復(fù)合光催化劑的可見(jiàn)光下高效催化降解甲基橙

    2018-10-12 09:44:50馬令娟侯夢(mèng)寧馬宏彬陸玥汝
    關(guān)鍵詞:曲阜化工學(xué)院光催化劑

    馬令娟 侯夢(mèng)寧 馬宏彬 曹 震 薛 振 陸玥汝

    (曲阜師范大學(xué)化學(xué)與化工學(xué)院,曲阜 273165)

    0 Introduction

    With the rapid growth and development of the world economy,an increasing number of people recognize the importance of the threat of water pollution,which results from industrial and mining activities.Water pollution has increased people concerns about its negative consequences for health and public safety as well as its impact on environment.Over the past decades,as far as control and increasing regulation over contaminants,a wide range ofmethods including chemical precipitation,biological treatment,adsorption and photocatalysts have been proposed for wastewater treatment[1-4].However,several drawbacks are needed to overcome:biological processes are not efficient for degrading complex and biorecalcitrant contaminants,while chemical precipitation is severely affected by pH and complexing agent.Additionally,expensive regeneration of adsorbents restricts the development of adsorption processes[2,5-7].On the contrary,semiconductor photocatalysts have been proposed to degrade and remove contaminants from wastewater due to their high efficiency,nontoxic and feasibility with sunlight[8-10].Among various developed semiconductor photocatalysts,TiO2is one of the most widely used photocatalyst for water remediation because of nontoxicity,low processing cost and high stability in aqueousmedium[11-14].However,TiO2has several disadvantages such as that it only absorbs UV photons as it has a large band gap about 3.2 eV,and it has a short lifetime of the photo-generated electronhole pairs[15-16].Therefore,to overcome such drawbacks and increase photocatalytic activity,researches have focused on doping TiO2surface with metals or nonmetal ions,combination with other semiconductors or development of non-TiO2based and novel photocatalyticmaterials[17-19].

    Recently,Wang et al.first used metal-free polymeric graphite-like carbon nitride (g-C3N4)as photocatalyst,which exhibits high photocatalytic performance for hydrogen generation[20].C3N4photocatalyst can be prepared by directly heating N-rich precursors(such asmelamine,urea)at different temperature and heating rate[21-23].Although g-C3N4has been regarded as attractive photocatalyst due to its unique properties,such as facile preparation,low processing cost,moderate band gap and high chemical stability,the poor absorptivity and low electron mobility rate restrict the developmentofg-C3N4[24-26].Therefore,among the various strategies for improving photocatalytic performance of g-C3N4,its combination with transition metal oxides is a feasible one[27-29].For example,Zhang et al.synthesized g-C3N4/TiO2(B)nanofibers with exposed (001)plane and the composites exhibited enhanced visible-lightactivity[30].Hu etal.reported Fe3+doped g-C3N4and Fe2O3/g-C3N4catalystsusingmelamine and ferric nitrate as precursors[31]. C3N4/CoO was designed and fabricated for the first time and exhibit more-efficient utilization of solar energy than pure g-C3N4[27].Furthermore,it was found that MoO3has a band gap of 2.8~3.2 eV and can be active in both UV and visible light[32].Cu0.33MoO3nanorod was synthesized via hydrothermal route and used for degradation of toluidine blue“O”and chlorobenzene[33].MoO3/polymer polyimidewas synthesized via an in situ crystal growth approach,the obtained composite exhibits enhanced photocatalytic activity for H2evolution[34].Li et al.prepared MoO3-g-C3N4which show high efficiency for the degradation ofmethylene blue[32].He etal.prepared MoO3-g-C3N4composites exhibiting higher activity than pure g-C3N4,which is attributed to the strong and wide adsorption of visible light and high separation of photogenerated electron-hole pairs[35].Although MoO3-C3N4composite catalyst has better catalytic activity under visible light irradiation,there are few reports about the photocatalytic mechanism over MoO3-C3N4composites prepared by differentmethods.

    In thiswork,a series of MoO3-C3N4photocatalysts were successfully synthesized by impregnation method using(NH4)6Mo7O24·4H2O and C3N4as precursors.The microstructure and photocatalytic efficiency of MoO3-C3N4under visible lightwere investigated.Particularly,1.60%(w/w)MoO3-C3N4catalysts exhibited high photocatalytic activity in the degradation of MO under visible light irradiation.The synergic effect between MoO3and C3N4and the possible mechanisms of enhancement of photoactivity were also investigated.

    1 Experimental

    1.1 Preparation of the catalysts

    Pure C3N4powder was prepared by directly heatingmelamine at 500℃for 4 h with a heating rate of 2.5℃·min-1in air.

    The MoO3-C3N4photocatalysts were synthesized by impregnation method.In a typical synthesis,the desired amount(NH4)6Mo7O24·4H2O(0.003~0.094 g)was dissolved in 0.7 mL of deionized water.Subsequently,the solution was added drop-wise to C3N4powder in a porcelain crucible under stirring and then dried at 80℃for 6 h.Finally,the obtained powder was calcined at 500℃for 2 h.The final products were denoted as x%MoO3-C3N4,where x%is themass fraction of MoO3.

    Selective deposition of noble metal Pt was performed.50 mg of 1.60%MoO3-C3N4catalyst was dispersed in 80mL of 15%(V/V)lactic acid solution and ultrasonically dispersed for 5 min.Then,300μL of 0.02 g·mL-1H2PtCl6aqueous solution was added to the suspension and ultrasonically dispersed for 3 min.Finally,a 300W xenon lamp was used as light source and themixturewas irradiated for 0.5 h under stirring.

    1.2 Characterization methods

    XRDmeasurementswere recorded on a RigakuD/MAXRB diffractometer with Cu Kα radiation(λ=0.154 18 nm)within the range of 2θ=10°~70°at a voltage of 40 kV and a current of 300 mA.HR-TEM images were obtained on a JEM-2100 PLUS transmission electron microscope at an accelerating voltage of 200 kV.Fourier transform infrared (FT-IR)spectra of the catalysts were recorded on a Nicolet Nexus-670 spectrometer.The specific surface area and pore size of the samples were measured by a SSA-4200 pore size specific surface area analyzer (Beijing builder electronic technology).Ultraviolet visible(UV-Vis)diffuse reflection spectra were measured using a UVVis spectrophotometer (Shimadzu UV 3600,Japan)within the range of 200~800 nm.X-ray photoemission spectroscopy (XPS)was measured in a PHI5300 ESCA system.The beam voltage was 3.0 eV,and the energy of Ar ion beam was 1.0 keV.The binding energieswere normalized to the signal for adventitious carbon at 284.8 eV.

    1.3 Evaluation of the photocatalytic activity

    The photocatalytic activity of MoO3-C3N4nanocomposites was evaluated by degradation of MO(10 mg·L-1)aqueous solution in a quartz glass reactor under visible light irradiation.Before irradiation,40 mg ofMoO3-C3N4sampleswere ultrasonically dispersed in 80 mL MO solution for 10 min and the suspension was stirred in the dark for 30 min to establish an adsorption-desorption equilibrium.The visible light used for photocatalytic degradation was generated with a CEL-HXUV 300 Xe lamp coupled with UV cutoff filter (λ>420 nm,Zhongjiao Jinyuan Technology).During the photocatalytic reaction,the reaction system was magnetically stirred and 5 mL liquids were collected at specific reaction time.Then,the collected sampleswere centrifuged.Finally,the concentration of catalyst-free MO solution was analyzed by recording variations of the absorbance maximum (λ=463 nm)using a 754PCUV/Visible spectrophotometer(Shanghai Jinghua Group Corporation).As a comparison,photocatalytic degradations of MO in the presence of MoO3or C3N4were also performed under visible light irradiation.

    Hole and free radical trapping experiment was similar to the photocatalytic degradation experiment.1,4-benzoquinone (BQ,·O2-scavenger),tert-butyl alcohol(TBA,·OH scavenger)or ammonium oxalate(AO,h+scavenger)were added to MO(10mg·L-1)aqueous solution with 40 mg of 1.60%MoO3-C3N4photocatalyst before ultrasound[36].

    2 Results and discussion

    2.1 Structure of the photocatalysts

    The XRD patterns of MoO3,C3N4and x%MoO3-C3N4composites are shown in Fig.1.It can be seen that all the diffraction peaks of pure MoO3can be indexed as the orthorhombic structure (PDF No.99-0080).The main peaks at 12.77°,23.33°,25.65°,27.33°and 39.04°correspond to the (020),(110),(040),(021)and(060)planes,respectively[37].Pure g-C3N4exhibited two diffraction peaks at 13.11°and 27.43°,corresponding to the in-plane repeated units of(100)and the inter-layer structural packing of(002)planes,respectively[38].g-C3N4can be detected in all MoO3-C3N4composites.However,diffraction peaks of MoO3were not observed in samples of 0.16%~0.80%MoO3-C3N4composites,which should be due to the low content of MoO3and homogeneously dispersion in composites.Further increasing the contents of MoO3to 1.6%and 5.0%,the MoO3phase can be detected by XRD.The diffraction peaks of g-C3N4phase were gradually weakened with the introduction of MoO3,may be attributed to the reduced crystallinity of g-C3N4.Interestingly,the diffraction peaks of the(002)plane of g-C3N4in MoO3-C3N4composites shifted to a higher 2θvalue by about 0.45°compared to pure g-C3N4,indicating the decreased interlayer distance of C3N4[38].

    Fig.1 XRD patterns ofMoO3,C3N4 and x%MoO3-C3N4

    Themorphology and structure of pure g-C3N4and 1.60%MoO3-C3N4were also characterized by TEM.As shown in Fig.2a,pure g-C3N4exhibits typical twodimensional lamellar structure.The TEM image of 1.60%MoO3-C3N4(Fig.2b)displays that the surfaces ofMoO3nanoparticleswere coated with thin amorphous layers of C3N4,leading to the formation of MoO3-C3N4heterostructure.This hybrid structure will decrease the recombination rate of photogenerated electron-hole pairs as well as prolong lifetime of charge carriers during the photocatalytic reaction.Moreover,EDS(Fig.2c)exhibited that the selected areas of the sample are composed with Mo,O,C and N elements.More detailed structural characteristics for 1.60%MoO3-C3N4were studied by HR-TEM as shown in Fig.2d.The fringes with an interplanar spacing of about 0.350 nm correspond to (040)crystal plane of MoO3,which is in consistent with the XRD patterns.In addition,another phase without fringes can be assigned to C3N4.

    Fig.2 TEM images of C3N4(a)and 1.60%MoO3-C3N4(b);EDS spectrum of 1.60%MoO3-C3N4(c)and HRTEM image of 1.60%MoO3-C3N4 photocatalyst(d)

    Fig.3 shows the FT-IR spectra of MoO3,C3N4and MoO3-C3N4heterojunctions with different MoO3contents.For the pure C3N4,the peaks at 1 242~1 636 cm-1are assigned to typical CN heterocycle stretching vibration modes,while the sharp peak located at 810 cm-1is related to the characteristic vibrational mode of triazine units[38].The peaks observed at 993 cm-1corresponds to Mo=O stretching mode.The peaks at 562 and 867 cm-1are ascribed to the stretchingmode of oxygen linked with threemetal atoms in the Mo-OMo units,respectively[39].Themain characteristic peaks of C3N4appeared in all MoO3-C3N4photocatalysts.The infrared-active modes of MoO3were not detected in 0.16%~1.6%MoO3-C3N4composites due to the low concentration of MoO3,which is in consistent with XRD patterns.

    Fig.3 FT-IR spectra of synthesized MoO3,C3N4 and x%MoO3-C3N4

    XPSmeasurements were performed to determine the valence states of various species.Fig.4 shows the XPS spectra of MoO3,g-C3N4and 1.6%MoO3-C3N4.C1s high resolution XPS spectra are shown in Fig.4A and it was found that pure g-C3N4has two C1s peaks centered at 284.8 and 288.3 eV which could be attributed to adventitious carbon on the surface and N-C-N coordination in graphitic carbon nitride,respectively[40-41].The N1s binding energy of pure g-C3N4was observed at 398.6 eV,which can be assigned to the presence of sp2-bonded graphitic carbon nitride[42].The observed slight shift of N1s peak (398.4 eV)in 1.6%Mo-C3N4composite can be attributed to the interaction between Mo and N atoms.MoO3has a strong O1s peak at 531.2 eV which could be attributed to the O2-species in molybdenum oxide,while pure g-C3N4has a low intensity O1s peak produced by adsorbed H2O.The O1s peak of 1.6%Mo-C3N4composite can be thought to be the overlap of the two oxygen species.The Mo3d5/2(233.2 eV)and the Mo3d3/2peaks of pure MoO3showed that only Mo6+species are detected;while,the Mo3d peaks of 1.6%Mo-C3N4composite shift to 232.3 and 235.5 eV,which could be attributed to the existence of both Mo5+and Mo6+species on the surface[43].

    Fig.4 XPS spectra ofMoO3,C3N4 and 1.60%MoO3-C3N4 composite

    The UV-Vis DRS spectra of MoO3,C3N4,1.60%MoO3-C3N4and 5.00%MoO3-C3N4compositesare shown in Fig.5.As can be seen in Fig.5A,MoO3and g-C3N4had absorption edge at approximate 440 and 470 nm,respectively.The absorption edge of MoO3-C3N4composite isweaker than that of pure g-C3N4while the absorbance of composite is obviously higher than pure g-C3N4.Opticalband gaps(Eg)were obtained via Taucplots,amethod invented by the physicist[44].The band gap energy of a semiconductor can be estimated by the following: αhν=A(hν-Eg)n/2,where α,h,ν,A and Egare the adsorption coefficient,Planck constant,light frequency,a proportionality constant and band gap energy,respectively.Considering that MoO3and C3N4are direct transition and indirect transition semiconductors,respectively,for MoO3and C3N4,the values of n are 1 and 4,respectively[39,45].The Egcan be obtained from the plot of(αhν)2/nversus hν,by extrapolation of the linear part near the onset of the absorption edge to intersect the energy axis.As shown in Fig.5B,the Egof MoO3was 2.86 eV according to a plot of(αhν)2versus energy(hν)and the Egof C3N4was estimated to be 2.60 eV according to a plot of(αhν)1/2versus energy(hν).The valence bands(VB)of MoO3and C3N4are shown in Fig.6.The position of the VB edges of MoO3and C3N4were 3.28 and 1.58 eV,respectively.

    Fig.5 UV-Vis spectra ofMoO3,C3N4,1.60%MoO3-C3N4 and 5.00%MoO3-C3N4 composites(A)and the estimated band gaps ofMoO3 and C3N4(B)

    Fig.6 Valence band XPSofMoO3 and C3N4

    Generally,the ability of adsorption,desorption and diffusion of reactants and products are mainly determined by the SBETand pore volume of the catalyst.Therefore,a catalyst with high specific surface area (SBET)and big pore volume is significant to the enhancement of catalytic performance.The surface area and pore volume of the prepared samples were obtained from N2adsorption-desorption isotherms.As shown in Fig.7,all samples except MoO3exhibit a typeⅣisotherm with H3 hysteresis loop,suggesting the presence of mesopores. The high-pressure hysteresis loop(0.9<P/P0<1)is related to the larger pores formed between secondary particles,suggesting the presence of lamellar pore structures.MoO3shows a typeⅢisotherm without hysteresis loop,which means MoO3sample do not have pore structure.As listed in Table 1,pure MoO3and g-C3N4show relatively low specific surface area (7 and 8 m2·g-1,respectively).Compared with pure phases,all MoO3-C3N4composites exhibit high BET surface areas,which might be attributed to thermal exfoliation of g-C3N4into thinner nanosheets during compositing process.With increase of the MoO3concentration,BET surface areas of samples increased from 8 to 131 m2·g-1until the content reached 1.60%.While further increasing of MoO3content to 5% will induce dramatic reduction of BET surface area,whichmay be due to that MoO3can promote the combustion of g-C3N4.The pore volume of samples showed a similar change tendency and 1.60%MoO3-C3N4catalyst has the highest pore volume which was 0.893 mL·g-1.1.60%MoO3-C3N4catalyst shows the highest specific surface area and pore volume.

    Fig.7 Nitrogen adsorption-desorption isotherms of the samples

    Table 1 Specific surface areas and pore volumes of the sam ples

    2.2 Photocatalytic test

    For evaluation of photocatalytic performances of MoO3,pure C3N4and MoO3-C3N4composites,asprepared materials were used for degradation of MO under visible-light irradiation.As illustrated in Fig.8A,under visible light irradiation,the self-degradation of MO is negligible in the absence of catalyst,indicating that the photolysis could be ignored.In the presence of pure MoO3or C3N4catalysts,5%or 17%of MO was degraded under visible-light irradiation in 120 min,respectively.However,obvious degradation of MO was observed in the presence of the composition catalysts.When the proportion ofMoO3reached 1.60%,the as-prepared photocatalyst exhibited highest photocatalytic activity,reaching 100%MO conversion.The photocatalytic activity began to decreasewhen the content of MoO3was higher than 1.60%.So,it can be concluded that the effective degradation of MO occurs when MoO3-C3N4composites take part in the photocatalytic reaction and the 1.6% MoO3-C3N4sample displayed the highest photocatalytic activity of degradation of MO under visible-light.It has been discussed that 1.6%MoO3-C3N4photocatalyst has the highest BET surface area and pore volume,so the surface area and pore volume must be one of the reasons why 1.6%MoO3-C3N4photocatalyst showed the highest photocatalytic activity.High surface area will increase the number of surface active sites and diffusion of the MO toward the active sites.Additionally,this increased photocatalytic performance should be ascribed to the effective separation of electrons holes pairs and transfer of photogenerated charges[35,39].

    It can be found that with the presence of photocatalysts the degradation data of MO showed exponential relationship with irradiation time,suggesting the reaction follows a first order kinetics.Thus the rate was based on performance equation which could bewritten as follow[46]:

    Fig.8 Photocatalytic degradation ofMO over MoO3,C3N4 and MoO3-C3N4 under visible light irradiation(A)and the corresponding kinetic studies(B)

    Where C0is the concentration of MO after adsorptiondesorption equilibrium,Ctrepresents the concentration of remaining MO after photocatalytic degradation at irradiation time(t)and k is the corresponding rate constant.So,the degradation rate constant of MoO3,C3N4and a series of MoO3-C3N4photocatalysts(Fig.8B)can be obtained according to linear fit of plot of ln(C0/Ct)vs t,respectively.The k of pure g-C3N4is 0.001 9 min-1.While,the rate constant of 1.60%MoO3-C3N4photocatalyst is up to 50 times higher than that of pure g-C3N4.In other words,the prepared MoO3-C3N4heterostructure is much more effective than g-C3N4and there is an optimum content of MoO3to obtain an active heterostructure for degradation ofmethyl orange under visible light.

    As shown in Fig.9,the photocatalytic degradation efficiency over the prepared MoO3-C3N4samples depended on the MoO3content under visible-light irradiation of 40 min.Increasing the content of MoO3within the range of 0 to 1.60%,the degradation efficiency of MO on MoO3-C3N4composites increased rapidly,while the degradation efficiency began to decrease when the content of MoO3was higher than 1.6%.The possible reason might be excessive MoO3can cause aggregation of C3N4,so the BET surface area started to decrease when content of MoO3is higher than 1.60%.Therefore,1.60%is a suitable content of MoO3in the MO photocatalytic degradation.

    Fig.9 Degradation efficiency changes ofMO with the contentof MoO3 in the presence ofMoO3-C3N4 composites at themomentof visible-light irradiation of 40min

    The influence of the initial MO concentration for degradation of MO over 1.60% MoO3-C3N4under visible-light irradiation was also studied as shown in Fig.10a.The degradation efficiency decreased with the increase of initial MO concentration,which might be ascribed to the light screening effect in high concentration of MO solution.The influence of different dyes was also investigated and the results are shown in Fig.10b.Actually,the MoO3-C3N4photocatalysts prepared by impregnation method exhibited high photoactivity for degradation of MO,rhodamine B (RhB)and methylene blue (MB)dyes,indicating the synthesized MoO3-C3N4composite is a universal photocatalyst for degradation of organic dyes.

    Fig.10 Influence of initial MO concentration(a)and different dyes for degradation(b)

    To investigate the catalytic stability of MoO3-C3N4heterojunctions,the photocatalytic performance of 1.60%MoO3-C3N4was investigated in three cycles.As shown in Fig.11,the degradation efficiency of 1.60%MoO3-C3N4photocatalyst decreased gradually with the increase of cyclic times,which might be due to the solubility of MoO3during water purification.

    Fig.11 Catalytic stability test of 1.6%MoO3-C3N4 composite

    2.3 Possiblemechanism of M oO3-C3N4 com posite

    Fig.12 shows the kinetic constants of MoO3-C3N4photocatalyst in the presence of different quenchers.After adding TBA to the reaction system,the constant rate was decreased a little,indicating that·OH was not the dominant active species.In contrast,the degradation rate declined sharply after addition of BQ or AO,indicating that both·O2-and h+are mainly responsible in the hole and free radical trapping experiment,as BQ and AQ are·O2-and h+scavenger,respectively.

    The bottom energy of the conduction band(CB)positions of C3N4and MoO3were calculated by the following empirical equation[47]:ECB=EVB-Eg.

    According to the above equation,the energy of the conduction band (CB)of C3N4and MoO3were determined to be-1.02 and 0.42 eV,respectively.Under light irradiation,both MoO3and C3N4could absorb photons of energy to provide the driving force for excited electrons (e-)in the VB to CB and leave holes(h+)in the VB.The reduction potential of CB in C3N4was more negative than the standard reduction potential of O2/·O2-,which could reduce O2to form·O2-.In addition,the CB in MoO3was more positive than O2/·O2-,the electron would only be transferred from the CB of MoO3to the VB of C3N4.TEM image(Fig.13a)displayed that the Pt4+easily combines with the photogenerated e-in C3N4.The Pt nanoparticles deposited on 1.60%MoO3-C3N4was further identified(Fig.13b).The lattice spacing of 0.225 nm was corresponding to the Pt(111)crystal[48].The result of selective deposition of noblemetal Pt experimentswas in consistentwith above analysis.

    Fig.12 Kinetic constants of 1.60%MoO3-C3N4 photocatalystwith differentquenchers

    Fig.13 HRTEM images of Pt-1.60%MoO3-C3N4 sample

    On the basis of previous analysis,the possible Z-scheme charge carrier transfer mechanism in photocatalysis was proposed as showed in Fig.14.Initially,under visible light irradiation,C3N4absorbs photons of energy for generate electrons and holes(Eq.1).At the same time,electrons and holes are generated on MoO3as it has suitable band gap to absorb visible light(Eq.2).Subsequently,the photogenerated electrons in the conduction band (CB)of C3N4are scavenged by adsorbed oxygen to form superoxide radicals(·O2-)(Eq.3).The surface adsorbed MO molecules can capture the short-lived superoxide radicals to initiate MO degradation (Eq.4).On the other hand,the electrons in the CB of MoO3transfer to the photo excited holes(h+)of C3N4(Eq.5)and the h+in the VB of MoO3may be able to react with MO molecules(Eq.6).Finally,repeated attacks dyemolecules by h+in the VB of MoO3and·O2-lead to successful degradation of MO.

    Fig.14 diagram of energy band structure and the possible photocatalytic mechanism of MoO3-C3N4

    3 Conclusions

    In summary,MoO3-C3N4photocatalysts prepared by impregnation method exhibited much higher visible-light catalytic activity than that of pure MoO3and C3N4.Particularly,when the content of MoO3is 1.60%,the MoO3-C3N4composite has biggest BET surface area and exhibited high catalytic activity in the degradation of MO under visible light irradiation.According to the photocatalytic results,the synergistic mechanism between C3N4and MoO3were proposed.A Z-scheme charge carrier transfer mechanism was confirmed for the photocatalytic reaction. The nanostructured layered MoO3-C3N4heterojunction is low costs,easy preparation and high catalytic activity under visible light radiation,and therefore,ready for application in other related areas,such as solar energy conversion,photovoltaic devices and large scale environmental application.

    Acknow ledgements:This work is supported by the National Natural Science Foundation of China (Grant No.21403124)and NaturalScience Foundation ofShandong Province(GrantNo.ZR2014JL014).

    猜你喜歡
    曲阜化工學(xué)院光催化劑
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    曲阜之旅
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    可見(jiàn)光響應(yīng)的ZnO/ZnFe2O4復(fù)合光催化劑的合成及磁性研究
    曲阜:“居家醫(yī)康養(yǎng)”新模式
    Pr3+/TiO2光催化劑的制備及性能研究
    《化工學(xué)報(bào)》贊助單位
    曲阜行政服務(wù)中心打造為民服務(wù)“升級(jí)版”
    BiVO4光催化劑的改性及其在水處理中的應(yīng)用研究進(jìn)展
    久久天躁狠狠躁夜夜2o2o| 国产精品久久久久久精品古装| 免费高清在线观看日韩| 丰满饥渴人妻一区二区三| 女同久久另类99精品国产91| 美国免费a级毛片| 又紧又爽又黄一区二区| 亚洲中文av在线| 中文字幕色久视频| 亚洲成a人片在线一区二区| 69精品国产乱码久久久| 免费少妇av软件| 精品国产国语对白av| 国产在线免费精品| 亚洲国产欧美在线一区| 91字幕亚洲| 国产成人免费观看mmmm| 亚洲午夜精品一区,二区,三区| 欧美精品一区二区大全| 黄色成人免费大全| 性色av乱码一区二区三区2| 黄色怎么调成土黄色| 这个男人来自地球电影免费观看| 国产精品久久久久久精品古装| 电影成人av| 国产视频一区二区在线看| 亚洲av国产av综合av卡| 日本精品一区二区三区蜜桃| 亚洲精品在线美女| 黄色怎么调成土黄色| 狠狠婷婷综合久久久久久88av| 国产亚洲午夜精品一区二区久久| 中文欧美无线码| 丁香欧美五月| 午夜两性在线视频| 亚洲欧洲精品一区二区精品久久久| 国产不卡av网站在线观看| 性少妇av在线| 久久中文看片网| 国产精品亚洲一级av第二区| 亚洲精品乱久久久久久| 国产av一区二区精品久久| 女人爽到高潮嗷嗷叫在线视频| 国产成人影院久久av| 国产免费av片在线观看野外av| 亚洲午夜理论影院| 国产91精品成人一区二区三区 | 精品免费久久久久久久清纯 | 亚洲精品乱久久久久久| 91精品三级在线观看| 丰满饥渴人妻一区二区三| 99riav亚洲国产免费| 一级片免费观看大全| 在线av久久热| 欧美精品啪啪一区二区三区| 精品福利观看| 国产精品电影一区二区三区 | 嫩草影视91久久| 精品久久久精品久久久| av又黄又爽大尺度在线免费看| 亚洲精品美女久久久久99蜜臀| 深夜精品福利| 国产精品麻豆人妻色哟哟久久| 757午夜福利合集在线观看| 国产激情久久老熟女| 欧美日韩成人在线一区二区| 免费黄频网站在线观看国产| 热99国产精品久久久久久7| bbb黄色大片| 99精国产麻豆久久婷婷| 美女高潮喷水抽搐中文字幕| 亚洲色图av天堂| 嫁个100分男人电影在线观看| 久久精品aⅴ一区二区三区四区| 国产精品影院久久| 黄色成人免费大全| 久久人人爽av亚洲精品天堂| 亚洲视频免费观看视频| 久久久久久久精品吃奶| 午夜福利影视在线免费观看| 国产一卡二卡三卡精品| 波多野结衣一区麻豆| 国产片内射在线| 欧美在线黄色| 天堂8中文在线网| www.精华液| 亚洲成人手机| 亚洲三区欧美一区| 国产欧美日韩一区二区三| 黄色视频,在线免费观看| 欧美精品一区二区免费开放| 美女扒开内裤让男人捅视频| 无限看片的www在线观看| 亚洲精品中文字幕在线视频| 精品视频人人做人人爽| 国产xxxxx性猛交| 久久毛片免费看一区二区三区| 亚洲精品粉嫩美女一区| 男女免费视频国产| 最近最新中文字幕大全免费视频| 久久九九热精品免费| 女人精品久久久久毛片| 色综合婷婷激情| 国产高清视频在线播放一区| 18禁国产床啪视频网站| 国产日韩欧美在线精品| 天天躁夜夜躁狠狠躁躁| 大型黄色视频在线免费观看| 动漫黄色视频在线观看| 男女午夜视频在线观看| 国产又色又爽无遮挡免费看| 国产在线视频一区二区| 亚洲国产欧美一区二区综合| 欧美亚洲 丝袜 人妻 在线| 久久精品国产99精品国产亚洲性色 | 狠狠婷婷综合久久久久久88av| 99国产精品一区二区蜜桃av | 午夜精品久久久久久毛片777| 日日夜夜操网爽| 老司机靠b影院| 五月开心婷婷网| 精品熟女少妇八av免费久了| 亚洲欧美一区二区三区久久| 天堂俺去俺来也www色官网| 国产日韩欧美在线精品| 国产精品九九99| 国产亚洲欧美在线一区二区| 女性生殖器流出的白浆| 中国美女看黄片| 两人在一起打扑克的视频| 搡老乐熟女国产| 老司机深夜福利视频在线观看| 亚洲第一av免费看| 一级,二级,三级黄色视频| 国产精品一区二区免费欧美| 涩涩av久久男人的天堂| 老鸭窝网址在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产一区二区精华液| 久久久久精品国产欧美久久久| 国产免费视频播放在线视频| 老司机在亚洲福利影院| av线在线观看网站| 在线观看人妻少妇| kizo精华| 欧美成狂野欧美在线观看| av天堂久久9| 欧美亚洲日本最大视频资源| 香蕉丝袜av| e午夜精品久久久久久久| 色播在线永久视频| 久久久久久久大尺度免费视频| 在线永久观看黄色视频| 最近最新免费中文字幕在线| 国精品久久久久久国模美| 99久久人妻综合| 亚洲精品粉嫩美女一区| 免费不卡黄色视频| 美女国产高潮福利片在线看| 黄色视频不卡| 久久久久国产一级毛片高清牌| 欧美精品亚洲一区二区| 欧美激情 高清一区二区三区| 国产av又大| 99精品在免费线老司机午夜| 久久精品国产a三级三级三级| 女人久久www免费人成看片| 这个男人来自地球电影免费观看| 夫妻午夜视频| 妹子高潮喷水视频| 一夜夜www| 亚洲精品国产一区二区精华液| 激情视频va一区二区三区| 国产三级黄色录像| 国产激情久久老熟女| 999久久久精品免费观看国产| 国产一区二区三区综合在线观看| 欧美精品一区二区免费开放| 日日夜夜操网爽| 在线亚洲精品国产二区图片欧美| 99在线人妻在线中文字幕 | 亚洲色图综合在线观看| 日韩精品免费视频一区二区三区| 精品福利永久在线观看| 美女主播在线视频| 日本精品一区二区三区蜜桃| 俄罗斯特黄特色一大片| 午夜福利在线免费观看网站| 国产亚洲欧美在线一区二区| 中文字幕另类日韩欧美亚洲嫩草| 一本—道久久a久久精品蜜桃钙片| 欧美精品啪啪一区二区三区| 日韩精品免费视频一区二区三区| 汤姆久久久久久久影院中文字幕| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品中文字幕在线视频| 欧美中文综合在线视频| 久久久久久久久免费视频了| 亚洲va日本ⅴa欧美va伊人久久| 精品一品国产午夜福利视频| 这个男人来自地球电影免费观看| 欧美久久黑人一区二区| 久久久久久久大尺度免费视频| 久久国产精品大桥未久av| 久久久久久亚洲精品国产蜜桃av| 两性午夜刺激爽爽歪歪视频在线观看 | 色综合欧美亚洲国产小说| 一区二区三区乱码不卡18| www.自偷自拍.com| 午夜福利在线免费观看网站| 操美女的视频在线观看| 午夜福利影视在线免费观看| 80岁老熟妇乱子伦牲交| 超色免费av| 夫妻午夜视频| 亚洲精品中文字幕在线视频| 色94色欧美一区二区| 99热网站在线观看| 老熟妇乱子伦视频在线观看| 人妻 亚洲 视频| 这个男人来自地球电影免费观看| 9色porny在线观看| 中文字幕制服av| 日韩熟女老妇一区二区性免费视频| 三级毛片av免费| 王馨瑶露胸无遮挡在线观看| 97在线人人人人妻| 欧美日韩亚洲综合一区二区三区_| 久久久久国产一级毛片高清牌| 欧美成人午夜精品| 成人免费观看视频高清| 中文欧美无线码| 9色porny在线观看| 亚洲欧美日韩另类电影网站| 久久久久久久国产电影| 老司机影院毛片| 18禁裸乳无遮挡动漫免费视频| 欧美国产精品va在线观看不卡| 日韩 欧美 亚洲 中文字幕| 欧美精品人与动牲交sv欧美| 色尼玛亚洲综合影院| 动漫黄色视频在线观看| 日本精品一区二区三区蜜桃| 国产欧美日韩综合在线一区二区| 色综合婷婷激情| videos熟女内射| cao死你这个sao货| 久久影院123| 亚洲专区中文字幕在线| 久久人妻福利社区极品人妻图片| 国产精品亚洲av一区麻豆| 亚洲va日本ⅴa欧美va伊人久久| 欧美黑人精品巨大| 汤姆久久久久久久影院中文字幕| 看免费av毛片| 久久精品国产a三级三级三级| 最新的欧美精品一区二区| 国产在视频线精品| 欧美激情极品国产一区二区三区| 欧美黄色淫秽网站| 水蜜桃什么品种好| 99国产精品免费福利视频| 免费观看a级毛片全部| www日本在线高清视频| 国产一区二区三区综合在线观看| 丰满迷人的少妇在线观看| 啦啦啦免费观看视频1| 国产成人一区二区三区免费视频网站| 妹子高潮喷水视频| 亚洲人成电影观看| 在线观看舔阴道视频| 午夜福利乱码中文字幕| 日本av免费视频播放| 在线观看舔阴道视频| 午夜福利乱码中文字幕| 国产单亲对白刺激| 伊人久久大香线蕉亚洲五| 一边摸一边抽搐一进一小说 | 老司机靠b影院| 久久精品国产亚洲av高清一级| 国产精品一区二区在线不卡| 亚洲专区字幕在线| 久久久国产欧美日韩av| 天堂中文最新版在线下载| 一级毛片电影观看| 中文亚洲av片在线观看爽 | 日韩熟女老妇一区二区性免费视频| 青草久久国产| 91老司机精品| 日韩制服丝袜自拍偷拍| 精品国产一区二区三区久久久樱花| 亚洲精品乱久久久久久| 一二三四在线观看免费中文在| 国产精品免费一区二区三区在线 | 国内毛片毛片毛片毛片毛片| 日韩中文字幕视频在线看片| 国产精品1区2区在线观看. | 精品亚洲成a人片在线观看| 黑丝袜美女国产一区| 夜夜爽天天搞| 久久久久国产一级毛片高清牌| 精品福利观看| 亚洲第一青青草原| 国产av又大| 国产亚洲精品一区二区www | 在线永久观看黄色视频| 国产色视频综合| 精品国产国语对白av| 久久狼人影院| 国产成人av教育| av不卡在线播放| 欧美激情 高清一区二区三区| 99热国产这里只有精品6| 精品国产亚洲在线| 丝袜人妻中文字幕| 少妇 在线观看| 久久精品国产亚洲av高清一级| 99九九在线精品视频| 成年人免费黄色播放视频| 久久ye,这里只有精品| 国产又色又爽无遮挡免费看| 男人操女人黄网站| av不卡在线播放| 日韩欧美一区视频在线观看| 这个男人来自地球电影免费观看| 精品国内亚洲2022精品成人 | 亚洲第一av免费看| 日本a在线网址| 中文字幕最新亚洲高清| 纯流量卡能插随身wifi吗| 亚洲精品中文字幕一二三四区 | 国产精品国产av在线观看| 欧美成狂野欧美在线观看| 丝袜美足系列| 热99久久久久精品小说推荐| 一级毛片电影观看| 蜜桃在线观看..| 高清在线国产一区| 亚洲精品一二三| 欧美另类亚洲清纯唯美| 国产精品香港三级国产av潘金莲| 三级毛片av免费| 三上悠亚av全集在线观看| 两性夫妻黄色片| 久久久精品区二区三区| 久久精品91无色码中文字幕| 国产精品98久久久久久宅男小说| 欧美在线一区亚洲| 老司机在亚洲福利影院| 中国美女看黄片| 曰老女人黄片| 国产91精品成人一区二区三区 | 日韩成人在线观看一区二区三区| 天天操日日干夜夜撸| 中文字幕高清在线视频| 80岁老熟妇乱子伦牲交| 亚洲成a人片在线一区二区| 动漫黄色视频在线观看| 后天国语完整版免费观看| 日韩中文字幕欧美一区二区| 国产福利在线免费观看视频| 日日爽夜夜爽网站| 国产主播在线观看一区二区| 日本撒尿小便嘘嘘汇集6| 丝袜在线中文字幕| 高清毛片免费观看视频网站 | 国产主播在线观看一区二区| 国产欧美日韩综合在线一区二区| 欧美成人午夜精品| 久久久国产精品麻豆| 亚洲精品乱久久久久久| 国产成人欧美| 久久久久久久精品吃奶| 看免费av毛片| 久久精品熟女亚洲av麻豆精品| 中文欧美无线码| 色老头精品视频在线观看| 亚洲av日韩精品久久久久久密| 国产精品久久电影中文字幕 | av线在线观看网站| 1024视频免费在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久久av美女十八| 久久久国产成人免费| 免费在线观看视频国产中文字幕亚洲| 欧美日本中文国产一区发布| 久久午夜综合久久蜜桃| 男女午夜视频在线观看| 欧美人与性动交α欧美精品济南到| 国产精品98久久久久久宅男小说| 少妇裸体淫交视频免费看高清 | 国产精品久久久人人做人人爽| 国产高清videossex| 欧美变态另类bdsm刘玥| 成人18禁高潮啪啪吃奶动态图| 亚洲,欧美精品.| 777米奇影视久久| 每晚都被弄得嗷嗷叫到高潮| 黄色视频,在线免费观看| 亚洲人成伊人成综合网2020| 免费一级毛片在线播放高清视频 | 一个人免费在线观看的高清视频| 中文字幕色久视频| 十八禁高潮呻吟视频| 后天国语完整版免费观看| 国产精品一区二区精品视频观看| 啦啦啦 在线观看视频| 午夜久久久在线观看| 搡老岳熟女国产| 18禁裸乳无遮挡动漫免费视频| 久久久久久久国产电影| 黄片大片在线免费观看| 国产老妇伦熟女老妇高清| 久久人妻福利社区极品人妻图片| 黄色a级毛片大全视频| 久久久欧美国产精品| 午夜激情久久久久久久| 午夜精品国产一区二区电影| 国产色视频综合| 国产日韩一区二区三区精品不卡| 亚洲国产欧美日韩在线播放| 久久人妻熟女aⅴ| 91精品国产国语对白视频| 精品少妇黑人巨大在线播放| 80岁老熟妇乱子伦牲交| 人人妻人人爽人人添夜夜欢视频| 一区二区av电影网| 飞空精品影院首页| 如日韩欧美国产精品一区二区三区| 一区二区三区激情视频| 欧美精品人与动牲交sv欧美| 不卡av一区二区三区| 亚洲精品国产精品久久久不卡| 黑人欧美特级aaaaaa片| 久热这里只有精品99| 大片电影免费在线观看免费| 91成人精品电影| 日本一区二区免费在线视频| 亚洲熟女毛片儿| cao死你这个sao货| 不卡av一区二区三区| 99精国产麻豆久久婷婷| 丁香六月欧美| 久久久久精品人妻al黑| 亚洲情色 制服丝袜| 国产91精品成人一区二区三区 | 99国产极品粉嫩在线观看| 午夜精品久久久久久毛片777| 建设人人有责人人尽责人人享有的| 日本a在线网址| 我要看黄色一级片免费的| 国产免费现黄频在线看| 色视频在线一区二区三区| 午夜福利,免费看| 精品欧美一区二区三区在线| 极品少妇高潮喷水抽搐| 极品人妻少妇av视频| 欧美+亚洲+日韩+国产| 后天国语完整版免费观看| 国产无遮挡羞羞视频在线观看| 免费观看人在逋| 成人国产av品久久久| 日韩一区二区三区影片| 亚洲七黄色美女视频| 国产精品电影一区二区三区 | 国产精品一区二区在线观看99| 91麻豆av在线| 久久久精品区二区三区| 十八禁人妻一区二区| 亚洲自偷自拍图片 自拍| 国产在线免费精品| 国产男女内射视频| 久久久国产欧美日韩av| 大香蕉久久成人网| 欧美日韩av久久| 黄频高清免费视频| 99久久99久久久精品蜜桃| 美女高潮到喷水免费观看| 久久人人爽av亚洲精品天堂| 日韩成人在线观看一区二区三区| av福利片在线| 精品国产超薄肉色丝袜足j| 中文字幕另类日韩欧美亚洲嫩草| 在线观看66精品国产| 国产欧美日韩一区二区精品| 欧美日韩av久久| 国产色视频综合| av天堂在线播放| 国产亚洲欧美精品永久| 捣出白浆h1v1| 免费日韩欧美在线观看| 一边摸一边抽搐一进一小说 | 精品人妻熟女毛片av久久网站| 亚洲国产欧美网| 欧美精品人与动牲交sv欧美| 老熟妇仑乱视频hdxx| 国产精品亚洲av一区麻豆| 欧美午夜高清在线| 王馨瑶露胸无遮挡在线观看| 啪啪无遮挡十八禁网站| 在线观看66精品国产| 国产精品久久久久久人妻精品电影 | 久久久国产欧美日韩av| 久久国产精品人妻蜜桃| 国产一区二区三区在线臀色熟女 | 国产在视频线精品| 高清毛片免费观看视频网站 | 午夜福利在线观看吧| 一边摸一边抽搐一进一小说 | 成年人午夜在线观看视频| 久久久久久久精品吃奶| 国产精品一区二区精品视频观看| 亚洲黑人精品在线| 亚洲欧美激情在线| 麻豆av在线久日| 少妇 在线观看| 久久久久国内视频| 黄色成人免费大全| 国产熟女午夜一区二区三区| 国产精品麻豆人妻色哟哟久久| av天堂久久9| 黄色视频,在线免费观看| a级毛片黄视频| 免费看十八禁软件| 日本黄色视频三级网站网址 | 又黄又粗又硬又大视频| 亚洲熟妇熟女久久| 日日夜夜操网爽| 久久久水蜜桃国产精品网| 日日摸夜夜添夜夜添小说| 成人免费观看视频高清| 成人永久免费在线观看视频 | 精品一区二区三区av网在线观看 | 在线观看免费日韩欧美大片| 一区二区三区激情视频| 丝袜人妻中文字幕| 999精品在线视频| 精品国产一区二区久久| 极品少妇高潮喷水抽搐| 精品久久蜜臀av无| 免费少妇av软件| 伦理电影免费视频| 亚洲精品美女久久av网站| 一级毛片女人18水好多| 99国产精品免费福利视频| 99精品在免费线老司机午夜| 国产一区二区激情短视频| 国产av国产精品国产| 视频区欧美日本亚洲| 国产在视频线精品| 精品福利永久在线观看| 热re99久久精品国产66热6| 国产极品粉嫩免费观看在线| 国产日韩欧美亚洲二区| 777米奇影视久久| 久久久欧美国产精品| av国产精品久久久久影院| 亚洲av电影在线进入| 国产精品熟女久久久久浪| 一级片免费观看大全| 国产无遮挡羞羞视频在线观看| 免费在线观看黄色视频的| 国产在线一区二区三区精| 久久久久久亚洲精品国产蜜桃av| 在线观看免费视频网站a站| 91老司机精品| 美女高潮到喷水免费观看| 亚洲国产欧美网| 18禁美女被吸乳视频| 欧美成人午夜精品| 中文字幕人妻熟女乱码| 丝袜喷水一区| 亚洲欧洲日产国产| 久久中文看片网| 热re99久久国产66热| 亚洲av电影在线进入| 国产精品久久久久久精品电影小说| 亚洲精华国产精华精| 亚洲三区欧美一区| 免费在线观看黄色视频的| 免费少妇av软件| 久久热在线av| 亚洲av日韩精品久久久久久密| 99国产精品一区二区三区| 欧美日韩成人在线一区二区| 男人舔女人的私密视频| 色综合欧美亚洲国产小说| 精品乱码久久久久久99久播| 成人精品一区二区免费| 亚洲国产精品一区二区三区在线| 精品福利观看| 欧美日韩一级在线毛片| 黑人巨大精品欧美一区二区蜜桃| 国产欧美日韩综合在线一区二区| 99re在线观看精品视频| 精品国内亚洲2022精品成人 | 亚洲精品国产精品久久久不卡| 黄色怎么调成土黄色| 香蕉丝袜av| 午夜两性在线视频| 免费观看a级毛片全部| 国产日韩欧美亚洲二区| 一级片'在线观看视频| 99国产精品免费福利视频| 久久精品国产综合久久久| 免费观看人在逋| 建设人人有责人人尽责人人享有的| 亚洲国产av新网站| 考比视频在线观看| 国产99久久九九免费精品| 国产有黄有色有爽视频| 欧美日韩av久久| 最黄视频免费看| 午夜福利欧美成人| 怎么达到女性高潮|