李汴生,盧嘉懿,阮 征
?
植物乳桿菌發(fā)酵不同果蔬汁風(fēng)味品質(zhì)研究
李汴生1,2,盧嘉懿1,阮 征1
(1. 華南理工大學(xué)食品科學(xué)與工程學(xué)院,廣州 510640; 2. 廣東省天然產(chǎn)物綠色加工與產(chǎn)品安全重點實驗室,廣州 510640)
乳酸菌發(fā)酵給果蔬汁帶來的風(fēng)味變化及其適配性是影響品質(zhì)的重要因素,用植物乳桿菌LP-115 400B分別發(fā)酵橙汁、蘋果汁、梨汁、葡萄汁和青瓜汁,通過靜態(tài)-頂空固相微萃取(headspace solid-phase microextraction, HS-SPME)和氣質(zhì)聯(lián)用(gas chromatography-mass spectrometry, GC-MS)分析各果蔬汁發(fā)酵前后揮發(fā)性風(fēng)味物質(zhì)以及游離氨基酸、糖和酸等滋味物質(zhì)的變化,并結(jié)合定量描述分析(quantitative descriptive analysis, QDA)方法進行感官評價,探索乳酸菌發(fā)酵對果蔬汁風(fēng)味感官品質(zhì)產(chǎn)生的影響和適配性問題。乳酸菌發(fā)酵代謝對不同果蔬汁風(fēng)味影響差異較大。在發(fā)酵后的果蔬汁中,揮發(fā)性風(fēng)味物質(zhì)種類增加,其中醇酯類物質(zhì)增加明顯,有利于酯香型果汁果香和花香的突出(如蘋果汁和梨汁);而醇香型青瓜汁的酒味、刺激性氣味增加;萜烯類物質(zhì)變化使得橙汁新鮮氣息降低,發(fā)酵氣味增強。果蔬汁中氨基酸變化顯示出其與揮發(fā)性風(fēng)味物質(zhì)存在相互轉(zhuǎn)換的關(guān)聯(lián)性。發(fā)酵后當糖酸比適中時(梨汁21.00,蘋果汁17.79),味感酸甜適度。
菌;發(fā)酵;果汁;揮發(fā)性風(fēng)味物質(zhì);游離氨基酸;感官評價
乳酸菌發(fā)酵果蔬汁是近年來最受關(guān)注的益生菌飲品之一,除了其為消費者帶來的果蔬汁與益生菌相得益彰的營養(yǎng)健康價值之外,乳酸菌發(fā)酵給果蔬汁帶來的風(fēng)味變化也是吸引消費者的重要因素?,F(xiàn)今不乏對乳酸菌在果蔬汁中的代謝研究,但在乳酸菌發(fā)酵果蔬汁風(fēng)味變化的特性方面仍缺乏探索[1-2]。
乳酸菌通過作用于蛋白質(zhì)、糖、脂肪及其他物質(zhì),從而產(chǎn)生揮發(fā)性風(fēng)味物質(zhì)和非揮發(fā)性滋味物質(zhì)[3],進而改變果蔬汁的風(fēng)味組成。其中,揮發(fā)性風(fēng)味物質(zhì)是影響果蔬汁風(fēng)味及消費者接受度的重要因素[4],乳酸菌發(fā)酵可以增加果蔬汁揮發(fā)性風(fēng)味物質(zhì)種類并改變其組成結(jié)構(gòu):與傳統(tǒng)果汁加工過程相比,石榴汁[1]通過乳酸菌發(fā)酵可增強其風(fēng)味,并減少醛類等不期望的揮發(fā)性物質(zhì);混合莓汁[5]經(jīng)過乳酸菌發(fā)酵后具有抗氧化性的苯甲酸等揮發(fā)性物質(zhì)含量顯著增加而萜烯類物質(zhì)減少。
但現(xiàn)今對果蔬汁發(fā)酵后風(fēng)味的研究多是針對單一的果蔬,對乳酸菌發(fā)酵果蔬汁風(fēng)味適配性的問題仍缺乏系統(tǒng)的探討。并且現(xiàn)今研究多只針對揮發(fā)性風(fēng)味物質(zhì)的變化,沒有結(jié)合其他影響風(fēng)味品質(zhì)的呈味物質(zhì)進行研究。例如游離氨基酸除了其本身作為呈味物質(zhì)之外,游離氨基酸還會被乳酸菌利用而產(chǎn)生一系列揮發(fā)性風(fēng)味物質(zhì)[3];乳酸菌發(fā)酵發(fā)生的變化以及對果蔬汁風(fēng)味的影響仍需深入研究。
本文選取常用于發(fā)酵果蔬汁的植物乳桿菌為發(fā)酵菌種[6],作為植物源乳酸菌,植物乳桿菌在果蔬汁中適應(yīng)性較廣,多種果蔬汁經(jīng)植物乳桿菌發(fā)酵后,在感官、衛(wèi)生、營養(yǎng)、貨架期等性質(zhì)方面都得到提升[7-8]。本文以酯香型的蘋果和梨,醇香型的葡萄和青瓜,以及以萜烯類物質(zhì)為主的臍橙為研究對象,測定不同果蔬汁經(jīng)發(fā)酵前后揮發(fā)性風(fēng)味物質(zhì)、游離氨基酸、總酸、總糖的變化,并結(jié)合定量描述分析(quantitative descriptive analysis, QDA)對發(fā)酵果蔬汁風(fēng)味品質(zhì)進行感官評價分析,通過比較不同的果蔬汁經(jīng)乳酸菌發(fā)酵后變化的異同,探索乳酸菌發(fā)酵果蔬汁中影響風(fēng)味的物質(zhì)變化規(guī)律,以及其對果蔬汁風(fēng)味感官品質(zhì)產(chǎn)生的影響和風(fēng)味適配性問題,以期為通過乳酸菌發(fā)酵定向改變果蔬汁的風(fēng)味及生產(chǎn)高品質(zhì)的乳酸菌發(fā)酵果蔬汁提供依據(jù)。
市售臍橙、紅富士蘋果、蜜梨、雨水紅葡萄、青瓜,選擇成熟度合適、無明顯缺陷的果品;直投式植物乳桿菌)菌粉LP-115 400B,杜邦·丹尼斯克公司提供。
安捷倫7890B-7000C三重四級桿氣質(zhì)聯(lián)用儀;手動進樣柄65m聚二甲基硅氧烷/二乙基苯(polydimethylsiloxane/ divinylbenzene,PDMS/DVB)萃取頭,美國Supelco公司;全自動氨基酸分析儀L-8900,日本日立;LDZX-50KBS立式壓力蒸汽滅菌鍋,上海申安醫(yī)療機械廠;SPX-150D-Z生化(恒溫)培養(yǎng)箱,上海博訊實驗有限公司醫(yī)療設(shè)備廠;752 N紫外可見分光光度計,上海精密科學(xué)儀器有限公司;HR1895榨汁機,飛利浦(中國)投資有限公司等。
1.3.1 樣品處理
臍橙洗凈去皮,蘋果、梨、葡萄、青瓜洗凈,用榨汁機分別榨汁,過100目紗布;每150 mL分裝于250 mL潔凈錐形瓶中,硅膠塞密封,將果汁迅速加熱至80 ℃,水浴保溫10 min后用迅速冷卻至40 ℃,接種植物乳桿菌(每100 mL果汁接種0.01 g菌粉),37 ℃恒溫箱靜置發(fā)酵24 h,此時各果蔬汁中活菌數(shù)和pH值都達到穩(wěn)定。取發(fā)酵前后的樣品(0和24 h)進行對比。
1.3.2 指標測定
總酸:參照GB/T 12456-2008采用酸堿滴定法;總糖:采用3,5-二硝基水楊酸比色法測定[9];pH值:參考GB 10468-1989采用電位差法;活菌數(shù):參考GB 478935-2010采用稀釋平板計數(shù)法進行測定。
1.3.3 揮發(fā)性風(fēng)味物質(zhì)測定
HS-SPME 方法:將初次使用的固相微萃取的萃取頭(PDMS/DVB 65m)在氣相色譜的進樣口老化,老化溫度為250 ℃,載氣體積流量為1.2 mL/min,老化時間為1 h。準確移取10 mL 樣品于20 mL螺口進樣瓶中,加入3.0 g NaCl,促進香氣成分的揮發(fā)[10],用聚四氟乙烯隔墊密封,于磁力攪拌器中平衡,平衡溫度為45 ℃,平衡時間為20 min。平衡后將SPME萃取頭通過隔墊插入進樣瓶,插入深度為1 cm,推出纖維頭,使纖維頭置于樣品瓶頂空進行吸附,吸附時間為40 min,隨后取出萃取頭,并立即將萃取頭插入氣相色譜儀的進樣口,插入深度為2 cm,推出纖維頭,解析5 min,同時啟動儀器收集數(shù)據(jù)。
GC條件:DB-5MS毛細管色譜柱(30 m×0.25 mm,0.25m);進樣口溫度250 ℃,載氣為He氣(純度99.999%),流速1.93 mL/min。不分流進樣。升溫程序:起始溫度為40 ℃,保持3 min后以4 ℃/min的速度升溫至120 ℃,再以6 ℃/min的速度升溫至240 ℃,保持9 min。
MS條件:電子轟擊電離,電子能量為70 eV,離子源溫度為230 ℃,接口溫度為230 ℃,質(zhì)量掃描范圍為質(zhì)荷比35~500。
1.3.4 游離氨基酸測定方法
使用1%的三氯乙酸溶液將果汁濃度稀釋到10%,8 000 r/min速度離心15 min,取上清液過0.45m濾膜上機測定。
1.3.5 感官評定
感官評價小組由10名事先經(jīng)過培訓(xùn)的食品專業(yè)人員組成(22~30歲,男女均等),評價特性及描述見表1,而評價人員的篩選基于他們區(qū)分和描述以下特性的能力。評價小組在品嘗前需嗅聞樣品。每個樣品(20 g)在室溫下被隨機編號和品嘗,配有無鹽的小餅干和純凈水,并平行測定3次,小組成員單獨在房間里對樣品進行評價,評價分數(shù)根據(jù)特性等級強弱分為10個等級:0分(極弱)~10分(極強)。
表1 果蔬汁及發(fā)酵果蔬汁感官描述及定義[1]
1.3.6 數(shù)據(jù)分析
揮發(fā)性風(fēng)味物質(zhì)定性主要是由GC-MS中NIST14質(zhì)譜數(shù)據(jù)庫、匹配度和保留時間對各個物質(zhì)進行檢索。選擇匹配度大于85的物質(zhì)作為有效的香氣成分[11-12],按峰面積歸一化進行相對定量,計算揮發(fā)性風(fēng)味物質(zhì)的相對百分含量。
總糖和總酸數(shù)據(jù)均為平行測定3次,用Excel 2007分析均值和偏差。用SPSS20.0對感官評價數(shù)據(jù)進行主成分分析(principal component analysis,PCA):將數(shù)據(jù)標準化降維,并進行因子分析提取主成分。采用Origin 9.0進行作圖。
果蔬汁發(fā)酵后風(fēng)味的變化與乳酸菌代謝反應(yīng)(氧化反應(yīng)、酯化反應(yīng)和醇化反應(yīng)等)產(chǎn)物相關(guān),如表2所示,發(fā)酵后各果蔬汁揮發(fā)性風(fēng)味物質(zhì)種類數(shù)量均增加。各果蔬汁發(fā)酵后醛類物質(zhì)含量均顯著減少,醛類是一種不穩(wěn)定的化合物,且高濃度的醛類物質(zhì)會產(chǎn)生異味,醛類物質(zhì)在微生物代謝活動下極易分解為醇或被氧化為酸[13],外源性乳酸菌會將果蔬汁中的醛類物質(zhì)更多的還原成為醇類[13],醇類物質(zhì)的增加進而會使相應(yīng)的酯類物質(zhì)增加[3],這也是發(fā)酵果蔬汁中醛類物質(zhì)減少,而醇類、酯類物質(zhì)增多的原因。而芳樟醇、正己醇等醇類物質(zhì)和酯類物質(zhì)是產(chǎn)生濃郁水果香味的重要物質(zhì)[13]。
蘋果汁和梨汁中酯類物質(zhì)占比均40%左右,發(fā)酵后蘋果汁中的典型香氣酯類2-甲基丁酸己酯,和梨汁中的典型香氣酯類乙酸乙酯等的占比均提高,乙酸乙酯有可能是在乳酸菌檸檬酸發(fā)酵作用過程中產(chǎn)生的[14],熊濤等[15]也研究發(fā)現(xiàn)胡蘿卜漿經(jīng)過植物乳桿菌發(fā)酵后烯萜類物質(zhì)減少,醇酯類物質(zhì)增加,賦予胡蘿卜漿清香。李維妮等[11]研究表明當蘋果汁中醇類、酯類總含量增加時能賦予蘋果汁更強烈的果香、青香和花香。可見植物乳桿菌發(fā)酵有利于蘋果汁和梨汁酯香的突出。
青瓜中的典型香氣物質(zhì)是順-3-壬烯-1-醇,黃瓜醇(反式,順式-2,6-壬二烯醇),未發(fā)酵青瓜汁中香氣物質(zhì)以順-3-壬烯-1-醇為主,發(fā)酵后黃瓜醇(反式,順式-2,6-壬二烯醇)的含量顯著增加,未發(fā)酵葡萄汁中香氣物質(zhì)以反式-2-己烯醇、1-壬醇等醇類物質(zhì)為主,發(fā)酵后則產(chǎn)生了大量的苯衍生物及萘類稠環(huán)芳香烴,烷烴類物質(zhì)主要來源于脂肪酸烷氧自由基的斷裂[16]及對氨基酸的降解代謝過程。在植物乳桿菌發(fā)酵的石榴汁[1]中亦出現(xiàn)了相似的情況。
橙汁的揮發(fā)性風(fēng)味成分以萜烯類物質(zhì)為主,其中以D-檸檬烯最多。萜烯類物質(zhì)除了天然存在于植物中之外,微生物代謝過程中也有可能合成萜烯類物質(zhì),糖類物質(zhì)在糖苷酶的水解作用或酸性條件下會水解成與松樹香和橘香有關(guān)的萜烯類物質(zhì)[17]。橙汁經(jīng)過發(fā)酵后新增的蒎烯、水芹烯、松油烯等使發(fā)酵橙汁松樹氣味增強,新產(chǎn)生的中長鏈飽和酮使脂肪味加強。而月桂烯、檸檬醛、辛醛、癸醛無法檢出,導(dǎo)致橙汁的新鮮橘香風(fēng)味稍有減弱,而類似松樹氣息的發(fā)酵風(fēng)味增強。
值得注意的是,發(fā)酵后的果蔬汁中均不同程度的增加了具令人愉快的水果香氣的苯甲醇[18],具淡玫瑰香味的苯乙醇[19],具杏仁味[20]、甜櫻桃味[21]和抗氧化性[5]的苯甲醛,氨基酸降解產(chǎn)生的小分子物質(zhì)苯乙醛[19]和其他苯衍生物。植物乳桿菌的發(fā)酵作用,在一定程度上可以豐富果蔬汁的風(fēng)味。park等[5]研究發(fā)現(xiàn)經(jīng)植物乳桿菌發(fā)酵的混合莓汁中苯甲酸和苯甲醛的含量顯著增加。另外,在分別用嗜酸乳桿菌、干酪乳桿菌和植物乳桿菌發(fā)酵的腰果梨汁[14]中,只有植物乳桿菌發(fā)酵的果汁中發(fā)現(xiàn)了苯丙醇。研究表明,乳酸菌發(fā)酵作用可以使得游離氨基酸和酸、醇、醛等物質(zhì)間相互轉(zhuǎn)換,發(fā)酵果蔬汁中苯衍生物等物質(zhì)的產(chǎn)生與苯丙氨酸有關(guān)[3, 19]。
表2 不同果蔬汁發(fā)酵前后主要揮發(fā)性成分相對百分含量
注:縮寫表示為:AJ(蘋果汁)、AF(發(fā)酵蘋果汁)、PJ(梨汁)、PF(發(fā)酵梨汁)、OJ(橙汁)、OF、(發(fā)酵橙汁)、CJ(青瓜汁)、CF(發(fā)酵青瓜汁)、GJ(葡萄汁)、GF(發(fā)酵葡萄汁);由于各果蔬汁檢測出揮發(fā)性風(fēng)味物質(zhì)種類太多,表2中只列出部分物質(zhì);“–”表示這種物質(zhì)未檢測到。
Note: Abbreviations: AJ, apple juice; AF, fermented apple juice; PJ, pear juice; PF, fermented pear juice; OJ, orange juice; OF, fermented orange juice; CJ, cucumber juice; CF, fermented cucumber juice; GJ, grape juice; GF, fermented grape juice; “–”, not detected. Only principal compounds are listed in the table.
表3為果蔬汁發(fā)酵前后游離氨基酸質(zhì)量分數(shù)變化情況,雖然各果蔬汁游離氨基酸變化不一,但氨基酸含量閾值比[23-23](ratio of content and taste threshold,RCT)均遠大于1,表明對果蔬汁的風(fēng)味均有一定影響。
植物乳桿菌具有多種氨基酸營養(yǎng)缺陷性,因此必須依賴外部氨基酸來增長代謝[24],而微生物中酶的作用又會使蛋白質(zhì)分解產(chǎn)生氨基酸。除了葡萄汁的游離氨基酸總量稍有增加以外,其他果蔬汁發(fā)酵后游離氨基酸總量均顯著減少。其他學(xué)者也發(fā)現(xiàn)植物乳桿菌發(fā)酵的石榴汁[2]和番茄汁[13]中游離氨基酸總量也呈現(xiàn)減少的趨勢,但雙歧桿菌發(fā)酵的蘋果汁、柑橘汁和梨汁中每種氨基酸含量均較相應(yīng)未發(fā)酵果汁高[25]??梢姽咧杏坞x氨基酸代謝規(guī)律與菌種特性密切相關(guān)。
根據(jù)氨基酸呈味不同進行分類討論,各果蔬汁發(fā)酵后甜味氨基酸總量均顯著減少,青瓜汁減少近90%;除葡萄汁以外,呈現(xiàn)鮮味的氨基酸總量亦均顯著減少;而發(fā)酵后芳香族氨基酸總量均有所增加或基本持平,尤其是青瓜汁和葡萄汁中的苯丙氨酸(Phe)發(fā)酵后分別增加5倍和6倍,與其表2中揮發(fā)性風(fēng)味物質(zhì)中相應(yīng)出現(xiàn)和增加的苯甲醇、苯乙醇和苯衍生物相呼應(yīng),證實了在乳酸菌在果蔬汁代謝過程中游離氨基酸與揮發(fā)性風(fēng)味物質(zhì)相互轉(zhuǎn)換的關(guān)聯(lián)性[3]。
當初始活菌數(shù)為107cfu/mL時,植物乳桿菌在各果蔬汁中均長勢良好,發(fā)酵24 h后活菌數(shù)均能達109cfu/mL。在圖1和表4中,發(fā)酵前12 h,植物乳桿菌在醇香型的葡萄汁和青瓜汁中增長代謝速度更快,24 h各果蔬汁中活菌數(shù)和pH值基本達到穩(wěn)定,此時葡萄汁、青瓜汁和臍橙汁中活菌數(shù)較蘋果汁和梨汁更高。當果蔬汁中活菌數(shù)更高時,能更有效地在人體腸道發(fā)揮益生作用[26]。但從風(fēng)味角度而言,適宜控制乳酸菌的代謝才能有更理想的風(fēng)味。結(jié)合GC-MS和感官評定的數(shù)據(jù),對于青瓜和臍橙汁,降低初始發(fā)酵活菌數(shù)、提前終止發(fā)酵、后期兌入一定比例原果汁等調(diào)節(jié)手段都或有助于優(yōu)化其風(fēng)味體驗。
表3 不同果蔬汁發(fā)酵前后游離氨基酸質(zhì)量分數(shù)
植物乳桿菌在各果蔬汁中利用糖、氨基酸等營養(yǎng)物質(zhì)進行代謝,使得果蔬汁中總酸含量增加、總糖含量下降,從而使得糖酸比下降。圖2中,梨汁和蘋果汁初始總糖含量較高,發(fā)酵后糖酸比適中(分別為21.00 與17.79),均表現(xiàn)出酸甜適度的味感;由于橙汁和青瓜汁初始總糖含量較少,發(fā)酵后糖酸比均較低,表現(xiàn)出過酸的味感,可考慮前期或后期添加糖或代糖進行補償。
揮發(fā)性風(fēng)味物質(zhì)和滋味物質(zhì)的種類及數(shù)量的差異會影響消費者的喜好和選擇[27],圖3中發(fā)酵果蔬汁與未發(fā)酵果蔬汁風(fēng)味感官評分有明顯區(qū)分。與未發(fā)酵果蔬汁相比,除甜味明顯下降外,其他味感評價分值均有不同程度上升,其中果味、花香、發(fā)酵的味道和酸味增加明顯(尤其是發(fā)酵蘋果汁和發(fā)酵梨汁),這與發(fā)酵后果蔬汁中總酸、醇類和酯類增加有關(guān)。甜味下降與總糖下降、甜味氨基酸含量減少相關(guān)。風(fēng)味感官評價PCA分析圖中發(fā)酵青瓜汁與其他發(fā)酵后的果蔬汁差異大,是青瓜汁發(fā)酵后醇類物質(zhì)增多,糖酸比較低,使得刺激性味、酒味、酸味強引起的。針對各發(fā)酵果蔬汁和未發(fā)酵果蔬汁,進行了基于9個屬性的感官評估,運用PCA對數(shù)據(jù)進行分析。圖4中與第1主成分有高的相關(guān)性的主要是酸味、醋味、甜味、澀味,與第2 主成分有高的相關(guān)性的主要是花香、果香、刺激味感。2個主成分方差貢獻率依次為40.61%和39.00%。
圖1 不同果蔬汁發(fā)酵前后活菌數(shù)變化
表4 不同果蔬汁發(fā)酵前后pH值變化
圖2 不同果蔬汁發(fā)酵前后總酸及總糖含量變化
圖3 果蔬汁發(fā)酵前后(0、24 h)感官評價分值
圖4 感官分析評價主成分分析雙重圖
本文果蔬汁中揮發(fā)性風(fēng)味物質(zhì)的分析采用峰面積歸一化法進行相對定量,峰面積歸一化法可反映被測樣品中各風(fēng)味物質(zhì)的種類及相對含量,是常用的具有代表性的分析和評價方法。Kaprasob等[14]通過峰面積歸一化法對比研究不同乳酸菌發(fā)酵酪梨蘋果汁中風(fēng)味物質(zhì)的差異。束文秀等[12]通過峰面積歸一化法研究單一和混合乳酸菌發(fā)酵對胡柚汁風(fēng)味物質(zhì)的影響。本文通過分析不同果蔬汁發(fā)酵前后其風(fēng)味物質(zhì)種類及相對含量的變化,探索發(fā)酵果蔬汁風(fēng)味變化的趨勢走向和總體規(guī)律,進而探討導(dǎo)致風(fēng)味匹配差異性的原因,對理論研究和實際生產(chǎn)具有一定的指導(dǎo)意義。而對于進一步研究乳酸菌發(fā)酵果蔬汁的風(fēng)味物質(zhì)變化動力學(xué),深入對比不同果蔬汁發(fā)酵后風(fēng)味物質(zhì)含量的差異,仍有待精準的定量分析。
植物乳桿菌在果蔬汁中的代謝并不是簡單地利用糖、氨基酸進行產(chǎn)酸,果蔬汁發(fā)酵后芳香族氨基酸總量的增加及揮發(fā)性風(fēng)味物質(zhì)中相應(yīng)出現(xiàn)和增加的苯衍生物反映了乳酸菌在果蔬汁代謝過程中,游離氨基酸與揮發(fā)性風(fēng)味物質(zhì)存在相互轉(zhuǎn)換的關(guān)聯(lián)性。總體而言,5種果蔬汁經(jīng)發(fā)酵后,揮發(fā)性風(fēng)味物質(zhì)種類及醇酯類物質(zhì)含量增加,游離氨基酸總量下降。但植物乳桿菌發(fā)酵對不同果蔬汁的風(fēng)味影響差異較大,其中酯香型果汁如蘋果和梨經(jīng)過植物乳桿菌發(fā)酵后,由于醇類和酯類物質(zhì)種類和含量增加,典型香氣物質(zhì)含量增加,突出了原有的果香和花香,且發(fā)酵后糖酸比適中,表現(xiàn)出酸甜適度的味感;葡萄汁發(fā)酵后產(chǎn)生大量芳香類烷烴物質(zhì)增加了葡萄汁的香氣;而醇香型果汁如青瓜汁經(jīng)發(fā)酵后醇類物質(zhì)含量增加使得醇類的酒味、刺激性氣味增加;由于萜烯類物質(zhì)變化使得橙汁新鮮氣息降低、發(fā)酵氣味增強,青瓜汁和橙汁發(fā)酵后糖酸比低,表現(xiàn)出過酸的味感。
[1] Di C R, Filannino P, Gobbetti M. Lactic acid fermentation drives the optimal volatile flavor-aroma profile of pomegranate juice[J]. International Journal of Food Microbiology, 2017, 248: 56-62.
[2] Filannino P, Azzi L, Cavoski I, et al. Exploitation of the health-promoting and sensory properties of organic pomegranate () juice through lactic acid fermentation[J]. International Journal of Food Microbiology, 2013, 163(2/3): 184-192.
[3] Smid E J, Kleerebezem M. Production of aroma compounds in lactic fermentations[J]. Annu Rev Food Sci Technol, 2014, 5(1): 313-326.
[4] Sabatini N, Marsilio V. Volatile compounds in table olives (, Nocellara del Belice cultivar)[J]. Food Chemistry, 2008, 107(4): 1522-1528.
[5] Park J, Lim S, Sim H, et al. Changes in antioxidant activities and volatile compounds of mixed berry juice through fermentation by lactic acid bacteria[J]. Food Science and Biotechnology, 2017, 26(2): 441-446.
[6] Martins E, Ramos A, Vanzela E, et al. Products of vegetable origin: A new alternative for the consumption of probiotic bacteria[J]. Food Research International, 2013, 51(2): 764-770.
[7] Espirito-Santo A, Carlin F, Cmgc R. Apple, grape or orange juice: Which one offers the best substrate for lactobacilli growth? —A screening study on bacteria viability, superoxide dismutase activity, folates production and hedonic characteristics[J]. Food Research International, 2015, 78: 352-360.
[8] Nualkaekul S, Charalampopoulos D. Survival of Lactobacillus plantarum in model solutions and fruit juices[J]. International Journal of Food Microbiology, 2011, 146(2): 111-117.
[9] Park Y, Leontowicz H, Leontowicz M, et al. Comparison of the contents of bioactive compounds and the level of antioxidant activity in different kiwifruit cultivars [J]. Journal of Food Composition and Analysis, 2011, 24(7): 963-970.
[10] Zierler B, Siegmund B, Pfannhauser W. Determination of off-flavour compounds in apple juice caused by microorganismsusing headspace solid phase microextraction-gas chromatography- mass spectrometry[J]. Analytica Chimica Acta, 2004, 520(1/ 2): 3-11.
[11] 李維妮,郭春鋒,張宇翔,等. 乳酸菌發(fā)酵蘋果汁香氣成分的氣相色譜-質(zhì)譜法分析[J]. 食品科學(xué),2017,38(4):146-154. Li Weini, Guo Chunfeng, Zhang Yuxiang, et al. GC-MS ananlysis of aroma components of apple juice fermented with lactic acid bacteria[J]. Food Science, 2017, 38(4): 146-154. (in Chinese with English abstract)
[12] 束文秀,吳祖芳,劉連亮,等. 胡柚汁益生菌發(fā)酵揮發(fā)性風(fēng)味特征[J]. 食品科學(xué),2018,39(4):59-65.Shu Wenxiu, Wu Zufang, Liu Lianliang, et al. Study on the volatile flavor compounds of huyou juice by probiotics fermentation[J]. Food Science, 2018, 39(4): 59-65. (in Chinese with English abstract)
[13] Di C, Surico R, Paradiso A, et al. Effect of autochthonous lactic acid bacteria starters on health-promoting and sensory properties of tomato juices[J]. International Journal of Food Microbiology, 2009, 128(3): 473-483.
[14] Kaprasob R, Kerdchoechuen O, Laohakunjit N, et al. Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria[J]. Process Biochemistry, 2017, 59: 141-149.
[15] 熊濤,馬曉娟. 植物乳桿菌NCU166發(fā)酵胡蘿卜漿風(fēng)味物質(zhì)的分析[J]. 食品科學(xué),2013,34(2):152-154. Xiong Tao, Ma Xiaojuan. Analysis of flavor compounds from Lactobacillus plantarum-fermented carrot slurry[J]. Food Science, 2013, 34(2): 152-154. (in Chinese with English abstract)
[16] 孫圳,韓東,張春暉,等. 定量鹵制雞肉揮發(fā)性風(fēng)味物質(zhì)剖面分析[J]. 中國農(nóng)業(yè)科學(xué),2016,49(15):3030-3045. Sun Zhen, Han Dong, Zhang Chunhui, et al. Profile analysis of the volatile flavor compounds of quantitative marinated chicken during processing[J].Scientia Agricultura Sinica, 2016, 49(15): 3030-3045. (in Chinese with English abstract)
[17] Tripathi J, Chatterjee S, Gamre S, et al. Analysis of free and bound aroma compounds of pomegranate (Punica granatum L.) [J]. LWT - Food Science and Technology, 2014, 59(1): 461-466.
[18] 李春美,郝菊芳,鐘慧臻,等. 懷枝荔枝中游離態(tài)和鍵合態(tài)風(fēng)味物質(zhì)的檢測分析[J]. 食品科學(xué),2010,31(24):268-271. Li Chunmei, Hao Jufang, Zhong Huizhen, et al. Free and glycosidically bound volatile flavor compounds in fruit of litchi chinensis huaizhi [J]. Food Science, 2010, 31(24): 268-271. (in Chinese with English abstract)
[19] 張建友,王芳,周垚,等. 大豆醬油電滲析脫鹽工藝參數(shù)對其脫鹽率及品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(17):287-293. Zhang Jianyou, Wang Fang, Zhou Yao, et al. Effect of electrodialysis desalination technology parameters on ratio of desalinization and quality of soy sauce[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17): 287-293. (in Chinese with English abstract)
[20] Genovese A, Gambuti A, Piombino P, et al. Sensory properties and aroma compounds of sweet Fiano wine[J]. Food Chemistry, 2007, 103(4): 1228-1236.
[21] Vázquez-Araújo L, Koppel K, Chambers I E, et al. Instrumental and sensory aroma profile of pomegranate juices from the USA: Differences between fresh and commercial juice[J]. Flavour and Fragrance Journal, 2011, 26(2): 129-138.
[22] 蔣瀅,徐穎,朱庚伯. 人類味覺與氨基酸味道[J]. 氨基酸和生物資源,2002,24(4):70. Jiang Ying, Xu Ying, Zhu Gengbo. Human taste and amino acid flavor[J]. Amino Acids and Biotic Resources, 2002,24(4): 70. (in Chinese with English abstract)
[23] 王齊,朱偉偉,蘇丹,等. 蒲桃中氨基酸組成與含量對其營養(yǎng)與風(fēng)味的影響[J]. 食品科學(xué),2012,33(16):204-207. Wang Qi, Zhu Weiwei, Su Dan, et al. Effects of amino acid composition and contents on nutritional value and flavor in rose apple fruits[J]. Food Science, 2012, 33(16): 204-207. (in Chinese with English abstract)
[24] Wegkamp A, Teusink B, Vos W M D, et al. Development of a minimal growth medium for Lactobacillus plantarum[J]. Letters in Applied Microbiology, 2010, 50(1): 57-64.
[25] 管曉冉,張德純,席青. 雙歧桿菌發(fā)酵果蔬汁營養(yǎng)成分分析及保質(zhì)期觀察[J]. 中國微生態(tài)學(xué)雜志,2010,22(7):587-590. Guan Xiaoran, Zhang Dechun, Xi Qing. Nutrition analysis and shelf-life observation offermented mixed fruit and vegetable juice[J]. Chinese Journal of Microecology, 2010, 22(7): 587-590. (in Chinese with English abstract)
[26] Shah N. Functional foods from probiotics and prebiotics[J]. Food Technology, 2001, 55(11): 46-53.
[27] Melgarejo P, Calin-Sanchez A, Vazquez-Araujo L, et al. Volatile composition of pomegranates from 9 spanish cultivars using headspace solid phase microextraction[J]. Journal of Food Science, 2011, 76(1): 114-120.
Favor quality of different fruit and vegetable juices fermented by
Li Biansheng1,2, Lu Jiayi1, Ruan Zheng1
(1.510640,; 2.510640,)
Composition and concentration of volatile flavor compounds of fruit and vegetable juices have important influence on sensory properties and consumer acceptance. The effect of lactic acid bacteria metabolism on the production of bioactive compounds during growth of fruit substrate is well studied, however, the characteristics of the volatile flavor compounds of the fermented juices are less investigated. This paper aims to study the changes of flavor substances and flavor quality of orange juice, apple juice, pear juice, grape juice and cucumber juice before and after fermentation byLP-115 400B. Flavor of juices is characterized by interactions between volatile and non-volatile compounds, mainly acids, sugars, and free amino acids (FAA). Quantitative descriptive analysis (QDA) method was adopted to perform the sensory evaluation combed with the analysis of the FAA, sugars and acids. Principal component analysis (PCA) was applied to the sensory evaluation. Volatile flavor compounds were measured by gas chromatography - mass spectrometry (GC-MS) after the preparation of samples by static headspace solid-phase microextraction (HS-SPME). After fermentation, the kind of volatile flavor compounds in different juices increased, which enriched the flavor. The aldehydes were largely reduced to alcohols or oxidized to acids under microbial action. The relative content of alcohols and esters increased significantly, which was beneficial to the apple juice and pear juice, while the wine and pungent smell was increased in the fermented cucumber juice. Plenty of aromatic hydrocarbon was detected in grape juice after fermentation, which enriched the sensory flavor. Because of the changes in terpene, the fresh smell of orange juice decreased and the fermentation odor increased. Due to the metabolism of the lactic acid bacteria during fermentation, the total FAA content significantly reduced, but it still had certain influence on the flavor of fruit juices. The content of sweet amino acids, umami amino acids and bitter amino acids decreased, but the content of aromatic amino acids increased. The changes of FAA in various fruit and vegetable juices showed the correlation between FAA and volatile flavor compounds, such as the increase of the aromatic amino acids and the corresponding increase of the benzene derivatives in different juices after fermentation. The PCA of sensory evaluation showed that the fermented juices were mainly discriminated by the higher intensity of floral, fruity, fermented taste and sour (especially the apple juice and pear juice). The sweet taste of fruit juices was decreased after fermentation, which was related to the decrease of total sugar content and the decrease of sweet amino acids content. After fermentation, pear juice and apple juice showed the most comfortable sweet and sour feeling with the sugars-acids ratio of 21.00 and 17.79 respectively. These findings suggested that apple juice and pear juice may be more suitable substance for lactic acid fermentation to improve the flavor. For the other 3 kinds of juices, reducing the number of initial viable bacteria, terminating the fermentation in advance or adding flavor substances may help to optimize the flavor. In a word, lactic acid fermentation may be considered as an interesting option to enhance the flavor compounds of fruit juices and ensure a better control of flavor changes during juice processing.
bacteria; fermentation; fruit juices; the volatile flavor compounds; free amino acid; sensory evaluation
10.11975/j.issn.1002-6819.2018.19.037
TS255.44
A
1002-6819(2018)-19-0293-07
2018-04-11
2018-06-28
國家重點研發(fā)計劃項目“食品綠色節(jié)能制造關(guān)鍵技術(shù)及裝備研發(fā)(2017YFD0400400)”;中央高?;究蒲袠I(yè)務(wù)費專項資金資助項目
李汴生,博士,教授,研究方向為食品加工與保藏。Email:febshli@scut.edu.cn
李汴生,盧嘉懿,阮 征. 植物乳桿菌發(fā)酵不同果蔬汁風(fēng)味品質(zhì)研究[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(16):293-299. doi:10.11975/j.issn.1002-6819.2018.19.037 http://www.tcsae.org
Li Biansheng, Lu Jiayi, Ruan Zheng. Favor quality of different fruit and vegetable juices fermented by[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 293-299. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.19.037 http://www.tcsae.org