• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linear (optimal) complexity direct full-wave solution of full-package problems involving over 10 million unknowns on a single CPU core

    2018-10-10 03:27:32JIAODan

    JIAO Dan

    (School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA)

    Abstract:In this paper, we demonstrated a fast direct finite-element solver of linear (optimal) complexity for analyzing large-scale system-level interconnects and their related signal and power integrity problems. This direct solver had successfully analyzed an industry product-level package and correlated with measurements in time domain. The finite-element matrix of over 15.8 million unknowns resulting from the analysis of the industry package, including both signal lines and power delivery structures, was directly solved in less than 1.6 h on a single core running at 3 GHz. Comparisons with the state-of-the-art finite element methods that employed the most advanced direct sparse solvers, and a widely used commercial iterative finite element solver, had demonstrated the clear advantages of the proposed linear-complexity direct solver in computational efficiency.

    Keywords: finite-element method; signal and power integrity; time-domain method

    0 Introduction

    With the increase in the processing power of the CPU, the memory and system interconnect links connected to a CPU need to have an exponentially increased bandwidth in order to fully utilize the computing power. This leads to higher speed signals on each data line as well as an increase in the number of data lines. Enabling higher bandwidth brings significant challenges to the analysis and design of interconnects. To address these challenges, a full-wave modeling technology is required that can rapidly characterize the interaction between a large number of I/Os in the face of large problem sizes.

    Existing fast full-wave solvers for solving large-scale problems are, in general, iterative solvers since traditional direct solvers are computationally expensive. The optimal complexity of an iterative solver isO(NrhsNitN), whereNrhsis the number of right hand sides,Nitis the number of iterations, andNis the matrix size. To analyze the interaction among a large number of circuit ports and to perform many what-if analyses for an optimal design, the number of right hand sides is proportional to the port count and the number of what-if analyses. When the number of right hand sides is large, iterative solvers become inefficient. In contrast, a direct solver has a potential of achievingO(N) complexity, which is optimal for solvingNunknowns.

    Among existing full-wave solvers, the finite element method (FEM) is a popular method for analyzing circuits because of its great capability in handling both complicated materials and geometries. A traditional direct finite element solver is computationally expensive. It is shown in Ref.[1] that the optimal operation count of a direct FEM solution in exact arithmetic isO(N1.5) for 2-D problems, andO(N2) for 3-D problems. Although there have been successes in speeding up the direct finite element solution with state-of-the-art sparse matrix solvers[2-4], these solvers have not accomplishedO(N) complexity, i.e., optimal complexity, for FEM-based direct solutions of general 3-D circuit problems.

    In recent years, we have successfully achieved the first direct finite-element solver of linear complexity[5-6]. This solver is capable of analyzing arbitrarily shaped 3-D circuits in inhomogeneous materials. An IBM product-level package problem[7]having over 15.8 million unknowns is directly factorized and solved for 40 right hand sides in less than 1.6 h on a single 3 GHz CPU core. The signal integrity of the package interconnects in presence of the surrounding power delivery network is analyzed. Excellent correlation with the measured data is observed. In addition, we have compared the proposed direct solver with a suite of state-of-the-art high-performance direct sparse solvers such as MUMPS 4.10.0[2], and Pardiso in Intel MKL[4]. It is shown that the proposed direct solver greatly outperforms state-of-the-art sparse solvers in both CPU time and memory consumption with good accuracy achieved.

    1 Vector finite element method and mathematical background

    1.1 Vector finite element method

    Considering a general physical layout of a package or integrated circuit involving inhomogeneous materials and arbitrarily shaped lossy conductors, the electric fieldEsatisfies the following second-order vector wave

    (1)

    whereμris relative permeability,εris relative permittivity,σis conductivity,k0is free-space wave number,Z0is free-space wave impedance, andJis current density. A finite element based solution of Eq. (1) subject to pertinent boundary conditions results in the following linear system of equations

    YX=B,

    (2)

    whereY∈N×Nis a sparse matrix, and matrixBis composed of one or multiple right hand side vectors. When the size of Eq. (2) is large, its efficient solution relies on fast and large-scale matrix solutions.

    1.2 Mathematical Background

    In state-of-the-art direct sparse solvers, multifrontal method[2]is a powerful algorithm. In this algorithm, the overall factorization of a sparse matrix is organized into a sequence of partial factorizations of smaller dense frontal matrices. Various ordering techniques have been adopted to reduce the number of fill-ins introduced during the direct matrix solution process. The computational cost of a multifrontal based solver depends on the number of nonzero elements in theLandUactors of the sparse matrix. In general, the complexity of a multifrontal solver is higher than linear (optimal) complexity.

    Recently, it is proved in Ref.[3] that the sparse matrix resulting from a finite-element based analysis of electromagnetic problems can be represented by anH-matrix[8]without any approximation, and the inverse as well asLandUof this sparse matrix has a data-sparseH-matrix approximation with a controlled error. In anH-matrix[8], the entire matrix is partitioned into multilevel admissible blocks and inadmissible blocks. An inadmissible block keeps its original full matrix form, while an admissible block is represented by an error-controlled low-rank matrix. It is shown in Ref. [3] that anH-matrix based direct FEM solver has a complexity ofO(NlogN) in storage and a complexity ofO(Nlog2N) in CPU time for solving general 3-D circuit problems.

    2 Proposed linear complexity direct fem solver for large-scale interconnect extraction and related signal and power integrity analysis

    2.1 Proposed direct solver

    In the proposed solver, we fully take advantage of the zeros in the original FEM matrix, and also maximize the zeros inLandUby nested dissection ordering[1]. We store the nonzero blocks inLandUwith a compact error-controlledH-matrix representation, compute these nonzero blocks efficiently by developing fastH-matrix based algorithms, while removing all the zeros inLandUfrom storage and computation. Moreover, we organize the factorization of the original 3-D finite element matrix into a sequence of factorizations of 2-D dense matrices, and thereby control the rank to follow a 2-D based growth rate, which is much slower than a 3-D based growth rate[9]for analyzing circuits operating at high frequencies. The overall algorithm has six major steps:

    (1) Build cluster treeTIbased on nested dissection;

    (2) Build elimination treeEIfromTI;

    (3) Obtain the boundary for each node inEI;

    (4) Generate theH-matrix structure for each node;

    (5) Perform numerical factorization guided byEIby new fastH-matrix-based algorithms;

    (6) Solve for one or multiple right hand sides based onEI.

    To build cluster treeTI, we recursively partition a 3-D computational domain into separators and subdomains. Since a separatorScompletely separates two subdomainsD1andD2, the off-diagonal blocks in the FEM matrix corresponding to the interaction betweenD1andD2, denoted byYD1D2andYD2D1, are zero. More important, the same zero blocks can be preserved in theLandUfactors.

    The LU factorization of the FEM matrix is a bottom-up traversal of the elimination tree as that used in the multifrontal algorithm. Note that the union of all the nodes inEIis equal to I, which is different from cluster treeTI. For each nodesin the elimination tree, we assemble a frontal matrixFsfrom the system matrixYand all the updating matricesUcwithc∈Esbeings’s children nodes. TheFscan be written as a 2×2 block matrix

    (3)

    in whichΦsdenotes the boundary ofs. We then apply partial LU factorization toFs, obtaining

    (4)

    Comparing Eq. (3) and (4), we can readily obtain the updating matrixUs

    Us=FΦs,Φs-LΦs,sUs,Φs,

    (5)

    which is then used for the LU factorization of the frontal matrices ofs’s ancestors inEI. The entire LU factorization of matrixYis a bottom-up or post-order traversal ofEI. ForΦs, we have an important lemma

    (6)

    Therefore, minimizing#{Φs}, the size ofΦs, is critical in avoiding unnecessary operations on zeros. We thus first perform symbolic factorization to pre-process the elimination tree to compute the minimumΦsfor each node inEIbefore the real factorization is carried out.

    2.2 Complexity and accuracy analysis

    (7)

    (8)

    which is linear. The accuracy of such anH-matrix representation can be proved from the fact that the original FEM matrix has an exactH-representation and its inverse has an error-boundedH-representation[3].

    3 Performance demonstration

    3.1 Intel package interconnect with measured data

    A 3-D package interconnect provided by Intel Corporation is simulated from 50 MHz to 40 GHz. Fig.1A illustrates the cross sectional view, top view, and 3-D view of the package interconnect. In Fig.1B and Fig.1C, we plot theS-parameters extracted by the proposed solver in comparison with the measure data and the results generated from a commercial FEM-based tool. Excellent accuracy of the proposed solver can be observed in the entire frequency band.

    Fig.1 Simulation of a realistic Intel package interconnect example and correlation with measurements

    3.2 IBM full-package problem with measurements

    An IBM product-level package[7]is simulated from 100 MHz to 50 GHz to examine the capability of the proposed direct finite element solver. The package involves 92 thousand unique elements. There are eight metal layers and seven dielectric layers. We develop software to interpret the board file of the full IBM package into the geometrical and material data that can be recognized by the proposed solver, and also mesh the entire layout of the package into triangular prism elements. The layout of selected layers re-produced by our geometrical processing software can be seen from Fig.2.

    Fig.2 Layout of a product-level package in different layers and 19 test structures for solver performance verification

    3.2.1 Complexity and performance verification

    To examine the accuracy and efficiency of the proposed direct solver, a suite of nineteen substructures of the full package is simulated. These substructures are illustrated in Fig.2C. The smallest structure occupies a package area of 500 μm in width, 500 μm in length, and 4 layers in thickness, whereas the largest structure occupies a package area of 9 500 μm by 9 500 μm. The resultant number of unknowns ranges from 31 276 to 15 850 600. Two ports at the topmost layer are excited. The important simulation parameters used in the proposed direct solver are leafsize=8 and truncation error ∈=10-6. The computer used has a single core running at 3 GHz with 64 GB memory.

    The CPU time and memory cost of the proposed solver with respect to unknown numberNare shown in Fig.3 in comparison with those of the direct finite element solver that employs the most advanced direct sparse solvers provided by SuperLU 4.3, UMFPACK 5.6.2, MUMPS 4.10.0[2], and Pardiso in Intel MKL[4]. It is evident that the proposed direct finite element solver greatly outperforms the other state-of-the-art direct solvers in both CPU time and memory consumption. More important, the proposed direct solver demonstrates a clear linear complexity in both time and memory across the entire unknown range, whereas the complexity of the other direct solvers is much higher. With the optimal linear complexity achieved, the proposed direct solver is able to solve the extremely large 15.8 million unknown case using less than 1.6 h on a single core. The solution error of the proposed direct solver, measured in relative residual, is plotted in Fig.3C for all of the testing cases. Excellent accuracy is observed across the entire unknown range. Note the last point in Fig.3B is due to the fact that the computer used has only 64 GB memory.

    Fig.3 Complexity and performance verification of the proposed direct solver

    3.2.2 Signal and power integrity analysis and correlation with measurements

    With the accuracy and efficiency of the proposed direct solver validated, next, we analyze the signal and power integrity of the IBM product-level package and correlate our analysis with measured data. First, the frequency-domain S-parameters from 100 MHz to 30 GHz were generated for 16 ports assigned to 2 interconnects located in the full package. The near-end ports are placed on the topmost layer (chip side), while the far-end ports are at the bottom-most layer (BGA side). The entire stack of 8 metal layers and 7 inter-layer dielectrics are simulated. The resultant number of unknowns is 3 149 880.

    The proposed direct solver only takes less than 3.3 h and 29 GB peak memory at each frequency to extract the 16 by 16S-parameter matrix, i.e. solutions for 16 right hand sides. The crosstalk between the near end of line 6 (port 9) and the far end of line 2 (port 8) with all the other ports left open is plotted in Fig.4 from 100 MHz to 30 GHz. The measurement of the structure is performed in time domain[7]. As shown in Fig.4C, very good agreement is observed between the time-domain voltage obtained from the proposed solver and the measured data.

    Fig.4 Time domain correlation with measurements

    4 Conclusion

    In this paper, we develop a linear-complexity direct finite element solver to analyze large-scale interconnects and related system-level signal and power integrity problems. Comparisons with measurements and state-of-the-art sparse solvers have demonstrated the superior performance of the proposed direct solver in accuracy, efficiency and capacity.

    99在线视频只有这里精品首页| 日日爽夜夜爽网站| 中亚洲国语对白在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品电影一区二区三区| 这个男人来自地球电影免费观看| 美女黄网站色视频| 老熟妇仑乱视频hdxx| 久久 成人 亚洲| 国产麻豆成人av免费视频| 最近视频中文字幕2019在线8| 亚洲av成人不卡在线观看播放网| 色综合婷婷激情| 在线观看免费日韩欧美大片| 国产高清激情床上av| 欧美 亚洲 国产 日韩一| 亚洲avbb在线观看| 国产精品精品国产色婷婷| 国产精品一及| ponron亚洲| 国产熟女xx| 久久精品国产99精品国产亚洲性色| 欧美日韩亚洲综合一区二区三区_| 啦啦啦免费观看视频1| 一级黄色大片毛片| 黑人欧美特级aaaaaa片| 欧美色欧美亚洲另类二区| 亚洲av电影在线进入| 国产三级在线视频| 午夜激情av网站| 成人18禁在线播放| 久久香蕉激情| 日韩欧美免费精品| 在线观看一区二区三区| 黄色丝袜av网址大全| 久久午夜亚洲精品久久| 国产一区二区在线av高清观看| 老熟妇仑乱视频hdxx| 久久热在线av| 首页视频小说图片口味搜索| 国产精品九九99| 三级男女做爰猛烈吃奶摸视频| 国产熟女xx| 日韩欧美国产在线观看| 欧美成人一区二区免费高清观看 | 超碰成人久久| 午夜老司机福利片| 国产亚洲精品久久久久5区| 精华霜和精华液先用哪个| 亚洲免费av在线视频| 日韩三级视频一区二区三区| 巨乳人妻的诱惑在线观看| 欧美精品啪啪一区二区三区| 两个人看的免费小视频| 18禁黄网站禁片午夜丰满| 国产精品,欧美在线| 成人特级黄色片久久久久久久| 高清在线国产一区| 国产成人影院久久av| 国产黄a三级三级三级人| 欧美+亚洲+日韩+国产| 黄色a级毛片大全视频| 免费在线观看亚洲国产| 人成视频在线观看免费观看| 超碰成人久久| 天堂av国产一区二区熟女人妻 | 久久99热这里只有精品18| 不卡av一区二区三区| 丁香六月欧美| 最新在线观看一区二区三区| av超薄肉色丝袜交足视频| 国产黄a三级三级三级人| 亚洲精品中文字幕在线视频| 最近最新中文字幕大全电影3| cao死你这个sao货| 欧美成人性av电影在线观看| 国产欧美日韩一区二区三| 久久久久久九九精品二区国产 | 女生性感内裤真人,穿戴方法视频| 国产高清激情床上av| 日韩精品青青久久久久久| 99国产精品一区二区三区| 亚洲天堂国产精品一区在线| 国产麻豆成人av免费视频| 亚洲国产欧美一区二区综合| 亚洲无线在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 999久久久精品免费观看国产| 香蕉久久夜色| 亚洲国产中文字幕在线视频| 男人的好看免费观看在线视频 | 国产成人一区二区三区免费视频网站| 成人手机av| 99国产极品粉嫩在线观看| 国产三级中文精品| 757午夜福利合集在线观看| √禁漫天堂资源中文www| 日韩高清综合在线| 19禁男女啪啪无遮挡网站| 男女做爰动态图高潮gif福利片| 999久久久国产精品视频| 亚洲成人久久性| 无限看片的www在线观看| 看免费av毛片| 精品久久久久久久久久免费视频| 免费在线观看黄色视频的| 两性夫妻黄色片| 亚洲欧美一区二区三区黑人| 国产一区二区三区在线臀色熟女| 97人妻精品一区二区三区麻豆| 一区二区三区激情视频| 国产亚洲精品av在线| 久久伊人香网站| 免费在线观看亚洲国产| 亚洲国产精品成人综合色| 久久国产乱子伦精品免费另类| 搞女人的毛片| 日日摸夜夜添夜夜添小说| 桃色一区二区三区在线观看| 国产欧美日韩一区二区精品| 亚洲av熟女| 一个人免费在线观看的高清视频| 欧美日韩瑟瑟在线播放| 级片在线观看| 亚洲天堂国产精品一区在线| 夜夜躁狠狠躁天天躁| 成人18禁高潮啪啪吃奶动态图| 一级毛片精品| 国产精品电影一区二区三区| 老司机午夜福利在线观看视频| 国产片内射在线| 亚洲中文日韩欧美视频| 麻豆久久精品国产亚洲av| 999久久久国产精品视频| 国产在线观看jvid| 日本 av在线| 身体一侧抽搐| av福利片在线观看| 男人舔女人的私密视频| 美女午夜性视频免费| 叶爱在线成人免费视频播放| 久久久精品国产亚洲av高清涩受| 麻豆一二三区av精品| 日韩精品中文字幕看吧| 搡老岳熟女国产| 露出奶头的视频| 久久精品成人免费网站| 一卡2卡三卡四卡精品乱码亚洲| 在线国产一区二区在线| 国产亚洲精品久久久久久毛片| 国产高清激情床上av| 久久精品国产亚洲av高清一级| 国产亚洲欧美98| 国产精品野战在线观看| 身体一侧抽搐| 十八禁网站免费在线| 国产亚洲精品久久久久5区| 国产97色在线日韩免费| 精品久久久久久久人妻蜜臀av| 国产精品国产高清国产av| 久久国产乱子伦精品免费另类| 亚洲av日韩精品久久久久久密| 两性夫妻黄色片| 正在播放国产对白刺激| 成年版毛片免费区| 欧美日本亚洲视频在线播放| 麻豆国产97在线/欧美 | 少妇的丰满在线观看| 在线国产一区二区在线| 欧美一区二区精品小视频在线| av在线播放免费不卡| 亚洲,欧美精品.| 听说在线观看完整版免费高清| 日韩大码丰满熟妇| 欧美日韩亚洲国产一区二区在线观看| 亚洲成av人片在线播放无| 欧美又色又爽又黄视频| 久久精品国产亚洲av高清一级| 无人区码免费观看不卡| 三级男女做爰猛烈吃奶摸视频| 床上黄色一级片| 又爽又黄无遮挡网站| 777久久人妻少妇嫩草av网站| 免费高清视频大片| 国产精品久久电影中文字幕| 欧美又色又爽又黄视频| 禁无遮挡网站| 久久 成人 亚洲| av国产免费在线观看| 91国产中文字幕| 黑人操中国人逼视频| 欧美黑人精品巨大| 亚洲成a人片在线一区二区| 婷婷精品国产亚洲av| 国产精品免费一区二区三区在线| 午夜精品久久久久久毛片777| 老司机深夜福利视频在线观看| 久久中文看片网| 久久香蕉激情| 成人国产综合亚洲| 国产一区二区三区在线臀色熟女| 久久久久久久久免费视频了| 亚洲国产看品久久| 成年人黄色毛片网站| 黄色毛片三级朝国网站| 欧美午夜高清在线| 国产视频内射| 又黄又爽又免费观看的视频| 亚洲av电影在线进入| 丰满人妻熟妇乱又伦精品不卡| 日韩免费av在线播放| 色播亚洲综合网| 50天的宝宝边吃奶边哭怎么回事| 日本免费一区二区三区高清不卡| 一本久久中文字幕| 国产成+人综合+亚洲专区| 两个人免费观看高清视频| 后天国语完整版免费观看| 久久 成人 亚洲| 日韩 欧美 亚洲 中文字幕| 日本一二三区视频观看| 国产精品一区二区三区四区免费观看 | 后天国语完整版免费观看| 国产免费男女视频| 色综合站精品国产| 亚洲第一电影网av| 免费在线观看影片大全网站| cao死你这个sao货| 亚洲中文日韩欧美视频| 亚洲精品美女久久久久99蜜臀| 可以免费在线观看a视频的电影网站| 老司机在亚洲福利影院| 亚洲九九香蕉| 又爽又黄无遮挡网站| 日本黄色视频三级网站网址| 日韩欧美免费精品| 高清在线国产一区| 中文字幕人成人乱码亚洲影| 18禁黄网站禁片午夜丰满| 亚洲精品一卡2卡三卡4卡5卡| 男人舔奶头视频| 国产成人精品久久二区二区91| 亚洲在线自拍视频| 搡老岳熟女国产| 麻豆成人午夜福利视频| 国内精品一区二区在线观看| 舔av片在线| 色av中文字幕| 每晚都被弄得嗷嗷叫到高潮| 黄片大片在线免费观看| av免费在线观看网站| 国产一区二区在线av高清观看| 人妻久久中文字幕网| 午夜福利高清视频| 禁无遮挡网站| 一本大道久久a久久精品| 波多野结衣高清作品| 久久草成人影院| 欧美日韩黄片免| 一个人免费在线观看电影 | 国内久久婷婷六月综合欲色啪| 白带黄色成豆腐渣| 啦啦啦免费观看视频1| 久久中文字幕人妻熟女| 久久久精品国产亚洲av高清涩受| 一本综合久久免费| 久久婷婷成人综合色麻豆| 丰满人妻一区二区三区视频av | 在线观看日韩欧美| 亚洲第一电影网av| 国产亚洲精品av在线| 12—13女人毛片做爰片一| 国产91精品成人一区二区三区| 中文字幕熟女人妻在线| 99在线视频只有这里精品首页| 精品午夜福利视频在线观看一区| 欧美一级a爱片免费观看看 | 免费看美女性在线毛片视频| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美精品综合久久99| 黑人欧美特级aaaaaa片| 日韩欧美在线乱码| 757午夜福利合集在线观看| 亚洲av成人不卡在线观看播放网| 88av欧美| 黄片小视频在线播放| 中文字幕熟女人妻在线| 最新在线观看一区二区三区| 亚洲av中文字字幕乱码综合| 99国产精品一区二区三区| 三级国产精品欧美在线观看 | 99久久综合精品五月天人人| 怎么达到女性高潮| 日韩中文字幕欧美一区二区| 午夜福利高清视频| 91字幕亚洲| 国产av不卡久久| 久久性视频一级片| 啦啦啦观看免费观看视频高清| 欧美一区二区精品小视频在线| 麻豆国产97在线/欧美 | 婷婷精品国产亚洲av在线| 久久这里只有精品中国| 一级片免费观看大全| 中出人妻视频一区二区| 老司机在亚洲福利影院| 亚洲精品粉嫩美女一区| av片东京热男人的天堂| 夜夜躁狠狠躁天天躁| 亚洲精品在线观看二区| а√天堂www在线а√下载| 日韩大尺度精品在线看网址| 少妇粗大呻吟视频| 一夜夜www| 一级毛片女人18水好多| 亚洲精品在线观看二区| 成年人黄色毛片网站| 欧美性长视频在线观看| 国产亚洲欧美在线一区二区| 国产片内射在线| av天堂在线播放| 国产亚洲av嫩草精品影院| 在线十欧美十亚洲十日本专区| 久久久久久久午夜电影| 中文字幕最新亚洲高清| 国产男靠女视频免费网站| 午夜福利视频1000在线观看| 欧美日韩瑟瑟在线播放| 90打野战视频偷拍视频| 最近最新中文字幕大全电影3| 在线视频色国产色| 国产成人精品久久二区二区91| 窝窝影院91人妻| 在线视频色国产色| 俺也久久电影网| 看免费av毛片| 色噜噜av男人的天堂激情| 99国产精品一区二区蜜桃av| 可以在线观看毛片的网站| 亚洲精品久久成人aⅴ小说| 狂野欧美白嫩少妇大欣赏| 亚洲色图av天堂| 亚洲人成77777在线视频| 欧美一级a爱片免费观看看 | 很黄的视频免费| 亚洲成人免费电影在线观看| 制服丝袜大香蕉在线| 丁香六月欧美| 丰满人妻一区二区三区视频av | 久久欧美精品欧美久久欧美| 欧美乱妇无乱码| 成年版毛片免费区| 欧美性猛交╳xxx乱大交人| 国产又黄又爽又无遮挡在线| 日韩 欧美 亚洲 中文字幕| 中文字幕精品亚洲无线码一区| 亚洲国产高清在线一区二区三| 国产精品自产拍在线观看55亚洲| 欧美最黄视频在线播放免费| 久久天堂一区二区三区四区| 久久久久国产一级毛片高清牌| 夜夜看夜夜爽夜夜摸| 一夜夜www| 国产激情偷乱视频一区二区| 亚洲精品久久成人aⅴ小说| 久久香蕉激情| 亚洲自偷自拍图片 自拍| 久久久久久大精品| 正在播放国产对白刺激| 成人三级黄色视频| 国产69精品久久久久777片 | 久久久久久久久中文| 欧美日韩黄片免| 色综合亚洲欧美另类图片| 操出白浆在线播放| 国产精品亚洲一级av第二区| 亚洲性夜色夜夜综合| 精品第一国产精品| 成人av一区二区三区在线看| 国产精品 国内视频| 老司机深夜福利视频在线观看| 黄色视频不卡| 亚洲av电影不卡..在线观看| 久久久久久九九精品二区国产 | 亚洲色图av天堂| 黄频高清免费视频| 精品久久久久久久人妻蜜臀av| 亚洲熟妇中文字幕五十中出| 欧洲精品卡2卡3卡4卡5卡区| 2021天堂中文幕一二区在线观| 女警被强在线播放| 老司机在亚洲福利影院| 国产伦人伦偷精品视频| 一级毛片精品| 黄片小视频在线播放| 国产av一区在线观看免费| 久久精品夜夜夜夜夜久久蜜豆 | 老熟妇乱子伦视频在线观看| 亚洲av日韩精品久久久久久密| 欧洲精品卡2卡3卡4卡5卡区| 国产三级中文精品| 这个男人来自地球电影免费观看| 日韩欧美在线乱码| 日韩三级视频一区二区三区| 美女扒开内裤让男人捅视频| 99久久久亚洲精品蜜臀av| 国产精品久久久久久精品电影| 日本一二三区视频观看| 国产精品99久久99久久久不卡| 亚洲性夜色夜夜综合| 免费一级毛片在线播放高清视频| 免费电影在线观看免费观看| 熟女少妇亚洲综合色aaa.| 亚洲精品一区av在线观看| 黄色片一级片一级黄色片| 777久久人妻少妇嫩草av网站| 免费观看人在逋| 中文字幕av在线有码专区| 亚洲熟妇熟女久久| 校园春色视频在线观看| 精品人妻1区二区| 日韩有码中文字幕| 精品国产亚洲在线| 日韩av在线大香蕉| 久久久久国产精品人妻aⅴ院| 国产精品日韩av在线免费观看| 亚洲欧美日韩高清在线视频| 精品乱码久久久久久99久播| 日本在线视频免费播放| 日韩欧美国产一区二区入口| 久久九九热精品免费| 变态另类成人亚洲欧美熟女| 好男人在线观看高清免费视频| 九色国产91popny在线| avwww免费| e午夜精品久久久久久久| 两个人的视频大全免费| 日本一二三区视频观看| 国产乱人伦免费视频| 国产成人精品久久二区二区91| 国产亚洲精品一区二区www| 久久久久久久午夜电影| 久久久久久久久免费视频了| 丰满人妻一区二区三区视频av | 久久久久免费精品人妻一区二区| 色综合亚洲欧美另类图片| 首页视频小说图片口味搜索| 我的老师免费观看完整版| www.www免费av| 757午夜福利合集在线观看| 国内毛片毛片毛片毛片毛片| 久久人妻av系列| 少妇被粗大的猛进出69影院| 国产单亲对白刺激| 欧美一区二区精品小视频在线| 久久性视频一级片| 黑人巨大精品欧美一区二区mp4| 大型av网站在线播放| 无限看片的www在线观看| 极品教师在线免费播放| 天堂av国产一区二区熟女人妻 | 欧美人与性动交α欧美精品济南到| 一区二区三区激情视频| 免费搜索国产男女视频| 日本熟妇午夜| 亚洲狠狠婷婷综合久久图片| 丁香六月欧美| 久久香蕉国产精品| 亚洲欧美日韩高清在线视频| 精品国产美女av久久久久小说| 免费看日本二区| 老熟妇仑乱视频hdxx| 岛国在线免费视频观看| 色综合婷婷激情| 波多野结衣高清作品| 欧美另类亚洲清纯唯美| 国产野战对白在线观看| 国产成人aa在线观看| 日本黄色视频三级网站网址| 一个人观看的视频www高清免费观看 | 午夜a级毛片| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区精品视频观看| 性色av乱码一区二区三区2| 欧美一级a爱片免费观看看 | 特大巨黑吊av在线直播| 国产亚洲精品久久久久久毛片| 国产亚洲欧美在线一区二区| 欧美一级毛片孕妇| 人人妻,人人澡人人爽秒播| 1024视频免费在线观看| 亚洲专区字幕在线| 国内揄拍国产精品人妻在线| 欧美成人免费av一区二区三区| 国产精品综合久久久久久久免费| 禁无遮挡网站| 久久香蕉精品热| 最近最新中文字幕大全免费视频| 欧美最黄视频在线播放免费| av在线播放免费不卡| 日韩有码中文字幕| 国产亚洲精品久久久久久毛片| cao死你这个sao货| 婷婷亚洲欧美| av有码第一页| 看免费av毛片| 亚洲熟妇熟女久久| 午夜日韩欧美国产| 国产精品精品国产色婷婷| 人妻久久中文字幕网| 亚洲精品一区av在线观看| 久久久精品国产亚洲av高清涩受| 午夜福利高清视频| 99riav亚洲国产免费| 老司机深夜福利视频在线观看| 在线免费观看的www视频| 中文字幕最新亚洲高清| 国产成年人精品一区二区| 淫妇啪啪啪对白视频| 长腿黑丝高跟| 窝窝影院91人妻| 亚洲中文av在线| 中文字幕最新亚洲高清| 岛国视频午夜一区免费看| 久久久精品大字幕| 亚洲熟妇熟女久久| 波多野结衣巨乳人妻| 国产精品自产拍在线观看55亚洲| 中文资源天堂在线| 国产伦人伦偷精品视频| 成人国产综合亚洲| 国模一区二区三区四区视频 | 日本熟妇午夜| 亚洲国产精品成人综合色| 一二三四在线观看免费中文在| 99riav亚洲国产免费| 国产一级毛片七仙女欲春2| 香蕉国产在线看| 身体一侧抽搐| 麻豆国产av国片精品| 国产精品综合久久久久久久免费| 国产成人av教育| 草草在线视频免费看| 男男h啪啪无遮挡| 中亚洲国语对白在线视频| 黄色 视频免费看| 老司机福利观看| 国产黄a三级三级三级人| 婷婷亚洲欧美| 国产麻豆成人av免费视频| 国产高清激情床上av| 亚洲中文日韩欧美视频| 免费看十八禁软件| 男女午夜视频在线观看| 久久久久久久久免费视频了| 日本a在线网址| 亚洲成人久久性| 美女扒开内裤让男人捅视频| 亚洲av日韩精品久久久久久密| 国产精品1区2区在线观看.| 非洲黑人性xxxx精品又粗又长| 色综合亚洲欧美另类图片| 91在线观看av| 午夜福利视频1000在线观看| 丁香欧美五月| 最新美女视频免费是黄的| 在线观看美女被高潮喷水网站 | 国产成人精品久久二区二区91| 国产精品综合久久久久久久免费| 国产精品久久电影中文字幕| 黄色视频不卡| 一二三四在线观看免费中文在| 99久久精品国产亚洲精品| 日韩欧美三级三区| 在线十欧美十亚洲十日本专区| av福利片在线| 国产免费av片在线观看野外av| 欧美乱码精品一区二区三区| 欧美成狂野欧美在线观看| 亚洲 国产 在线| 亚洲天堂国产精品一区在线| 一个人免费在线观看电影 | АⅤ资源中文在线天堂| 757午夜福利合集在线观看| 国产成人aa在线观看| 少妇被粗大的猛进出69影院| 国产亚洲精品一区二区www| 精品欧美国产一区二区三| 一区福利在线观看| 看片在线看免费视频| 又大又爽又粗| 搡老岳熟女国产| 亚洲av中文字字幕乱码综合| 又大又爽又粗| 美女大奶头视频| 国产激情偷乱视频一区二区| 又大又爽又粗| 美女免费视频网站| 欧美一级a爱片免费观看看 | 亚洲一区二区三区色噜噜| 91麻豆av在线| 在线免费观看的www视频| 亚洲中文日韩欧美视频| 99久久无色码亚洲精品果冻| 91字幕亚洲| 可以免费在线观看a视频的电影网站| 色综合亚洲欧美另类图片| 窝窝影院91人妻| 亚洲黑人精品在线| 女人高潮潮喷娇喘18禁视频| 国内精品久久久久精免费| av超薄肉色丝袜交足视频| 午夜福利在线在线| svipshipincom国产片| 国产午夜精品久久久久久|