雷宏軍,劉 歡,Bhattarai Surya,Balsys Ron,潘紅衛(wèi)
?
氣源及活性劑對曝氣滴灌帶水氣單雙向傳輸均勻性的影響
雷宏軍1,劉 歡1,Bhattarai Surya2,Balsys Ron3,潘紅衛(wèi)1
(1. 華北水利水電大學(xué)水利學(xué)院,鄭州450046;2. 澳大利亞中央昆士蘭大學(xué)醫(yī)學(xué)與應(yīng)用科學(xué)學(xué)院,羅克漢普頓 4702; 3. 澳大利亞中央昆士蘭大學(xué)工程與技術(shù)學(xué)院,羅克漢普頓 4702)
曝氣滴灌過程中水、氧、氣傳輸均勻性是評價曝氣灌溉質(zhì)量的重要指標(biāo)。活性劑的添加和傳輸方式的優(yōu)選對曝氣滴灌傳輸過程中微氣泡的存在和溶解氧的保持有重要意義。為提高水氣耦合物在滴灌過程中傳輸?shù)木嚯x和均勻性,該文采用Mazzei 1078文丘里空氣射流器進行曝氣增氧,以空氣和氧氣為供試氣源,研究活性劑BS1000濃度(0、1、2和4 mg/L)和傳輸方式(單向和雙向)對曝氣滴灌下水、氧、氣傳輸特性的影響。結(jié)果表明:曝氣導(dǎo)致單向傳輸下流量均勻性略有下降,但可顯著提高灌溉水中溶解氧和摻氣比例;隨著活性劑濃度的增加,摻氣比例顯著增加(<0.05);活性劑的添加促進了氧氣曝氣下溶解氧的增加;溶氧均勻性和流量均勻性隨著活性劑濃度的增加無顯著性變化,但單向傳輸下4 mg/L BS1000的出氣均勻性較未添加活性劑顯著降低;雙向傳輸?shù)牧髁烤鶆蛐?、溶氧均勻性和出氣均勻性分別在95%、96%和67%以上,較單向傳輸分別平均提高14.00%、4.05%和30.64%(<0.05),是曝氣滴灌長程管道傳輸推薦的布置方式。研究結(jié)果為曝氣滴灌過程中灌溉技術(shù)參數(shù)優(yōu)化和管道的科學(xué)布置提供理論依據(jù)。
溶解氧;傳輸;灌溉;曝氣滴灌;微氣泡;摻氣比例;均勻性
協(xié)調(diào)土壤水氣環(huán)境以維持根系正常的新陳代謝和良好的根區(qū)環(huán)境,是灌溉追求的目標(biāo)[1]。常規(guī)灌溉中土壤水溶解氧(dissolved oxygen,DO)含量僅僅依靠土壤孔隙中的空氣向土壤水對流擴散產(chǎn)生,且含量較低[2]。灌溉水進入土壤驅(qū)替了土壤孔隙中的空氣而短暫破壞了土壤水氣平衡,造成作物根系缺氧,稱之為灌溉悖論[2-3]。根區(qū)土壤缺氧脅迫影響著土壤微生物的活動和根系對水分和養(yǎng)分的吸收[4-5]。曝氣滴灌(aerated drip irrigation,ADI)是將超飽和的水氧耦合物或超富氧的水氣兩相流通過滴灌或地下滴灌協(xié)調(diào)輸送至作物根區(qū)的一種新型的高效節(jié)水灌溉技術(shù)[2,6],可有效緩解作物根區(qū)的缺氧狀況,提高作物的水肥利用效率,增加作物的產(chǎn)量[6-8]。曝氣滴灌傳輸過程中氣泡的凝聚和溶解氧的逃逸是限制曝氣滴灌傳輸效果的制約因素。那么,如何將水、氧和氣均勻的輸送至作物根區(qū)顯得至關(guān)重要。
關(guān)于曝氣滴灌傳輸過程中摻氣比例(gas void fraction,GVF)的測量對明確水氣傳輸規(guī)律有重要意義。由于管道的不透明性,Calzavarini等[9]利用氣泡探針碰撞時間序列的統(tǒng)計分析來量化處于湍流狀態(tài)下的微氣泡。利用高速相機來連續(xù)監(jiān)測氣泡,通過氣泡圖像孔隙率可估算出摻氣總量[10]。雷宏軍等[11]通過曝氣水黏度和摻入氣體體積的變化關(guān)系計算出平均摻氣比例,但無法實時監(jiān)測傳輸過程中摻氣量的變化。Torabi等[12]利用充滿水的集氣瓶倒扣于水槽中收集曝氣摻入的氣體,但該種方法只能收集體積較大的氣泡。微氣泡因其穩(wěn)定性和溶解能力的存在,可大幅提高曝氣水中溶解氧[13]。較大氣泡而言,微氣泡因其氣泡直徑較小可避免氣泡直接上升聚合而導(dǎo)致氣泡的湮滅[14],為曝氣灌溉水氣長距離均勻傳輸提供了可能。
目前關(guān)于曝氣滴灌的水、氧、氣傳輸均勻性和傳輸距離有一定的研究。Torabi等[15]研究了活性劑添加濃度和連接器類型及尺寸對流量均勻性的影響,結(jié)果表明活性劑的添加可提高傳輸過程的流量均勻性。雷宏軍等[11]研究了不同活性劑濃度和工作壓力下水氣耦合物在較短滴灌帶(66 m)中的傳輸均勻性,結(jié)果表明出水均勻性和出氣均勻性分別達到95%和70%。由于氣泡浮力的存在,微氣泡在長距離傳輸中會導(dǎo)致氣泡的凝聚。大氣泡在灌溉過程中更易從向上埋設(shè)的滴頭逃逸而造成氣泡損失。Pendergast等[16]通過棉花田間栽培試驗表明250 m以內(nèi)的管道鋪設(shè)長度是曝氣滴灌的有效鋪設(shè)長度,可使空氣順利到達作物根區(qū)。為了進一步明確水氣耦合物的極限傳輸長度,Bhattarai等[10]研究了生物降解活性劑BS1000濃度和滴頭的埋設(shè)方位對氣泡輪廓和傳輸有效性的影響,結(jié)果表明BS1000較低濃度下水氣耦合物于傳輸200 m后出現(xiàn)分離。目前水氣耦合物的傳輸距離仍是限制曝氣滴灌技術(shù)推廣的重要影響因素之一。
本研究旨在明確曝氣滴灌下水、氧、氣在滴灌帶中的傳輸特性,擬實現(xiàn)水氧氣的長距離均勻輸送。試驗中利用簡易真空裝置和排水法相結(jié)合的方法及溶解氧測定儀監(jiān)測曝氣水的摻氣比例和溶解氧,探究生物降解活性劑BS1000濃度和傳輸方式對摻入氣體傳輸規(guī)律和溶解氧變化特性的影響。研究結(jié)果可為曝氣滴灌過程中參數(shù)的優(yōu)化及管道的布置提供理論依據(jù),對實際生產(chǎn)有一定的指導(dǎo)意義。
試驗布置示意圖如圖1所示。試驗中采用的循環(huán)曝氣裝置可產(chǎn)生巨量的微納米氣泡,儲水罐的體積為500 L,水泵的型號為HJ-620E(臺州韓進泵業(yè)有限公司),文丘里空氣射流器型號為Mazzei 1078。供試純氧由氧氣罐供應(yīng),純度達99.99%,可通過減壓閥調(diào)控供氧流量和供氧壓力。通過自動控制系統(tǒng)可維持曝氣和供水過程中壓力穩(wěn)定,壓力誤差為±0.005 MPa。非壓力補償式滴灌帶型號為JOHNDEERE,滴頭間距為0.33 m,額定流量為1.20 L/h,額定工作壓力為0.10 MPa。試驗中滴灌帶從曝氣裝置出水口接入,通過T型三通首尾相連,于地面水平鋪設(shè)。
1. 空氣壓縮機 2. 氧氣罐 3. 水泵 4. 減壓閥 5. 閘閥1 6. 文丘里空氣射流器 7. 排氣閥 8. 壓力控制器 9. 儲水罐 10. 閘閥2 11. 溶氧控制器 12. 溫度變送器 13. 水表 14. 自動控制系統(tǒng) 15. 壓力表 16. T型三通 17. 滴灌帶 18. 滴頭 19 閘閥3
試驗中設(shè)置了滴灌帶單向傳輸(首尾不相連)和雙向傳輸(首尾相連)2種傳輸方式、空氣曝氣和氧氣曝氣(記為AA和OA)2種曝氣氣源和0、1、2和4 mg/L(記為C0、C1、C2和C3)4個BS1000活性劑濃度,共16個處理,每個處理3次重復(fù)。試驗中通過首部壓力表(圖1,壓力表)控制供水壓力,單向傳輸和雙向傳輸?shù)氖撞抗┧畨毫O(shè)置為0.10 MPa(滴灌帶額定工作壓力),系統(tǒng)研究滴灌帶額定工作壓力下不同組合方案對傳輸過程中流量、摻氣比例、溶解氧和水氣均勻性的影響。曝氣過程中將空氣壓縮機或氧氣罐打開,通過壓力自動控制裝置維持儲水罐的曝氣壓力為0.10 MPa。在水氣兩相流長程輸送過程中,200 m可能是氣泡傳輸有效性保持的極限距離[10],故試驗中將滴灌帶長度設(shè)置為200 m。曝氣完成后,將滴灌帶首部的閘閥打開,待滴灌帶中水氣耦合物運行穩(wěn)定(單向傳輸,10 min;雙向傳輸,7 min)時開始試驗。試驗中于每個采樣點接入T型三通,監(jiān)測沿程摻氣量、溶解氧和壓力;并將各采樣點處滴灌帶墊起10 cm,以便接取滴頭出流水量。滴頭流量通過定時監(jiān)測采樣點出流水量計算。采樣點壓力通過精密壓力表相連T型三通測量。溶解氧和水溫通過便攜式Fibox 4光纖微氧傳感器測定(Presens, Germany),精度為0.01?;钚詣〣S1000是醇烷氧基化物(Crop Care Australia Pty, Murarrie, Queensland Australia),可生物降解,臨界膠束濃度為1~5 mg/L。
1.3.1 摻氣比例
循環(huán)曝氣過程中產(chǎn)生數(shù)量巨大的微納米氣泡,與水混摻且不易與水分離。試驗中采用簡易的真空裝置收集水氣耦合物,利用排水法進行摻氣比例的測量。摻氣量測量裝置如圖2所示。
1. 真空袋 2. 真空吸口 3. 真空吸管 4. 球閥1 5. 球閥2 6. 球閥3 7. 真空泵 8. 變徑接頭
在測量沿程摻氣量時,將變徑接頭與采樣點T型三通相連,并將球閥1和球閥2打開,利用真空泵將真空袋及真空吸管中的空氣抽出;待真空袋被抽為真空,關(guān)閉球閥2和球閥1;打開T型三通、球閥3和球閥1即可完成滴灌帶采樣點處水氣耦合物的收集。收集水量以400~500 mL為宜。收集完成后,關(guān)閉球閥1,將水氣耦合物靜置1 h。
待收集的水氣耦合物實現(xiàn)水氣分離,即可利用排水法收集氣體,利用式(1)計算摻氣比例(gas void fraction,GVF)。
GVF=(1–2)/(3–4) ×100% (1)
式中GVF為摻氣比例,%;1為集氣瓶+滿水的質(zhì)量,g;2為集氣瓶+瓶中剩余水的質(zhì)量;3為真空袋+水氣耦合物的質(zhì)量,g;4為真空袋的質(zhì)量,g。
1.3.2 均勻性
流量均勻性(Christiansen uniformity coefficient, CUC)的計算采用克里斯琴森公式[17],如式(2)、(3)、(4)所示。
CUC=(1–/)×100% (4)
式中CUC為均勻性,%;x為第個滴頭的流量,L/h;為滴頭的平均流量,L/h;為各滴頭流量與平均流量差值絕對值的平均值,L/h。溶氧均勻性和出氣均勻性的計算同流量均勻性的計算,計算時只需將相應(yīng)采樣點的流量換為溶解氧濃度和摻氣比例即可。試驗中利用SPSS22軟件進行數(shù)據(jù)分析。
空氣和氧氣曝氣下活性劑濃度對滴灌帶沿程流量及壓力變化無顯著影響,因此,該文中僅列出空氣曝氣無活性劑添加條件下單向傳輸和雙向傳輸?shù)牧髁考皦毫ρ爻套兓妶D3。單向傳輸時,壓力和流量均隨著傳輸距離的增加而減小。雙向傳輸時,壓力和流量隨著傳輸距離的增加呈現(xiàn)先減小后增加的趨勢。
圖3 曝氣滴灌下不同傳輸方式的壓力及流量變化
不同組合條件下流量及流量均勻性列于表1。單向傳輸時,未曝氣(NA)、空氣曝氣(AA)和氧氣曝氣(OA)條件下滴頭平均流量分別為0.95、0.94和0.94 L/h;雙向傳輸時,NA、AA和OA條件下滴頭平均流量均為1.21 L/h。滴頭流量隨著活性劑濃度的增加無顯著性差異(>0.05)。
曝氣可導(dǎo)致單向傳輸下流量均勻性略有下降。單向傳輸時,處理AAC2和AAC3的流量均勻性較NA減小了3.48%和3.22%(<0.05),而AAC0和AAC1的流量均勻性較NA無顯著性差異;處理OAC0和OAC2的流量均勻性較NA分別減小了1.53%和2.28%(<0.05),而OAC1和OAC3的流量均勻性較NA無顯著性差異。
單向傳輸時,C0~C3濃度的流量均勻性在82%以上;雙向傳輸時,C0~C3濃度的流量均勻性在95%以上且無顯著性差異(>0.05),故活性劑濃度的增加對流量均勻性無影響。雙向傳輸?shù)牧髁烤鶆蛐愿哂趩蜗騻鬏數(shù)牧髁烤鶆蛐裕?0.05)。較單向傳輸而言,NA、AA和OA雙向傳輸?shù)牧髁烤鶆蛐苑謩e提高了12.69%、15.00%、14.31%,故雙向傳輸?shù)牧髁烤鶆蛐云骄岣?4.00%。
表1 不同組合條件下流量及流量均勻性
注:同列下不同字母表示顯著性差異(<0.05),下同。
Note: Different letters in the same column indicate significant differences (<0.05). Same as below.
圖4列出了不同組合條件下沿程摻氣比例的變化。
單向傳輸時,摻氣比例隨著傳輸距離的增加呈現(xiàn)增加的趨勢,在傳輸距離160~200 m明顯增加,且200 m處摻氣比例略有下降。雙向傳輸時,摻氣比例隨著傳輸距離的增加呈現(xiàn)先增加后減小的趨勢,在傳輸距離80~120 m明顯增加。
不同組合條件下?lián)綒獗壤统鰵饩鶆蛐粤杏诒?。雙向傳輸?shù)膿綒獗壤陀趩蜗騻鬏數(shù)膿綒獗壤?0.05)。AA條件下,雙向傳輸C0~C3的摻氣比例較單向傳輸平均減小14.14%;OA條件下,雙向傳輸C0~C3的摻氣比例較單向傳輸平均減小19.12%。
摻氣比例隨著活性劑濃度的增加而顯著增加(< 0.05)。單向傳輸下,處理AAC1、AAC2和AAC3的摻氣比例較AAC0分別增加了17.42%、60.41%和80.32%;處理OAC1、OAC2和OAC3的摻氣比例較OAC0分別增加了25.00%、55.05%和69.27%。雙向傳輸下,AAC2和AAC3的摻氣比例較AAC0增加了68.09%和83.51%(<0.05),而AAC1的摻氣比例較AAC0無顯著性差異(>0.05);OAC2和OAC3的摻氣比例較OAC0增加了45.22%和81.18%(<0.05),而OAC1的摻氣比例較OAC0無顯著性差異(>0.05)。
注:C0、C1、C2和C3分別為添加活性劑BS1000濃度為0、1、2和4 mg·L–1。
表2 不同組合條件下?lián)綒獗壤统鰵饩鶆蛐?/p>
由表2可得,單向傳輸?shù)某鰵饩鶆蛐栽?8%以上,且4 mg/L(C3)的BS1000添加濃度下出氣均勻性較C0顯著降低(<0.05)。單向傳輸下,AAC3和OAC3的出氣均勻性較AAC0和OAC0分別降低了9.68%和 5.69%(<0.05)。雙向傳輸?shù)某鰵饩鶆蛐栽?7%以上且無顯著性差異(>0.05)。另外,單向傳輸下,氧氣曝氣的出氣均勻性高于空氣曝氣。單向傳輸下,處理OAC0、OAC1、OAC2和OAC3的出氣均勻性較AA各相應(yīng)濃度水平分別提高了5.97%、8.55%、7.27%和10.65%(<0.05)。
雙向傳輸?shù)某鰵饩鶆蛐暂^單向傳輸顯著提高(< 0.05)。雙向傳輸下AAC0、AAC1、AAC2和AAC3的出氣均勻性較單向傳輸分別提高了26.02%、27.92%、35.79%和47.29%;雙向傳輸下OAC0、OAC1、OAC2和OAC3的出氣均勻性較單向傳輸分別提高了20.04%、26.60%、26.66%和34.80%,故雙向傳輸?shù)某鰵饩鶆蛐暂^單向傳輸平均提高30.64%。
表3列出了不同組合條件下溶解氧和溶氧均勻性??諝馄貧夂脱鯕馄貧饪娠@著提高灌溉水中的溶解氧(< 0.05)。單向傳輸下,AA和OA條件下C0~C3濃度的溶解氧較NA平均提高了160.80%和617.05%;雙向傳輸下,AA和OA條件下C0~C3濃度的溶解氧較NA平均提高了185.26%和643.23%。氧氣曝氣的溶解氧較空氣曝氣顯著提高(<0.05)。單向傳輸時,OA條件下C0~C3濃度的溶解氧較AA平均增加了174.92%;雙向傳輸時,OA條件下C0~C3濃度的溶解氧較AA平均增加了160.07%。
表3 不同組合條件下溶解氧和溶氧均勻性
活性劑的添加促進了氧氣曝氣下溶解氧的增加(< 0.05),而隨著活性劑濃度的增加無顯著性差異(>0.05)。單向傳輸時,OAC1、OAC2和OAC3的溶解氧較OAC0分別提高了9.00%、10.87%和12.62%;雙向傳輸時,OAC1、OAC2和OAC3的溶解氧較OAC0分別提高了6.43%、6.85%和7.47%。
由表3可得,各組合條件的溶氧均勻性隨著活性劑濃度的增加無顯著性差異(>0.05),表明活性劑的添加對傳輸過程中溶氧均勻性無影響。單向傳輸?shù)娜苎蹙鶆蛐栽?2%以上,雙向傳輸?shù)娜苎蹙鶆蛐栽?6%以上。另外,單向傳輸下,氧氣曝氣的溶氧均勻性高于空氣曝氣(<0.05)。單向傳輸下,處理OAC0、OAC1、OAC2和OAC3的溶氧均勻性較AA各相應(yīng)濃度水平分別提高了4.63%、5.39%、5.07%和4.06%。
空氣曝氣下雙向傳輸?shù)娜苎蹙鶆蛐暂^單向傳輸有所提高(<0.05),而氧氣曝氣下無顯著性差異(>0.05)。雙向傳輸下AAC0、AAC1、AAC2和AAC3的溶氧均勻性較單向傳輸提高了了4.27%、3.95%、3.69%和4.28%,故空氣曝氣雙向傳輸下溶氧均勻性平均提高到4.05%。綜合考慮傳輸過程中流量均勻性、溶氧均勻性和出氣均勻性,雙向傳輸是曝氣滴灌推薦的管道布置方式,為曝氣滴灌長距離輸送提供理論依據(jù)。
滴灌系統(tǒng)的工作壓力對滴頭流量的恒定和氣泡的保持有積極的作用,并且沿程壓力和滴頭流量呈顯著正相關(guān)[11,18]。單向傳輸時,沿程壓降明顯,導(dǎo)致長程輸水時滴頭流量差異較大,流量均勻性較低;雙向傳輸時,沿程壓降較小,滴頭流量穩(wěn)定,故雙向傳輸?shù)牧髁烤鶆蛐愿哂趩蜗騻鬏數(shù)牧髁烤鶆蛐浴?/p>
表面活性劑的使用及其添加濃度對氣泡的產(chǎn)生數(shù)量、大小、分布特性有明顯的影響[19]。表面活性劑是良好的起泡劑[20],具有一定的分散性,可降低微氣泡表面黏度而使其均勻分散于水中,維持氣泡的穩(wěn)定[21]。隨著活性劑濃度的增加,大量活性劑分子匯聚于微氣泡的表面,降低了氣泡內(nèi)部壓力,促進微氣泡數(shù)量的增加[22],故摻氣比例隨著活性劑濃度的增加而增加。
根據(jù)氣泡形態(tài)的差異,水氣兩相流可分為泡狀流、彈性流和泡狀-彈狀混合流等流型[23-24]。泡狀流以微氣泡均勻散亂的形態(tài)分布于滴灌帶中。凝聚的氣泡貼著管壁逐漸向前推進的流型為彈狀流[25]。Bhattarai等[26]研究表明水氣耦合物在滴灌帶傳輸過程中由于氣泡的凝聚推移,在管道中歷經(jīng)微氣泡、大氣泡和氣泡團聚體的轉(zhuǎn)變。壓力降低導(dǎo)致微氣泡凝聚,會加速氣泡從滴頭逃逸[10],削弱曝氣滴灌的傳輸效果。試驗中采用循環(huán)曝氣裝置產(chǎn)生的水氣耦合物在傳輸過程中經(jīng)歷泡狀流到泡狀-彈狀混合流的流型轉(zhuǎn)變。單向傳輸下沿程壓降明顯,氣泡凝聚的幾率大,管道中產(chǎn)生的貼著管壁逐漸向前推移的泡狀-彈狀混合流聚集于管道的160~200 m,故摻氣比例隨著傳輸距離的增加呈現(xiàn)增加的趨勢,與Bhattarai等[10]研究結(jié)果一致。泡狀-彈狀混合流中氣泡團聚體沿管道遷移的推動力主要是滴頭流量的損失。單向傳輸時尾部的滴頭流量較小而造成凝聚的氣泡無法全部到達200 m處,這可能是導(dǎo)致尾部的摻氣比例略小于180 m處的原因。微氣泡隨著活性劑濃度增加而增加的同時,氣泡凝聚亦加劇,且匯聚于160~200 m處,故單向傳輸下4 mg/L BS1000的出氣均勻性較未添加活性劑顯著降低。
雙向傳輸時,進入首部和尾部的水氣耦合物為泡狀流。由于壓力的減小和傳輸過程中部分微氣泡的碰撞凝聚,氣泡團聚體停滯于滴灌帶中部80~120 m,故雙向傳輸時滴灌帶中部摻氣比例較高。雙向傳輸下壓力的保持較單向傳輸更穩(wěn)定,有效阻止了微氣泡的凝聚,故雙向傳輸?shù)膿綒獗壤缘陀趩蜗騻鬏?,而其出氣均勻性呈現(xiàn)相反的趨勢。
采用Mazzei 1078文丘里進行曝氣過程中,產(chǎn)生的微氣泡由于氣泡內(nèi)壓力的存在而導(dǎo)致微氣泡直徑逐漸減小直至湮滅的行為,增加了曝氣水中的溶解氧[27],故曝氣可顯著提高灌溉水中的溶解氧。水中溶解氧含量與溫度、鹽度和氧分壓密切相關(guān)[28]。純氧曝氣的氧分壓較空氣曝氣提高了5倍,故純氧曝氣條件下的溶解氧較空氣曝氣顯著提高?;钚詣┑奶砑釉黾恿宋馀莸臄?shù)量,加快了氧傳質(zhì)過程[29],增加了曝氣水中的溶解氧含量。隨著活性劑濃度的增加,微氣泡產(chǎn)生數(shù)量持續(xù)增加[11,30],但加大了氣泡碰撞凝聚的幾率,故活性劑的添加促進了氧氣曝氣下溶解氧的增加,而隨著活性劑濃度的增加無顯著性差異。
由于微氣泡成分的差異,微氧氣泡較微氣泡更易溶于水[26-27],削弱了微氧氣泡的凝聚,彌補了溶解氧的逃逸,造就了單向傳輸下氧氣曝氣的出氣均勻性和溶氧均勻性高于空氣曝氣。雙向傳輸?shù)难爻虊毫^穩(wěn)定,對削弱傳輸過程中溶解氧的逃逸有重要意義,導(dǎo)致空氣曝氣雙向傳輸?shù)娜苎蹙鶆蛐愿哂趩蜗騻鬏?。地下滴灌系統(tǒng)的流量及壓力因埋于地下受到土壤等因素的影響而發(fā)生變化[18]。那么,曝氣地下滴灌的溶解氧、摻氣比例及水、氧、氣均勻性是否會受到影響,有待進一步研究。
該文以空氣和氧氣為供試氣源,系統(tǒng)研究了活性劑BS1000濃度和傳輸方式對曝氣滴灌下滴灌帶水氣傳輸特性的影響,得到如下結(jié)論:
1)曝氣導(dǎo)致單向傳輸下流量均勻性在傳輸過程中略有下降。雙向傳輸下各活性劑濃度的流量均勻性在95%以上,較單向傳輸平均提高14.00%。
2)單向傳輸時,摻氣比例隨著傳輸距離的增加呈現(xiàn)增加的趨勢;雙向傳輸時,摻氣比例隨著傳輸距離的增加呈現(xiàn)先增加后減小的趨勢;摻氣比例隨著活性劑濃度的增加而增加;單向傳輸下4 mg/L BS1000的出氣均勻性較未添加活性劑顯著降低,而雙向傳輸差異不顯著;雙向傳輸?shù)某鰵饩鶆蛐栽?7%以上,較單向傳輸平均提高到30.64%。
3)曝氣可顯著提高灌溉水中的溶解氧。氧氣曝氣的溶解氧較空氣曝氣顯著提高;氧氣曝氣下活性劑的添加促進了溶解氧的增加,而隨著活性劑濃度的增加無顯著性差異;雙向傳輸?shù)娜苎蹙鶆蛐栽?6%以上且活性劑的添加對溶氧均勻性無影響;空氣曝氣雙向傳輸?shù)娜苎蹙鶆蛐暂^單向傳輸平均提高4.05%。
綜合考慮曝氣滴灌下流量均勻性、溶氧均勻性和出氣均勻性,雙向傳輸是曝氣滴灌推薦的連接方式,為實現(xiàn)水、氧、氣長距離均勻傳輸提供理論依據(jù)。
[1] Dhungel J, Bhattarai S P, Midmore D J. Aerated water irrigation (oxygation) benefits to pineapple yield, water use efficiency and crop health[J]. Advances in Horticultural Science, 2012, 26(1): 3-16.
[2] Ben-Noah I, Friedman S P. Aeration of clayey soils by injecting air through subsurface drippers: Lysimetric and field experiments[J]. Agricultural Water Management, 2016, 176: 222-233.
[3] Su N, Midmore D J. Two-phase flow of water and air during aerated subsurface drip irrigation[J]. Journal of Hydrology, 2005, 313(3): 158-165.
[4] Bhattarai S P, Su N, Midmore D J. Oxygation unlocks yield potentials of crops in oxygen-limited soil environments[J]. Advances in Agronomy, 2005, 88(5): 313-377.
[5] 雷宏軍,楊宏光,馮凱,等. 循環(huán)曝氣灌溉條件下小白菜生長及水分與養(yǎng)分利用[J]. 灌溉排水學(xué)報,2017,36(11):13-18. Lei Hongjun, Yang Hongguang, Feng Kai, et al. Impact of continuous aerating irrigation on growth, water use efficiency and nutrient uptake of pak choi growing in different soils[J]. Journal of Irrigation and Drainage, 2017, 36(11): 13-18. (in Chinese with English abstract)
[6] Abuarab M, Mostafa E, Ibrahim M. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil[J]. Journal of Advanced Research, 2013, 4(6): 493-499.
[7] Lee J W, Lee B S, Kang J G, et al. Effect of root zone aeration on the growth and bioactivity of cucumber plants cultured in perlite substrate[J]. Biologia, 2014, 69(5): 610-617.
[8] Bhattarai S P, Midmore D J, Pendergast L. Yield, water-use efficiencies and root distribution of soybean, chickpea and pumpkin under different subsurface drip irrigation depths and oxygation treatments in vertisols[J]. Irrigation Science, 2008, 26(5): 439-450.
[9] Calzavarini E, Berg T H V D, Toschi F, et al. Quantifying microbubble clustering in turbulent flow from single-point measurements[J]. Physics of Fluids, 2008, 20(4): 040702.
[10] Bhattarai S P, Balsys R J, Eichler P, et al. Dynamic changes in bubble profile due to surfactant and tape orientation of emitters in drip tape during aerated water irrigation[J]. International Journal of Multiphase Flow, 2015, 75: 137-143.
[11] 雷宏軍,臧明,張振華,等. 循環(huán)曝氣壓力與活性劑濃度對滴灌帶水氣傳輸?shù)挠绊慬J]. 農(nóng)業(yè)工程學(xué)報,2014,30(22):63-69. Lei Hongjun, Zang Ming, Zhang Zhenhua, et al. Impact of working pressure and surfactant concentration on air-water transmission in drip irrigation tape under cycle aeration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 63-69. (in Chinese with English abstract)
[12] Torabi M, Midmore D J, Walsh K B, et al. Analysis of factors affecting the availability of air bubbles to subsurface drip irrigation emitters during oxygation[J]. Irrigation Science, 2013, 31(4): 621-630.
[13] Xu Q, Nakajima M, Ichikawa S, et al. A comparative study of microbubble generation by mechanical agitation and sonication[J]. Innovative Food Science & Emerging Technologies, 2008, 9(4): 489-494.
[14] 張磊,劉平,劉春,等. 微氣泡及其在環(huán)境污染控制中的應(yīng)用[J]. 河北工業(yè)科技,2011,28(1):59-63. Zhang Lei, Liu Ping, Liu Chun, et al. Microbubbles and its application in control of environmental pollution[J]. Hebei Journal of Industrial Science and Technology, 2011, 28(1): 59-63. (in Chinese with English abstract)
[15] Torabi M, Midmore D J, Walsh K B, et al. Improving the uniformity of emitter air bubble delivery during oxygation[J]. Journal of Irrigation & Drainage Engineering, 2014, 140(7): 06014002.
[16] Pendergast L, Bhattarai S P, Midmore D J. Benefits of oxygation of subsurface drip-irrigation water for cotton in a Vertosol[J]. Crop & Pasture Science, 2013, 64(11): 1171-1181.
[17] Stewart B A, Howell T A, Stewart B A, et al. Encyclopedia of Water Science[M]. New York: Marcel Dekker Incorporation, 2003.
[18] 白丹,宋立勛,王曉愚,等. 地下滴灌灌水器流量和壓力關(guān)系的試驗[J]. 農(nóng)業(yè)機械學(xué)報, 2008,39(8):189-191. Bai Dan, Song Lixun, Wang Xiaoyu, et al. Experiment on the relationship between flow and pressure of subsurface drip irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(8): 189-191. (in Chinese with English abstract)
[19] 劉艷艷,李彥鵬,朱婷婷. 表面活性劑對中尺度氣泡形狀及速度的調(diào)控研究[J]. 西安交通大學(xué)學(xué)報,2011,45(10):93-97. Liu Yanyan, Li Yanpeng, Zhu Tingting, et al. Study on modulating shape and velocity of meso-scale bubble using surfactants[J]. Journal of Xi'an Jiaotong University, 2011, 45(10): 93-97. (in Chinese with English abstract)
[20] Hanwright J, Zhou J, Evans G M, et al. Influence of surfactant on gas bubble stability[J]. Langmuir, 2005, 21(11): 4912-4920.
[21] Lee D H, Cody R D, Kim D J, et al. Effect of soil texture on surfactant-based remediation of hydrophobic organic- contaminated soil[J]. Environment International, 2002, 27(8): 681-688.
[22] Tasoglu S, Demirci U, Muradoglu M. The effect of soluble surfactant on the transient motion of a buoyancy-driven bubble[J]. Physics of Fluids, 2008, 20(4): 040805.
[23] 楊建,張鳴遠,蘇玉亮,等. 氣液兩相泡狀流界面濃度的研究[J]. 化學(xué)工程,2002,30(5):34-37. Yang Jian, Zhang Mingyuan, Su Yuliang, et al. Study on the area concentration of air-water bubbly flow[J]. Chemical Engineering, 2002, 30(5): 34-37. (in Chinese with English abstract)
[24] Choi C, Yu D I, Kim M. Surface wettability effect on flow pattern and pressure drop in adiabatic two-phase flows in rectangular microchannels with T-junction mixer[J]. Experimental Thermal & Fluid Science, 2011, 35(6): 1086-1096.
[25] Wren E, Baker G, Azzopardi B J, et al. Slug flow in small diameter pipes and T-junctions[J]. Experimental Thermal & Fluid Science, 2005, 29(8): 893-899.
[26] Bhattarai S P, Balsys R J, Wassink D, et al. The total air budget in oxygenated water flowing in a drip tape irrigation pipe[J]. International Journal of Multiphase Flow, 2013, 52(6): 121-130.
[27] 呂越,劉春,吳克宏. 微氣泡曝氣中微氣泡收縮特性研究[J]. 河北工業(yè)科技,2012,29(6):352-356. Lü Yue, Liu Chun, Wu Kehong. Characteristics of microbubble’s shrinkage in microbubble aeration[J]. Hebei Journal of Industrial Science and Technology, 2012, 29(6): 352-356. (in Chinese with English abstract)
[28] 張瑩瑩,張經(jīng),吳瑩,等. 長江口溶解氧的分布特征及影響因素研究[J]. 環(huán)境科學(xué),2007,28(8):1649-1654. Zhang Yingying, Zhang Jing, Wu Ying, et al. Characteristics of dissolved oxygen and its affecting factors in the Yangtze estuary[J]. Environmental Science 2007, 28(8): 1649-1654. (in Chinese with English abstract)
[29] Mcclure D D, Lee A C, Kavanagh J M, et al. Impact of Surfactant addition on oxygen mass transfer in a bubble column[J]. Chemical Engineering & Technology, 2015, 38(1): 44-52.
[30] Lei H, Bhattarai S, Balsys R, et al. Temporal and spatial dimension of dissolved oxygen saturation with fluidic oscillator and Mazzei air injector in soil-less irrigation systems[J]. Irrigation Science, 2016, 34(6): 421-430.
Impacts of gas source and surfactant on gas-water coupling transmission along a long-distance drip tape in one or two line layout under aerated drip irrigation
Lei Hongjun1, Liu Huan1, Bhattarai Surya2, Balsys Ron3, Pan Hongwei1
(1.450046,; 2.4702,;3.4702,)
Aerated drip irrigation (ADI) is a technique to aerate the rhizosphere by aerated water through the drip irrigation system. The dissolved oxygen (DO) in water, water flow rate and gas flow uniformity are the essential indexes for the evaluation of irrigation quality in ADI.The use of biodegradable surfactant BS1000 and the optimization of transmission modes are of great significance in the existence of microbubble and the retention of DO in water during ADI. To increase the uniformity of gas, oxygen and water and the delivery distance under ADI, transmission characteristics, i.e., gas-oxygen-water mixture produced by aerated irrigation system using Mazzei 1078 venturi air injector, were studied. The impacts of gas source and surfactant on gas-water coupling transmission along a long-distance drip tape in one or two line layout were investigated. Totally 16 combinations were tested, including 2 types of gas (air and oxygen), 2 transmission modes (one and two line transmission), and 4 levels of BS1000 concentrations (0, 1, 2 and 4 mg/L), respectively. During the experiment, parameters and uniformities of water flow rate, DO, gas void fraction (GVF), and water flow rate were observed. The DO and GVF of irrigation water along a drip tape were monitored by a dissolved oxygen meter and a vacuum device of gas void fraction measurement. Main results were given as below. Aeration treatment resulted in the slight reduce in the uniformity of water flow rate during one line transmission under ADI along a drip tape, but the DO concentration and GVF in irrigation water were significantly increased at the level of 0.05. The DO concentration in air and oxygen aerated water were increased by 160.80% and 617.05% compared with non-aerated treatment during one line transmission. However, DO levels in air and oxygen aerated water were increased by 185.26% and 643.23% compared with non-aerated treatments during two line transmission. Use of biodegradable surfactant BS1000 concentration brought an increase in GVF. Under the condition of air aerated treatment during one line transmission, the GVF at 1, 2 and 4 mg/L of BS1000 were significantly increased by 17.42%, 60.41% and 80.32% than the non-use of surfactant treatment, respectively. Similarly, under the condition of oxygen aerated treatment during one line treatment, GVF at 1, 2 and 4 mg/L of BS1000 were significantly increased by 25.00%, 55.05% and 69.27% in contrast to non-use of surfactant treatment. The use of BS1000 had a positive effect on the DO under ADI. With the increasing of BS1000 concentration, there was no significant difference neither in uniformity of DO nor water flow rate. However, compared to non-use of BS1000, the uniformity of gas flow at 4 mg/L of BS1000 was significantly decreased during one line transmission. The uniformity of water flow rate, DO and gas flow during two line transmission under ADI were higher than 95%, 96% and 67%. Compared to one line transmission, the uniformity of water flow rate, DO and gas flow during two line transmission were increased by 14.00%, 4.05% and 30.64%, respectively. Two line transmission was an optimal connection mode under ADI at the long distance of water delivery under ADI. This research will provide valuable information for optimization of aerated technique parameters and drip tape layout under ADI.
dissolved oxygen; transmissions; irrigation; aerated drip irrigation; microbubble; gas void fraction; uniformity
10.11975/j.issn.1002-6819.2018.19.012
S275.6;Q178.1+11
A
1002-6819(2018)-19-0088-07
2018-04-03
2018-08-10
國家自然科學(xué)基金(U1504512);河南省科技創(chuàng)新人才項目(174100510021);華北水利水電大學(xué)研究生創(chuàng)新課題(YK2017-02)
雷宏軍,湖北大冶人,博士,教授,博士生導(dǎo)師,主要從事節(jié)水灌溉理論與技術(shù)研究。Email: hj_lei2002@163.com
雷宏軍,劉 歡,Bhattarai Surya,Balsys Ron,潘紅衛(wèi). 氣源及活性劑對曝氣滴灌帶水氣單雙向傳輸均勻性的影響[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(19):88-94. doi:10.11975/j.issn.1002-6819.2018.19.012 http://www.tcsae.org
Lei Hongjun, Liu Huan, Bhattarai Surya, Balsys Ron, Pan Hongwei.Impacts of gas source and surfactant on gas-water coupling transmission along a long-distance drip tape in one or two line layout under aerated drip irrigation [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(19): 88-94. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.19.012 http://www.tcsae.org