• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Divisive hierarchical clustering on cuboids for fast image/video coding and analysis

    2018-10-08 06:07:30MURSHEDManzur
    西安郵電大學學報 2018年4期

    MURSHED Manzur

    (Faculty of Science and Technology,F(xiàn)ederation University Australia,Churchill Vic 3842,Australia)

    Abstract:Region-based image retrieval(RBIR)has been proven to be effective in finding relevant images.It will form the basis for intelligent video surveillance where features of regions-of-interest(ROI)is extracted in real-time.This paper presents a review on existing image segmentation techniques based on the classical clustering approaches,including a novel Cuboid Segmentation(CSeg)technique that results in approximated rectangular image segments.CSeg is fast with minimum possible linear order running time and performance of RBIR using the approximated segments is statistically similar to RBIR using accurate segments from segmentation techniques that are infeasible for real-time applications.

    Keywords:hierarchical clustering,cuboid segmentation,image/video analysis,image/video compression

    Clustering,aka cluster analysis,is one of the fundamental tools in data science with ubiquitous applications in many fields,including machine learning,data mining,information retrieval,image analysis,and data compression to name a few.Nevertheless, the notion of “cluster” has no universal definition when it is used in various fields.A widely accepted generic definition of clustering is a process of splitting a dataset D into a set of“meaningful”subsets of data D1,…,DkD(k∈+), that are termed as clusters.Meaningful clustering,however,is in the eye of beholder[1].Often it is quantitatively expressed with some similarity metric that transforms clustering into an optimization problem with the multi-objective function maximising the intra-cluster similarity while concomitantly minimizing inter-cluster similarity.

    The simplest form of similarity metric is defined with a distance function d(p,q)between two data points p and q.Extending this to define a distance function D(Di,Dj),between two clusters Diand Dj(1≤i,j< k),however,is not quite straightforward.There are|Di|×|Dj|distinct pairs of points〈pi,qj〉where pi∈ Diand qj∈ Dj.Often some measures of central tendency,such as mean,median,and mode,or extrema,such as minimum and minimum,on the distances of all distinct pairs of points.For the arithmetic mean measure of central tendency,D(Di,Dj)may be defined as

    For extrema measures,D(Di,Dj)may be defined as

    The multi-objective function of the clustering optimisation problem may then be expressed as

    This optimization problem, however, is NP-Hard for which a polynomial-time algorithm is not known.Thus the common approach is to search only for approximate solutions with heuristics for different cluster models focusing on centroids,distribution,density,and connectivity(e.g.,graphs and trees).

    In this review paper, existing image segmentation techniques are briefly presented,including a novel segmentation technique on cuboids,which is fast enough to be implemented in real-time applications.

    1 Clustering for image/video analysis

    Clustering is widely used in image/video analysis in the form of image/video segmentation and background/foreground separation with applications in content-based indexing and retrieval(CBIR),image/video annotation,object detection and recognition,machine vision,medical imaging,and video surveillance.Let n=|D|be the number of pixels under consideration. Clustering for image/video analysis labels each pixel p with the index of its cluster i(p)=i iff p ∈ Di.Almost all classical clustering approaches have been attempted for image/video analysis.In the following subsections, some of the key attempts are highlighted.

    In the classical cluster analysis e.g.,in data mining,location of the data points play a secondary(if any) role in defining the distance function,which primarily considers the attributes of data points.Cluster analysis in image/video analysis,however,has to consider the spatiotemporal location among the primary attributes of data points(pixels)as neighbourhood proximity of pixels is a prerequisite for meaningful clustering.Intuitively speaking,it is desirable to assign the same segment label to spatially adjacent pixels.

    Let I(p)∈δand α(p) ∈[0,1]3denote the location and attribute of pixel p,respectively.The location is represented by the 2D(δ=2)or 3D(δ=3) coordinate of p in an image or a video,respectively.The attribute is represented by a 3D vector denoting a colour value in a 3D colour model e.g.,RGB,HSV,HCL,and YCbCr.For many clustering approaches,it is not a natural option to analyse the similarity of the colours and their spatial distributions at the same time[2].An alternative is to decouple spatial distribution of pixels from their colour similarity,leading to a post-processing stage on spatial segments after performing initial clustering on colour attributes only.Let dI(p,q)and dα(p,q)denote the distance function between two data points p and q using their locations I(p)and I(q),and attributesα(p)and α(q),respectively.

    (A)Centroid-based clustering

    The main centroid-based technique is k-means clustering[3-4]where each of targeted k clusters Di,1 ≤ i≤ k, is represented by the centroidof its member pixels in the attribute domain.For an initial set of k random centroids,each pixel p∈D is assigned to its nearest segment,i.e.,i(p)=argmin1≤i≤kd(p,ci) and ci’s are recomputed iteratively until converged when the assignments no longer change.Running time of k-means clustering is O(kδτn), where τ is the number of iterations needed until convergence.For segmenting image/video,where the attributes are quantised, τ = O(n3), leading to the overall complexity of O(kδn4)=O(n4).

    The post-processing stage for considering spatial distribution can be performed in many ways.Of these,J-value based spatial segmentation used by the popular JSEG algorithm[2]is prominent.For any image segmentation outcome with k segments,J=is a measure of cluster homogeneity whereσ2andare the variance of pixel location from the centroid for the whole image and the i th segment,respectively.The higher the J-value the stronger the homogeneity in segments.

    Fuzzy c-Means clustering[5]is a soft version of k-means(k=c),where each data point p is labelled with a weight vector i(p)=(wp,1,…,wp,c)depicting the fuzzy degree of belonging to each cluster.

    (B)Density-based clustering

    Density-based clustering such as DBSCAN(Density Based Spatial Clustering of Applications with Noise)[6]is directly focused on the spatial distribution of data points and thus can be readily used for image/video segmentation[7-8].It first divides each pixel p∈ D into low-density(noise)or high-density(cluster members)classes by inspecting whether the number of similar(dα(p,q) ≤ thα)pixels in its spatial-neighbourhood(Np={q|dI(p,q) ≤ thI})is less than thminor not,respectively, where thI, thα, and thminare user-defined parameters.A cluster D1is then formed from a high-density pixel seed p by including all similar pixels in Np,irrespective of their density,and then iteratively perform the same on all newly added high-density pixels.This process is iteratively applied for a new high-density pixel seed that has not been processed yet to discovery more clusters D2,…(if any).

    DBSCAN does not require users to specify the number of clusters in the dataset a priori.However,it cannot cluster datasets well with large differences in densities,since the parameters cannot be adapted appropriately for all clusters.Running time of DBSCAN is O(δn|Np|).For image/video segmentation,a fixed spatial-neighbourhood window N of size|N|=O(1)pixels is considered,leading to the overall complexity of O(|N|δn)=O(n),the minimum possible bound.

    (C)Distr ibution-based clustering

    Distribution-based techniques depart from the notion of estimating similarity of the data points in a cluster from their pair-wise distances defined in(1)and (2).Instead each cluster is statistically modelled with a parametric probability density function(pdf)under the assumption that 3D colour vector of pixels in a natural image/video is analogous to samples drawn from a finite mixture distribution.Gaussian Mixture Model(GMM) is the most prominent where a cluster is modelled with Gaussian density f(p| θ)with model parameterθ=(μ,σ).

    GMM has been used for segmentation of noisy images[9]where a mixture of L Gaussians with parameters θ1,…,θLrepresent L target segments.Membership of the i th pixel pi,1 ≤ i≤ n,is expressed with the vector πi=(πi,1,…,πi,L)where πi,j,0 ≤ πij≤ 1,denotes the probability of pibelonging to Dj,i.e.,GMM is then defined as

    Assuming all pixels are statistically independent,maximum-likelihood estimator(MLE)of parameters π1,…,πnand θ1,…,θLcan be calculated using the iterative expectation-max-imization(EM)algorithm for any initial estimate of the parameters.Consideration of spatial distribution can be easily incorporated in the estimation process with a suitable prior density function.Running time of GMM-based clustering is O(Lτn),where τ is the number of iterations needed until convergence.Convergence of EM,however,is very slow.The first few EM iterations climb up to a local maxima quickly,but later iterations moves very slowly.

    (D)Hierarchical clustering

    In hierarchical clustering based image/video segmentation,segments are represented with a tree data structure with D as the root node,pixels(or superpixels[8])as the leaf nodes,and progressively constructed clusters as intermediate nodes.Approaches for hierarchical clustering are agglomerative(bottom-up)and divisive(top-down).

    In agglomerative approach[10],D is first divided into ns= n/c superpixels,perceptually meaningful grouping of on average c spatially neighbouring pixels,using an O(n)algorithm where c is a small constant.From an initial forest 珚D.of nstrees,each having a superpixel as root with no children,the closest two boundary-adjoined trees

    are iteratively replaced in珚D with their merged tree,having a new internal node as root with Daand Dbas two children,until only a single tree is left in珚D.Any cut of this tree results in a forest of subtrees,each representing a segment.Running time of this agglomerative hierarchical segmentation is O(n log ns).

    In divisive approach[11],D is recursively split with k-means clustering until satisfactorily high J-value is reached.The parameter k at each split is adaptively selected by iteratively clustering with k=2,…,kmaxuntil J-value is no longer increasing monotonically.Running time of this divisive hierarchical segmentation is O(kmaxδn4log n).

    A hierarchical segmentation algorithm using both merging and splitting was proposed in[12]on quadtrees.Unlike other segmentation techniques that aim to produce accurate arbitrary-shaped segments,this algorithm produces segments with boundaries as polygons of only horizontal or vertical lines.

    (E)Limitations

    The existing segmentation techniques presented above suffer from one or more of the following limitations in their potential applications.1)They are semi-supervised in the sense that the initial solution caps the number of segments.2)They are very slow to converge.3)The iterations are highly serialized with little opportunity to speed-up with parallel processing.4) The outcome provides no spatiotemporal relations among the segments.5)Encoding the boundary of the arbitrary-shape segments is inefficient.

    2 Divisive hierarchical clustering on cuboids

    Image segmentation is an essential pre-processor for analysing the content efficiently.Global features extracted from unsegmented images exhibit strong central tendency and hence rarely carry any meaningful and distinctive information.The goal of segmentation is to split an image into regions that are sufficiently homogeneous to be represented with meaningful features and reasonably distinct from the adjacent regions.Features and segmentation are,therefore,interrelated.We expect the segmentation outcome to localise features in real-time using the feature-space specified for an application.Existing segmentation techniques are not suitable for this purpose due to high computational complexity and high bit-overhead of encoding the segments.Moreover,these segmentation approach cannot be adapted to specified feature-space with a single algorithm.

    Recently,we developed a novel Cuboid Segmentation(CSeg)technique,which has been successfully used to i)design a near-lossless depth sequence coder[13]with compression efficiency superior to the lossy depth coder in the latest 3D-HEVC multiview video coding standard;ii)develop a lossless image coder[14]superior to the latest JPEG-LS standard;iii) design an efficient lossless coder[15]for hyperspectral images; and iv)improve performance of CIBR using colour moments features[16].

    CSeg offers single-algorithm solution,which can adapt to specified feature-space feature-space F,so long a distance metric DF(D1,D2) between sub-images D1and D2is well-defined.It uses a divisive hierarchical clustering heuristic to recursively split a rectangular image D of size X × Y=n into two rectangular halves Dh,1and Dh,2with an optimal split-hyperplane h*,orthogonal to one of the axes(Fig.1a),such that the distance is maximized,i.e.,

    As there are X+Y -2 possible lines to split,h*can be signalled with log2(X+Y - 2)bits.The recursion is terminated when DF(Dh,1,Dh,2)is below a threshold or the target granularity (minimum cuboid size)is reached.It can be configured to partition at coarser granularity with large cuboids(Fig.1c)or finer granularity with small cuboids(Fig.1d). Nevertheless, CSeg preserves the perceptual quality of the segmentation at any granularity.Note that the key objects in the image,a car,two trees,and the sky,have been segmented out at both granularities(Fig.1c and Fig.1d) .The segment boundaries are collectively expressed with a binary partition tree (Fig.1b) of recursive optimal splits.

    Fig.1 (a)Divisive hierarchical clustering heuristic in CSeg;(b)corresponding partitioning tree;and image segmentation with CSeg at(c)coarse and(d)fine granularity using colour moments feature-space(the segments are shown in the inset).

    CSeg has successfully addressed the limitations of the existing segmentation techniques outlined in Section II.E.CSeg is free from the aforementioned limitations of the existing techniques.1) It is unsupervised in the sense that any possible number of segments at the target granularity can be obtained auto-matically.2)It is very fast.Not only the depth of recursion is bounded logarithmically but it can also take advantages of matrix processing and the specialized hardware e.g.,graphics processing unit(GPU).3)The divisive hierarchical approach is readily amenable to parallelism.4)The partitioning tree(Fig.1b) provides rich spatiotemporal cues.5)Encoding the boundary of cuboid segments is straightforward coding of the partitioning tree in the preorder traversal sequence.

    The integral imaging approach[17]will be key to achieve this objective.This approach first computes an intermediate table of cumulative area-sum from the origin

    in O(n)time,which can then be used to compute the area-sum for any arbitrary rectangley')as I(x2,y2) - I(x2,y1) - I(x1,y2)+I(x1,yi)in constant O(1)time.

    Let T(n)be the running time of CSeg using integral imaging.For simplicity,let us assume each optimal split divide D into proper halves,and X and Y are of O(槡n).The time to find the first optimal split is(X+Y-1)×O(1)=O(2槡n).We may then use the following recurrence relation

    to conclude T(n)=O(n).Considering O(n)time for initialising the area-sum table,the overall running time of CSeg is O(n),the minimum possible bound.

    3 Performance of CSeg in CIBR

    We compare performance of CSeg against JSEG in CIBR with image partitioning on the eBay dataset from [18] containing images collected from eBay auction site(www.ebay.com).The dataset has four object classes:cars,dresses,pot_glass,and shoes.Each class contains 12 images for each of the 11 colour classes,assigned by eBay users.There are a total of 4×11×12=528 images.

    CIBR was performed using whole image(Whole),only the object-region in ground-truth mask(Mask),and image segments for JSEG and CSeg techniques(the subscript indicates the average number of segments).Precision-recall curves for retrieving images matching the colour class of the query image have been plotted in Fig.2 for all images as well as images in four object classes:cars,dresses,pot_glass,and shoes.While using image segments,all segments are used except for the query image,which uses either all segments(Regions)or segments in its ground-truth mask(ROI-Mask[Q]).

    Fig.2 Precision-recall curve on eBay Dataset with JSEG12,CSeg16,and Cseg41.

    Clearly,retrieval performance is better when image segments are used as the same with whole image provides a lower-bound.Performance with CSeg matches closely to JSEG irrespective of the average number of segments.Retrieval performance improves significantly when only the segments in the ground-truth mask of the query image is used for both CSeg and JSEG. Comparatively, CSeg outperforms JSEG in this case and the difference widens as CSeg produces more number of segments on average.Retrieval performance using only the object-region in ground-truth mask provides an upper-bound.

    4 Conclusion

    Making effective use of continuous surveillance video footage in real time is a challenge facing the world. The International Organization for Standardization(ISO)on Coding of Moving Pictures and Audio has identified intelligence as a future trend in the video surveillance industry and recommended video coding standards to facilitate“intelligent analysis that could be implemented in the camera side to analyse the uncompressed video directly.” High computational complexity of the existing image segmentation techniques and high coding complexity of their arbitrary-shaped accurate segment boundaries render them ineffective to meet the above challenge.CSeg has been developed to fill this gap with the minimum possible linear order computational complexity and approximated rectangular–shaped segment boundaries that can be encoded efficiently with a simple binary tree.

    女性被躁到高潮视频| 中文字幕亚洲精品专区| 国产成人午夜福利电影在线观看| 全区人妻精品视频| 18禁裸乳无遮挡动漫免费视频| 国产综合精华液| 最近的中文字幕免费完整| 涩涩av久久男人的天堂| av.在线天堂| 日韩中字成人| 国产av国产精品国产| 欧美xxxx性猛交bbbb| 精品久久久噜噜| 精品人妻熟女毛片av久久网站| 永久免费av网站大全| 爱豆传媒免费全集在线观看| 卡戴珊不雅视频在线播放| 超碰97精品在线观看| 97超碰精品成人国产| 国内少妇人妻偷人精品xxx网站| 亚洲美女视频黄频| 精品久久久精品久久久| 亚洲第一av免费看| 亚洲第一区二区三区不卡| 国内揄拍国产精品人妻在线| 午夜91福利影院| 九九爱精品视频在线观看| 不卡视频在线观看欧美| 又大又黄又爽视频免费| 午夜91福利影院| 久久久久久久久久久丰满| 女人久久www免费人成看片| 日本午夜av视频| 视频中文字幕在线观看| 欧美成人午夜免费资源| 九九在线视频观看精品| 亚洲国产欧美在线一区| 男人爽女人下面视频在线观看| tube8黄色片| 国产高清不卡午夜福利| 丰满人妻一区二区三区视频av| 亚洲婷婷狠狠爱综合网| 九九爱精品视频在线观看| www.av在线官网国产| 久久国产乱子免费精品| 久久韩国三级中文字幕| 新久久久久国产一级毛片| 老司机影院毛片| 国产一区二区在线观看av| 少妇猛男粗大的猛烈进出视频| 国产无遮挡羞羞视频在线观看| a级一级毛片免费在线观看| 天天操日日干夜夜撸| 欧美精品国产亚洲| 亚洲欧美日韩另类电影网站| 国产精品99久久久久久久久| 搡女人真爽免费视频火全软件| 亚洲欧美日韩卡通动漫| 十八禁高潮呻吟视频 | 久久午夜福利片| 亚洲精品国产av蜜桃| 国产探花极品一区二区| 欧美精品一区二区免费开放| av在线播放精品| 欧美成人精品欧美一级黄| 亚洲欧美日韩东京热| 少妇人妻一区二区三区视频| 偷拍熟女少妇极品色| 狂野欧美激情性bbbbbb| 精品人妻熟女毛片av久久网站| 精华霜和精华液先用哪个| 亚洲色图综合在线观看| 亚洲av免费高清在线观看| 久久精品夜色国产| 精品人妻熟女毛片av久久网站| 观看av在线不卡| av国产精品久久久久影院| 18禁动态无遮挡网站| 人妻制服诱惑在线中文字幕| 一级毛片 在线播放| 高清不卡的av网站| 久久久久久久亚洲中文字幕| 日韩一本色道免费dvd| 91久久精品国产一区二区三区| 久久精品国产亚洲网站| 成人亚洲精品一区在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产黄色免费在线视频| 一级a做视频免费观看| 国产精品99久久99久久久不卡 | 一级毛片aaaaaa免费看小| 99国产精品免费福利视频| 男的添女的下面高潮视频| 有码 亚洲区| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线观看播放| 免费观看a级毛片全部| 亚洲欧美日韩卡通动漫| 久久国产精品男人的天堂亚洲 | 女人久久www免费人成看片| 一区二区av电影网| 亚洲国产色片| 午夜免费男女啪啪视频观看| 国产一区二区在线观看日韩| 热re99久久国产66热| 97在线人人人人妻| 寂寞人妻少妇视频99o| 色哟哟·www| 韩国高清视频一区二区三区| 色网站视频免费| 亚洲国产欧美在线一区| 国产无遮挡羞羞视频在线观看| 免费大片黄手机在线观看| 少妇人妻 视频| 亚洲综合精品二区| 在线播放无遮挡| 亚洲精品日韩av片在线观看| 婷婷色综合www| 亚洲三级黄色毛片| 久久久午夜欧美精品| 日韩成人av中文字幕在线观看| 久久久久久久国产电影| 久久久久久久久久人人人人人人| 午夜久久久在线观看| 麻豆乱淫一区二区| 久久久久国产网址| 亚洲怡红院男人天堂| 午夜福利影视在线免费观看| 免费看不卡的av| 亚洲美女黄色视频免费看| 一区二区三区四区激情视频| 成人综合一区亚洲| av福利片在线| 简卡轻食公司| 国产在线免费精品| 国产精品欧美亚洲77777| 99热这里只有是精品在线观看| 久久精品国产亚洲av涩爱| 视频区图区小说| 99久国产av精品国产电影| 精品一品国产午夜福利视频| 91aial.com中文字幕在线观看| 搡老乐熟女国产| 中文乱码字字幕精品一区二区三区| 久久精品国产亚洲av天美| 国产一区二区三区综合在线观看 | 丝袜在线中文字幕| 伊人久久精品亚洲午夜| 亚洲精品视频女| 午夜激情久久久久久久| 成人影院久久| 国产免费一区二区三区四区乱码| 熟妇人妻不卡中文字幕| 赤兔流量卡办理| 久久热精品热| 欧美国产精品一级二级三级 | 国产欧美亚洲国产| 自拍偷自拍亚洲精品老妇| 在线观看三级黄色| 国产在视频线精品| 亚洲精品第二区| 成人美女网站在线观看视频| 日韩熟女老妇一区二区性免费视频| 看非洲黑人一级黄片| 国产av国产精品国产| 国产69精品久久久久777片| 欧美变态另类bdsm刘玥| 日韩欧美 国产精品| 丰满乱子伦码专区| 久久精品国产亚洲网站| 欧美激情国产日韩精品一区| 日本与韩国留学比较| 国产日韩一区二区三区精品不卡 | 中国三级夫妇交换| 少妇裸体淫交视频免费看高清| 在线免费观看不下载黄p国产| 欧美一级a爱片免费观看看| 人体艺术视频欧美日本| 国产一区二区在线观看av| 91久久精品国产一区二区成人| 91精品国产九色| 欧美+日韩+精品| 国产精品无大码| 我要看日韩黄色一级片| 水蜜桃什么品种好| 亚洲丝袜综合中文字幕| 国产免费一级a男人的天堂| 亚洲综合色惰| 亚洲国产最新在线播放| 亚洲av在线观看美女高潮| 91久久精品电影网| 大片免费播放器 马上看| 日韩电影二区| 国产成人91sexporn| 熟女人妻精品中文字幕| 欧美区成人在线视频| 国产精品欧美亚洲77777| 国产91av在线免费观看| 夜夜看夜夜爽夜夜摸| 激情五月婷婷亚洲| tube8黄色片| 自拍偷自拍亚洲精品老妇| av国产久精品久网站免费入址| 赤兔流量卡办理| 菩萨蛮人人尽说江南好唐韦庄| 最近的中文字幕免费完整| 国产欧美亚洲国产| 久久ye,这里只有精品| 伊人久久国产一区二区| 一区在线观看完整版| 我要看黄色一级片免费的| 麻豆成人av视频| 亚洲精品色激情综合| 99热这里只有是精品在线观看| 人体艺术视频欧美日本| 中文字幕av电影在线播放| 美女中出高潮动态图| av福利片在线| 久久99热6这里只有精品| 精品国产一区二区三区久久久樱花| 国产高清国产精品国产三级| 成人综合一区亚洲| av免费在线看不卡| 国产91av在线免费观看| 欧美精品一区二区免费开放| 亚洲人与动物交配视频| 免费av不卡在线播放| 久久影院123| 久久久久久久大尺度免费视频| 在线精品无人区一区二区三| 最新中文字幕久久久久| 一本久久精品| av专区在线播放| 美女大奶头黄色视频| 免费久久久久久久精品成人欧美视频 | 少妇丰满av| 高清不卡的av网站| 精品99又大又爽又粗少妇毛片| 人妻制服诱惑在线中文字幕| 国产精品福利在线免费观看| 久久韩国三级中文字幕| 91成人精品电影| 伊人久久精品亚洲午夜| 精品国产露脸久久av麻豆| av天堂中文字幕网| 久久热精品热| 精品久久久久久久久亚洲| 免费人妻精品一区二区三区视频| 午夜激情久久久久久久| 99九九在线精品视频 | av视频免费观看在线观看| 99re6热这里在线精品视频| 国产av精品麻豆| 夜夜看夜夜爽夜夜摸| 99热国产这里只有精品6| 偷拍熟女少妇极品色| 中文字幕制服av| 夫妻性生交免费视频一级片| 色吧在线观看| 欧美xxxx性猛交bbbb| 日本黄色日本黄色录像| 亚洲精品色激情综合| a级毛色黄片| 国产av精品麻豆| 国国产精品蜜臀av免费| 国产精品蜜桃在线观看| 日本免费在线观看一区| a级毛片免费高清观看在线播放| 嘟嘟电影网在线观看| 色94色欧美一区二区| 少妇人妻 视频| 一本大道久久a久久精品| 国产色婷婷99| 久久免费观看电影| av天堂久久9| 内地一区二区视频在线| 国产有黄有色有爽视频| 亚洲av福利一区| 国产日韩欧美视频二区| 国产在线视频一区二区| 亚洲美女视频黄频| 一本大道久久a久久精品| 成年女人在线观看亚洲视频| 99视频精品全部免费 在线| 国产国拍精品亚洲av在线观看| 免费看av在线观看网站| 黄色一级大片看看| 国产精品国产三级国产av玫瑰| 国产精品熟女久久久久浪| 麻豆成人av视频| 十分钟在线观看高清视频www | 国产色婷婷99| 精华霜和精华液先用哪个| 日本欧美国产在线视频| 97超碰精品成人国产| 亚洲伊人久久精品综合| 日本爱情动作片www.在线观看| 国产深夜福利视频在线观看| a级毛片在线看网站| 最近最新中文字幕免费大全7| 国产日韩一区二区三区精品不卡 | 日韩成人av中文字幕在线观看| 九九爱精品视频在线观看| 久久人妻熟女aⅴ| 亚洲精品国产成人久久av| 欧美 日韩 精品 国产| 少妇高潮的动态图| 丰满人妻一区二区三区视频av| 国产黄色视频一区二区在线观看| 国产又色又爽无遮挡免| 亚洲天堂av无毛| av国产久精品久网站免费入址| 日韩精品免费视频一区二区三区 | 熟女人妻精品中文字幕| h视频一区二区三区| 一级毛片 在线播放| 欧美成人午夜免费资源| 亚洲av成人精品一二三区| 亚洲精品456在线播放app| 国产黄色免费在线视频| 免费在线观看成人毛片| 亚洲精品自拍成人| 秋霞在线观看毛片| 亚洲一区二区三区欧美精品| 午夜激情福利司机影院| 婷婷色麻豆天堂久久| 亚洲国产色片| 美女大奶头黄色视频| 国产精品熟女久久久久浪| 精品国产一区二区三区久久久樱花| 日日摸夜夜添夜夜爱| 99国产精品免费福利视频| 国产精品一区二区在线不卡| 亚洲精品一二三| 大码成人一级视频| 大又大粗又爽又黄少妇毛片口| 色吧在线观看| 国产乱人偷精品视频| 午夜影院在线不卡| 免费播放大片免费观看视频在线观看| 蜜桃久久精品国产亚洲av| 欧美日韩视频精品一区| 男人狂女人下面高潮的视频| 一区在线观看完整版| 欧美3d第一页| 精华霜和精华液先用哪个| 婷婷色av中文字幕| 3wmmmm亚洲av在线观看| 高清毛片免费看| 久久久久精品久久久久真实原创| 丝瓜视频免费看黄片| 少妇被粗大猛烈的视频| 国产爽快片一区二区三区| av播播在线观看一区| 午夜激情福利司机影院| 亚洲精品,欧美精品| 人妻系列 视频| 亚洲激情五月婷婷啪啪| 国产精品国产三级国产专区5o| 亚洲精品视频女| 老司机亚洲免费影院| av.在线天堂| 夜夜骑夜夜射夜夜干| 人体艺术视频欧美日本| av不卡在线播放| 肉色欧美久久久久久久蜜桃| 色婷婷久久久亚洲欧美| 久久热精品热| a级毛色黄片| 久久99精品国语久久久| 国产无遮挡羞羞视频在线观看| 国产精品成人在线| 国产精品伦人一区二区| 久久精品国产自在天天线| 香蕉精品网在线| 最黄视频免费看| 久久久久久久国产电影| 精品国产乱码久久久久久小说| 三上悠亚av全集在线观看 | 老女人水多毛片| 色婷婷av一区二区三区视频| 久久久久久久亚洲中文字幕| 精品久久久久久久久av| 赤兔流量卡办理| 亚洲欧洲精品一区二区精品久久久 | 在线观看www视频免费| 黄片无遮挡物在线观看| 国产精品久久久久久久久免| 亚洲美女视频黄频| av在线老鸭窝| 亚洲欧洲日产国产| 亚洲欧美成人精品一区二区| 精品少妇久久久久久888优播| 亚洲欧美日韩东京热| 高清不卡的av网站| 色网站视频免费| 最近手机中文字幕大全| 国产女主播在线喷水免费视频网站| 精品一区二区三区视频在线| 婷婷色麻豆天堂久久| 99热这里只有是精品在线观看| 街头女战士在线观看网站| 啦啦啦啦在线视频资源| 视频区图区小说| 伊人久久国产一区二区| 欧美精品国产亚洲| 国产精品人妻久久久久久| 久久影院123| 99re6热这里在线精品视频| 国产av国产精品国产| 久久久久久久久久久免费av| 日韩免费高清中文字幕av| 寂寞人妻少妇视频99o| 丝袜脚勾引网站| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩另类电影网站| 亚洲天堂av无毛| 国产爽快片一区二区三区| 精品久久久久久电影网| tube8黄色片| 久久人人爽人人爽人人片va| 亚洲精品一二三| 久久久久久久精品精品| av天堂中文字幕网| 在现免费观看毛片| 91午夜精品亚洲一区二区三区| 99热全是精品| 99热国产这里只有精品6| 高清在线视频一区二区三区| 国产国拍精品亚洲av在线观看| 欧美变态另类bdsm刘玥| 久久99热这里只频精品6学生| 国产精品一区二区三区四区免费观看| 能在线免费看毛片的网站| 男女免费视频国产| 久久人人爽人人片av| 久久国产乱子免费精品| 国产乱人偷精品视频| 国产精品人妻久久久影院| 久热这里只有精品99| 丰满迷人的少妇在线观看| 成年人免费黄色播放视频 | 久久久久久久久久成人| 亚洲成人手机| 寂寞人妻少妇视频99o| 少妇人妻精品综合一区二区| av免费观看日本| 久久久久久久久久久丰满| xxx大片免费视频| 两个人免费观看高清视频 | 秋霞伦理黄片| 国产男人的电影天堂91| 女的被弄到高潮叫床怎么办| 日韩av不卡免费在线播放| 国产 精品1| 国产永久视频网站| 免费看av在线观看网站| 久久久久久伊人网av| 亚洲第一av免费看| 青春草亚洲视频在线观看| 国产精品一区二区三区四区免费观看| 久久国内精品自在自线图片| 日韩免费高清中文字幕av| 亚洲电影在线观看av| 黄色视频在线播放观看不卡| 如日韩欧美国产精品一区二区三区 | 亚洲国产精品成人久久小说| 免费人妻精品一区二区三区视频| 国产欧美日韩一区二区三区在线 | 久久国内精品自在自线图片| 日日啪夜夜撸| 国产爽快片一区二区三区| 各种免费的搞黄视频| 亚洲人成网站在线观看播放| 免费观看无遮挡的男女| 日本黄大片高清| 青春草国产在线视频| 成人国产麻豆网| 免费少妇av软件| 在线观看国产h片| 日韩熟女老妇一区二区性免费视频| 欧美 亚洲 国产 日韩一| 亚洲av中文av极速乱| 亚洲成人一二三区av| 亚洲国产精品专区欧美| h视频一区二区三区| 人人妻人人添人人爽欧美一区卜| 黄色配什么色好看| 91久久精品国产一区二区成人| 女人久久www免费人成看片| 国产精品熟女久久久久浪| 自拍偷自拍亚洲精品老妇| 国产深夜福利视频在线观看| 一级a做视频免费观看| 国产成人freesex在线| 能在线免费看毛片的网站| 男女啪啪激烈高潮av片| 国产91av在线免费观看| 国产男女内射视频| 免费看光身美女| 国产精品久久久久成人av| 国产精品国产三级专区第一集| 久久久久久人妻| 少妇的逼好多水| 欧美人与善性xxx| 国语对白做爰xxxⅹ性视频网站| 一级,二级,三级黄色视频| 亚洲人成网站在线播| 久久久久久伊人网av| 成人美女网站在线观看视频| 国产国拍精品亚洲av在线观看| 精品亚洲乱码少妇综合久久| 一个人免费看片子| 亚洲国产av新网站| 三上悠亚av全集在线观看 | 99九九在线精品视频 | 最后的刺客免费高清国语| 国产在线视频一区二区| 色视频在线一区二区三区| 午夜影院在线不卡| 女人精品久久久久毛片| 少妇精品久久久久久久| 十分钟在线观看高清视频www | 大话2 男鬼变身卡| av女优亚洲男人天堂| 亚洲精品,欧美精品| 一级av片app| 一区二区三区精品91| 超碰97精品在线观看| 国产真实伦视频高清在线观看| 性色avwww在线观看| 国产女主播在线喷水免费视频网站| 国产精品嫩草影院av在线观看| 欧美日韩综合久久久久久| 国产精品久久久久久av不卡| 99re6热这里在线精品视频| 91久久精品国产一区二区成人| 18+在线观看网站| 久久精品久久精品一区二区三区| 黑丝袜美女国产一区| 亚洲国产色片| 黄片无遮挡物在线观看| 蜜桃久久精品国产亚洲av| 亚洲精品色激情综合| 国产免费又黄又爽又色| 精品午夜福利在线看| 久久国产精品男人的天堂亚洲 | 色网站视频免费| a 毛片基地| 街头女战士在线观看网站| 欧美成人精品欧美一级黄| 人人妻人人澡人人看| 亚洲精品一区蜜桃| 色婷婷av一区二区三区视频| 国产欧美日韩精品一区二区| 搡老乐熟女国产| 黄色配什么色好看| 一本大道久久a久久精品| 亚洲精品视频女| 中文字幕免费在线视频6| 免费不卡的大黄色大毛片视频在线观看| 国产日韩欧美在线精品| 欧美精品国产亚洲| 日韩成人伦理影院| 久久青草综合色| 成人亚洲欧美一区二区av| 免费观看的影片在线观看| 最新的欧美精品一区二区| 亚洲成人一二三区av| 少妇人妻久久综合中文| 久热这里只有精品99| av在线播放精品| 一级毛片黄色毛片免费观看视频| 99久国产av精品国产电影| 国产免费一级a男人的天堂| 国产精品嫩草影院av在线观看| 日韩人妻高清精品专区| 国产成人aa在线观看| 中文欧美无线码| 免费黄网站久久成人精品| 日韩精品有码人妻一区| 精品久久久噜噜| 少妇裸体淫交视频免费看高清| 精品国产一区二区三区久久久樱花| 国产精品久久久久久精品电影小说| 国产精品无大码| 丝袜喷水一区| 青春草亚洲视频在线观看| 五月开心婷婷网| 91久久精品国产一区二区成人| 精品酒店卫生间| 亚洲精品国产av成人精品| 亚洲av国产av综合av卡| 熟妇人妻不卡中文字幕| 国产亚洲91精品色在线| 精品人妻熟女毛片av久久网站| 六月丁香七月| 大陆偷拍与自拍| 亚洲,一卡二卡三卡| 国产精品一区二区在线观看99| 日本爱情动作片www.在线观看| 日本欧美视频一区| 99热网站在线观看| 日韩电影二区| 国产高清国产精品国产三级| 免费大片黄手机在线观看| 亚洲综合精品二区| 日韩一本色道免费dvd| 亚洲成人一二三区av| 亚洲伊人久久精品综合| 秋霞伦理黄片| 国产综合精华液| 色网站视频免费| 水蜜桃什么品种好| 观看av在线不卡|