• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    蘋果與膠孢炭疽菌互作研究進(jìn)展

    2024-06-30 13:58:23冀志蕊王美玉張樹武杜宜南叢佳林徐秉良周宗山
    果樹學(xué)報(bào) 2024年6期
    關(guān)鍵詞:蘋果

    冀志蕊 王美玉 張樹武 杜宜南 叢佳林 徐秉良 周宗山

    摘? ? 要:膠孢炭疽菌(Colletotrichum gloeosporioides)能夠引發(fā)蘋果苦腐病和蘋果炭疽葉枯病,危害葉片和果實(shí),影響果品產(chǎn)量和品質(zhì),給蘋果產(chǎn)業(yè)造成嚴(yán)重的經(jīng)濟(jì)損失。對(duì)蘋果與病原物互作分子機(jī)制最新研究進(jìn)展進(jìn)行綜述,包括蘋果上炭疽病的病原菌組成和分類、侵染循環(huán)及其引發(fā)的果樹病害種類,病原菌的致病結(jié)構(gòu)和降解酶類、致病相關(guān)基因的挖掘與分析、效應(yīng)蛋白的篩選與功能分析等致病相關(guān)分子機(jī)制,蘋果被侵染后生理生化變化、激素信號(hào)、抗病基因挖掘、miRNA參與的免疫調(diào)控機(jī)制等抗病相關(guān)的研究?jī)?nèi)容,以期為解析病原菌致病機(jī)制及與寄主互作機(jī)制,進(jìn)而為挖掘潛力候選基因,以及病害綜合防控和抗病分子育種奠定理論基礎(chǔ)。

    關(guān)鍵詞:蘋果;膠孢炭疽菌;侵染機(jī)制;抗病機(jī)制

    中圖分類號(hào):S661.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)06-1199-14

    Advances in study of the interaction between apple and Colletotrichum gloeosporioides

    JI Zhirui1, 2, WANG Meiyu2, ZHANG Shuwu1, DU Yinan2, CONG Jialin2, XU Bingliang1*, ZHOU Zongshan2*

    (1College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 2Research Institute of Pomology, Chinese Academy of Agricultural Science, Xingcheng 125100, Liaoning, China)

    Abstract: Colletotrichum gloeosporioides can cause apple bitter rot, and anthracnose leaf blight, resulting in affecting fruit yield and quality, and causing serious economic losses to the apple industry. According to the latest fungal classification system, the C. gloeosporioides species complex consists of 13 different species, including C. gloeosporioides, C. aenigma and C. fructicola et al. Among them, C. fructicola and C. gloeosporioides are important pathogenic fungi on various fruit trees. Meanwhile, C. gloeosporioides can also cause diseases on other fruit trees such as cherry, passion fruit, and kiwifruit. In order to better prevent and control diseases, we need to have a comprehensive understanding of the classification, pathogenic mechanisms, and host interaction mechanisms of the pathogens on apples. In the process of colonizing host tissue, a number of C. gloeosporioides genes participate in different phases of infection procedures, which include conidiation, appressorium morphogenesis, melanization and penetration, biotrophy, necrotrophy, and various transport activities. In recent years, research on the pathogenic molecular mechanism of C. gloeosporioides on apples has mainly focused on the cloning and analysis of pathogenic related genes, screening and identification of effector proteins, pathogenic enzymes, and colletotoxins of C. gloeosporioides. Fungi secrete enzymes such as pectin, keratin and cellulase could help them successfully infect their hosts. New studies have shown that the adapter protein gene GcAP1 can regulate the expression of endopolygalacturonase genes (CgPG1 and CgPG2), pectin lyase genes (pnl-1, pnl-2), and pectate lyase genes (pelA, pelB), and GcAP1 is an important virulence factor of C. gloeosporioides. Currently, the successful application of PEG mediated genetic transformation and Agrobacterium mediated transformation in the study of C. gloeosporioides provides a basis for the development of pathogenic molecular mechanisms. It has been confirmed that the genes with different functions such as CgABCF2, CgCMK1, CgSET5, CgOpt1, CgNVF1, CgABCF2, CgChip6 are present in C. gloeosporioides, playing an important role in infecting apples. In addition, C2H2 transcription factors, cation stress response transcription factors CgSltA, CgCrzA, and CsHtf1 also play important roles in pathogen pathogenesis. During the infection process, C. gloeosporioides can also secrete a series of effectors to inhibit the host immune response, thereby promoting pathogen infection and colonization. Currently, scientists have analyzed the roles of effectors such as CfE12, CfEC92, and Sntf2 in C. gloeosporioides, laying the foundation for subsequent research on interactions of pathogen and host. In addition, C. gloeosporioides secrete toxins during the necrotrophic stage, causing necrosis of the host tissue. The research on apple disease resistance started relatively late, mainly focusing on germplasm resource identification, physiological and biochemical testing, disease resistance gene mining, plant hormone mediated disease resistance response, disease related transcription factors, and other mechanisms of action. Research has shown that after inoculation with anthrax fungus, the activities of superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT), and serotonin N-acetyltransferase (SNAT) in apple leaves increased, indicating that these enzymes are involved in the infection process of C. gloeosporioides. Plant hormones play an important role in plant defense and growth and development, and hormones related to plant immune responses include salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), and so on. Research has shown that there are significant differences in the expression levels of SA synthesis related genes MdEDS1, MdPAD4, MdPAL and SA signal transduction related genes MdNPR1, MdPR1 and MdPR5 between resistant and susceptible varieties. There are differences in the resistance and susceptibility of different apple varieties to C. gloeosporioides. The Hanfu variety has been used to screen for resistance genes due to its high resistance to C. gloeosporioides. WRKY and NAC transcription factors play a crucial role in plant resistance to pathogen infection. In apples, transcription factors MdWRKY15, MdWRKY17, and MdWRKY100 enhance apple resistance to anthracnose by regulating SA accumulation. Here, we plotted the downstream regulatory patterns of AtwrKY33 and MdWRKYs involved in the MAPK cascade reaction, and presented some research results on MdWRKYs. At the end of the article, we summarized the research results on the regulatory mechanism of miRNA involvement in plant immunity. Clarifying the pathogenic process and molecular mechanism of the pathogen is of great significance for the comprehensive prevention and control of C. gloeosporioides. With the deepening of various studies, researchers will inevitably change their thinking on the prevention and control of C. gloeosporioides. Traditional chemical prevention and control methods, such as the extensive use of fungicides and insecticides, can achieve the effect of combating pathogens, but they also can cause serious harm to the environment and people. Breeding of resistant varieties is a fundamental means to solve the problems in preventing and controlling C. gloeosporioides. This article aimed to analyze the pathogenic mechanism of pathogens and their interaction with hosts, laying a theoretical foundation for screening potential candidate genes and breeding new varieties resistant to diseases.

    Key words: Apples; Colletotrichum gloeosporioides; Infection mechanism; Disease resistance mechanisms

    炭疽菌(Colletotrichum)屬小叢殼科刺盤孢屬真菌,有性型為子囊菌門盤菌亞門小叢殼屬,在溫暖和潮濕的條件下易暴發(fā)流行,是世界上重要的植物病原菌之一[1]。炭疽菌可分為14個(gè)復(fù)合種和部分種,膠胞炭疽菌(C. gloeosporioides)是重要的一個(gè)復(fù)合種,能侵染1000余種作物,危害枝干、葉部、果實(shí)等部位,造成果實(shí)腐爛、植株枯萎甚至死亡。

    C. gloeosporioides通過“半活體營(yíng)養(yǎng)”寄生并侵染寄主植物[2],在整個(gè)侵染周期主要有活體營(yíng)養(yǎng)型(biotrophic)和死體營(yíng)養(yǎng)型(necrotrophic)兩種營(yíng)養(yǎng)模式。在侵染初期活體營(yíng)養(yǎng)階段,菌體不會(huì)立即殺死周邊寄主細(xì)胞,而是感應(yīng)寄主表面的物理和化學(xué)信號(hào)(植物表面硬度、疏水性、葉片紋理、植物激素等),產(chǎn)生初侵染菌絲攝取寄主體內(nèi)營(yíng)養(yǎng)和能源。在侵染后期,分化出次生菌絲并迅速擴(kuò)展,分泌細(xì)胞壁降解酶導(dǎo)致植物組織形成壞死斑,后轉(zhuǎn)換為死體營(yíng)養(yǎng)[3-5],其生活史和侵染過程如圖1所示。

    目前,生產(chǎn)上對(duì)炭疽病的防控以化學(xué)農(nóng)藥為主,隨著人們對(duì)果品安全的逐漸重視,科研人員開展了藥劑篩選和復(fù)配[6]、農(nóng)藥助劑應(yīng)用[7]及植物免疫誘抗劑使用等[8]藥劑減量增效研究。盡管對(duì)蘋果炭疽病菌的侵染和致病研究取得一定進(jìn)展,但因其種群多樣、侵染過程復(fù)雜,對(duì)其侵染致病機(jī)制和果樹抗性機(jī)制的研究仍有待深入。筆者在本文中將圍繞蘋果膠孢炭疽菌病原學(xué)、病原菌致病機(jī)制及果樹抗性機(jī)制展開論述。

    1 侵染蘋果的膠孢炭疽菌復(fù)合群概述

    膠孢炭疽菌(C. gloeosporioides)能夠引發(fā)蘋果果實(shí)炭疽?。╝pple bitter rot)和蘋果炭疽葉枯?。℅lomerella leaf spot of apple,GLSA),也能引發(fā)果實(shí)采后炭疽病。膠孢炭疽菌復(fù)合種(C. gloeosporioides complex)是蘋果上主要的病原菌,包含果生刺盤孢(C. fructicola)、隱秘刺盤孢(C. aenigma)、膠孢刺盤孢(C. gloeosporioides)等13種不同炭疽菌,其中C. fructicola和C. gloeosporioides是多種果樹的重要致病菌,可以在無傷條件下成功侵染寄主[9-10]。除蘋果外,C. gloeosporioides還可引發(fā)櫻桃、百香果、獼猴桃等果樹病害[10-15](表1)。

    2 膠孢炭疽菌致病分子機(jī)制

    隨著生物信息學(xué)和分子生物學(xué)的發(fā)展,膠孢刺盤孢(C. gloeosporioides)、希金斯刺盤孢(C. higginsianum)、禾生刺盤孢(C. graminicola)、東方刺盤孢(C. orbiculare)等全基因組測(cè)序組裝完成并公布。在此基礎(chǔ)上,PEG介導(dǎo)的遺傳轉(zhuǎn)化[25]和農(nóng)桿菌介導(dǎo)的轉(zhuǎn)化[26]在蘋果炭疽菌研究中成功應(yīng)用,為病原菌致病分子機(jī)制的解析提供了理論依據(jù)[22-23]。近年來蘋果上膠孢炭疽菌致病分子機(jī)制的研究主要集中在致病結(jié)構(gòu)和降解酶測(cè)定、致病基因的克隆與分析、效應(yīng)蛋白篩選與功能研究及炭疽菌毒素等方面(圖2)[27-29]。

    2.1 膠孢炭疽菌致病結(jié)構(gòu)和降解酶

    炭疽菌要穿透寄主的表皮組織,需要對(duì)寄主組織施加機(jī)械壓力,即孢子萌發(fā)時(shí)形成的附著胞及其胞內(nèi)組合液產(chǎn)生膨壓,壓力施加至附著胞下部的侵染釘,當(dāng)壓力到達(dá)一定程度時(shí)直接穿透植物表皮而侵入,構(gòu)成侵染和定殖[30]。黑化附著胞的形成可能涉及一系列復(fù)雜的生物學(xué)過程,包括分泌特定的分子、改變細(xì)胞壁結(jié)構(gòu)以提供附著支持等[31]。

    植物的細(xì)胞壁是抵御病原菌侵入的天然屏障,病原菌通過分泌產(chǎn)生果膠酶、角質(zhì)酶、纖維素酶、蛋白酶等降解酶類物質(zhì)破壞寄主細(xì)胞壁,輔助其侵染和定殖。薛蓮[32]對(duì)蘋果采后炭疽病菌細(xì)胞壁降解酶活性進(jìn)行分析,明確聚甲基半乳糖醛酸酶(PMG)和羧甲基纖維素酶(Cx)在病原菌侵染中發(fā)揮重要作用。研究表明,銜接蛋白GcAP1復(fù)合體分布于細(xì)胞質(zhì)中,GcAP1基因能夠調(diào)控多聚半乳糖醛酸內(nèi)切酶基因(CgPG1、CgPG2)、果膠裂解酶基因(pnl-1、pnl-2)及果膠酸酯裂解酶基因(pelA、pelB)的表達(dá),從而影響炭疽菌的生長(zhǎng)發(fā)育和毒力[33]。研究表明,膠孢炭疽菌pH依賴性轉(zhuǎn)錄因子CgPacC能夠調(diào)節(jié)細(xì)胞壁降解酶、轉(zhuǎn)運(yùn)蛋白和抗氧化劑的表達(dá),在病原菌定殖中發(fā)揮重要作用[34]。

    2.2 膠孢炭疽菌侵染階段相關(guān)致病基因挖掘與分析

    C. gloeosporioides成功侵染定殖包括分生孢子萌發(fā)、附著胞形成、黑色素生成、侵染釘穿透寄主組織等不同階段,涉及的基因及其調(diào)控機(jī)制較為復(fù)雜,目前的研究以單一基因?yàn)橹鳌?/p>

    Zhao等[35]證實(shí)蘋果炭疽葉枯病菌染色質(zhì)調(diào)節(jié)基因CgSET5在菌絲生長(zhǎng)、分生孢子形成、附著胞形成、細(xì)胞壁完整性、致病性中發(fā)揮重要作用,并同時(shí)參與過氧化物酶體的生物反應(yīng),是C. gloeosporioides的核心致病調(diào)節(jié)因子。該團(tuán)隊(duì)在后續(xù)研究中證實(shí)單羧酸轉(zhuǎn)運(yùn)蛋白CgMCT1參與了C. gloeosporioides營(yíng)養(yǎng)生長(zhǎng)、黑色素形成、分生孢子形成,且參與寄主體內(nèi)ROS降解[27]。Zhou等[28]發(fā)現(xiàn)當(dāng)炭疽菌CgABCF2基因缺失后,菌絲生長(zhǎng)速率和附著胞數(shù)量顯著下降,導(dǎo)致致病性喪失。張俊祥等[36-37]研究證實(shí)CgCMK1、CgNVF1在炭疽菌分生孢子和附著胞中的表達(dá),對(duì)分生孢子產(chǎn)量、附著胞形成、氧化脅迫應(yīng)答反應(yīng)及致病性等方面均有影響。徐杰[38]證實(shí)蘋果炭疽葉枯病菌基因GTPBP1在調(diào)控附著胞的形成中發(fā)揮作用。譚清群[39]研究證實(shí)氨甲酰磷酸合成酶(carbamyl phosphate synthase,CPS)小亞基基因Cpa1通過調(diào)控精氨酸的合成從而影響病原菌致病力。研究表明,寡肽轉(zhuǎn)運(yùn)蛋白基因CgOpt1在菌絲中表達(dá),參與真菌對(duì)IAA反應(yīng)的調(diào)節(jié),通過影響產(chǎn)孢和色素沉積來降低病菌的致病性[40]。甾醇糖基轉(zhuǎn)移酶編碼基因CgChip6參與分生孢子萌發(fā)和附著胞的形成,該基因缺失后病原菌毒力顯著下降[41]。Liang等[42]對(duì)果生炭疽菌(C. fructicola)1104-7基因組進(jìn)行了測(cè)序和組裝,獲得了高質(zhì)量參考基因組,為C. fructicola致病相關(guān)基因的研究提供了重要的理論和數(shù)據(jù)支撐。

    2.3 轉(zhuǎn)錄因子調(diào)控膠孢炭疽菌分子機(jī)制

    轉(zhuǎn)錄因子(transcription factor,TF)能夠與基因啟動(dòng)子區(qū)域的順式作用元件進(jìn)行特異性互作,從而調(diào)控目的基因的表達(dá)強(qiáng)度,可分為4類,即鋅指蛋白(包括3類:C2H2、C4和C6)、堿性亮氨酸拉鏈、堿性螺旋環(huán)螺旋和同源異形盒類轉(zhuǎn)錄因子[43]。已有研究表明,膠孢炭疽菌的轉(zhuǎn)錄因子在表達(dá)調(diào)控中能起到協(xié)調(diào)作用,能夠促進(jìn)附著胞黑化和定殖。C2H2鋅指蛋白型轉(zhuǎn)錄因子CgAzf1、CgCrzA及CgGcp1能夠調(diào)控黑色素生物合成途徑相關(guān)基因的表達(dá),參與分生孢子的萌發(fā)和侵染過程[31,44-45]。CfSte12能夠調(diào)控與附著胞功能相關(guān)的四次穿模蛋白PLS1(tetraspanin PLS1)、Gas1樣蛋白(Gas1-like proteins)、角質(zhì)酶和黑色素合成的基因表達(dá)[46]。陽離子脅迫反應(yīng)轉(zhuǎn)錄因子CgSltA、CgCrzA及CsHtf1在炭疽菌營(yíng)養(yǎng)生長(zhǎng)、分生孢子產(chǎn)生、附著胞形成和致病性等方面均發(fā)揮重要作用[45,47]。堿性亮氨酸拉鏈(basic leucine zipper,bZIP)轉(zhuǎn)錄因子CgAP1在C. gloeosporioides中起氧化還原傳感器的作用[48-49]。轉(zhuǎn)錄因子CfMcm1是C. fructicola的關(guān)鍵調(diào)節(jié)因子,在病原菌無性繁殖、黑色素形成、致病性、果膠酶降解等過程中發(fā)揮作用[50]。

    2.4 效應(yīng)蛋白篩選及功能研究

    在侵染過程中,炭疽菌通過分泌一系列效應(yīng)蛋白抑制寄主免疫反應(yīng),從而促進(jìn)病原菌的侵染和定殖[51-52],不同侵染階段所分泌的效應(yīng)因子功能不同[3,53]。隨著基因組測(cè)序的應(yīng)用,炭疽菌中多個(gè)候選的效應(yīng)因子被成功篩選鑒定[54-55]。真菌胞外膜蛋白CFEM(common in several fungal extracellular membrane)是真菌所獨(dú)有的蛋白結(jié)構(gòu)域,與病原菌致病性密切相關(guān)。Shang等[56]研究證實(shí),刺盤孢屬真菌CFEM型效應(yīng)因子CfEC12能夠與蘋果中MdNIMIN2互作,與水楊酸受體NPR1競(jìng)爭(zhēng)MdNIMIN2蛋白的結(jié)合位點(diǎn),從而抑制蘋果抗性基因的表達(dá)和免疫反應(yīng)。LysM型效應(yīng)蛋白可以保護(hù)真菌細(xì)胞壁免受植物幾丁質(zhì)酶的作用或隔離釋放的殼寡糖,從而避免被植物的防御系統(tǒng)識(shí)別,其具有幾丁質(zhì)結(jié)合活性,可以結(jié)合幾丁質(zhì)從而抑制植物的PTI(pattern-triggered immunity),促進(jìn)病原菌的侵染[57]。Shang等[58]研究證實(shí)C. fructicola中效應(yīng)蛋白CfEC92在早期附著胞生成和附著胞介導(dǎo)的滲透階段上調(diào)表達(dá),抑制蘋果的PTI和相關(guān)防御基因表達(dá),促進(jìn)病原菌侵染。王美玉[59]開展效應(yīng)蛋白Sntf2功能研究,證實(shí)其能夠與葉綠體組裝因子Mdycf39互作干擾葉綠體功能,從而抑制寄主植物的免疫反應(yīng),促進(jìn)C. gloeosporioides的侵染和定殖。

    2.5 膠孢炭疽菌毒素

    炭疽菌在死體營(yíng)養(yǎng)階段通過分泌毒素造成寄主組織壞死。目前,對(duì)于炭疽菌毒素的研究多集中在毒素生物學(xué)測(cè)定、成分鑒定純化階段。C. gloeosporioides產(chǎn)生的毒素為非寄主?;远舅兀軌蚯秩径喾N寄主。Khodadadi等[60]分離鑒定了蘋果苦腐病病原菌,明確其毒素能夠?qū)?種不同樹種造成危害,關(guān)于炭疽菌的毒素和作用機(jī)制仍然有待進(jìn)一步深入研究。

    3 蘋果抗膠胞炭疽菌侵染的分子機(jī)制

    果樹在自然環(huán)境中會(huì)受到各類病原物的侵染,為了抵御病原菌的侵染,植物進(jìn)化出識(shí)別和抵御病原菌的PTI和ETI兩層免疫系統(tǒng)[61]。第一層免疫系統(tǒng)是由植物細(xì)胞質(zhì)膜上的模式識(shí)別受體感知微生物相關(guān)分子模式(microbe-associated molecular pattern,MAMPs)或損傷相關(guān)分子模式(damage-associated molecular pattern,DAMPs)而觸發(fā)一系列的免疫反應(yīng),稱為“模式觸發(fā)免疫”(PTI),該免疫反應(yīng)包括活性氧(reactive oxygen species,ROS)的激活及抗病基因表達(dá)量上調(diào)等[62-63]。病原菌為了應(yīng)對(duì)植物的PTI免疫反應(yīng)進(jìn)化出毒力蛋白(效應(yīng)因子),抑制植物PTI反應(yīng),從而成功侵入,這一中間過程被稱為“效應(yīng)因子觸發(fā)的易感性”,即EST(effector-triggered susceptibility)。最后,植物進(jìn)化出識(shí)別和抵御這些效應(yīng)子的胞內(nèi)NLR來誘導(dǎo)更為強(qiáng)大的抗性反應(yīng),即第二層免疫“效應(yīng)因子觸發(fā)的免疫”,ETI(effector-triggered immunnity)[64-65]。ETI的免疫反應(yīng)主要包括程序性細(xì)胞死亡的過敏性反應(yīng)(hypersensitive responses,HR)、Ca2+內(nèi)流、胼胝質(zhì)的沉積等。植物在PTI和ETI期間,產(chǎn)生的免疫反應(yīng)幅度和時(shí)間有所不同,但所觸發(fā)的免疫信號(hào)網(wǎng)絡(luò)和下游反應(yīng)有所重疊[66-68]。

    蘋果抗炭疽病的研究起步相對(duì)較晚,主要開展了種質(zhì)資源鑒定[69]、生理生化檢測(cè)、抗病基因挖掘、植物激素介導(dǎo)的抗病反應(yīng)及抗病相關(guān)轉(zhuǎn)錄因子[70]作用機(jī)制等研究。

    3.1 生理生化變化

    研究表明接種炭疽菌后,嘎拉和富士葉片內(nèi)超氧化物歧化酶(superoxide dismutase,SOD)、多酚氧化酶(polyphenoloxidas,PPO)、過氧化物酶(peroxidase,POD)、過氧化氫酶(catalase,CAT)、5-羥色胺-N-乙?;D(zhuǎn)移酶(SNAT)的活性增強(qiáng),其相關(guān)基因表達(dá)量呈先升后降的趨勢(shì),表明以上酶類參與了炭疽葉枯病菌的侵染過程[71-72]。蘋果不同組織被炭疽菌侵染后,PPO、POD、苯丙氨酸解氨酶(phenylalanine ammonia-lyase,PAL)等7種酶活性均有不同程度的提高[73-75]。通過分析不同抗感品種感染炭疽菌后細(xì)胞壁降解酶活性的變化,證實(shí)甲基半乳糖醛酸酶(PMG)和羧甲基纖維素酶(Cx)在病菌侵染過程中發(fā)揮作用,且抗病品種中細(xì)胞壁降解酶活性高峰的出現(xiàn)早于感病品種[76]。白靜科[30]比較了C. fructicola侵染后抗感品種中過氧化氫(H2O2)和乳突產(chǎn)生的差異,發(fā)現(xiàn)炭疽菌的侵染誘導(dǎo)了蘋果細(xì)胞中H2O2的積累和乳突的產(chǎn)生,并隨著侵染時(shí)間延長(zhǎng)不斷積累。此外,生防菌也可以通過提高感病品種嘎拉葉片中POD、CAT、SOD等防御酶活性,減少活性氧的積累,從而誘導(dǎo)蘋果對(duì)炭疽菌的抗性[77]。

    3.2 植物激素

    植物激素在植物防御和生長(zhǎng)發(fā)育中發(fā)揮重要作用,與植物免疫反應(yīng)相關(guān)的激素包括水楊酸(SA)、茉莉酸(JA)、乙烯(ET)、脫落酸(ABA)等。SA和JA-ET激素作為重要的調(diào)控因子,在蘋果生物和非生物脅迫反應(yīng)中發(fā)揮重要作用[78-79]。SA是通過異分支酸合成酶(ICS)和苯丙氨酸解氨酶(PAL)途徑合成。在應(yīng)激條件下,超過90%的受刺激SA是通過ICS合成的[80]。當(dāng)沒有遇到病原體或逆境時(shí),植物細(xì)胞積累相對(duì)較低濃度的SA,外源噴施SA可增強(qiáng)抗病相關(guān)酶的活性,誘導(dǎo)高感蘋果品種對(duì)C. gloeosporioides產(chǎn)生抗性[81-82]。在蘋果中,藤牧1號(hào)、40-9及16-16等抗性品種(系)中SA合成相關(guān)基因MdEDS1、MdPAD4和MdPAL被C. gloeosporioides誘導(dǎo)表達(dá),SA信號(hào)轉(zhuǎn)導(dǎo)相關(guān)基因MdNPR1、MdPR1、MdPR5的表達(dá)量顯著高于嘎拉等感病品種(系)[83]。水楊酸合成途徑中的關(guān)鍵酶MdICS1可以被G. cingulata誘導(dǎo)上調(diào)表達(dá),而JA、ABA和ETH三種外源信號(hào)可抑制其表達(dá)。

    3.3 蘋果抗病基因挖掘

    不同蘋果品種對(duì)炭疽菌抗感表現(xiàn)存在差異,在田間蘋果炭疽葉枯病的表現(xiàn)尤為突出[84]。馬玉鑫[85]研究表明,寒富品種CDPK基因家族成員MdCDPK24基因在炭疽菌侵染后顯著上調(diào)表達(dá)。對(duì)寒富蘋果同源四倍體進(jìn)行轉(zhuǎn)錄組測(cè)序,發(fā)現(xiàn)MdCaMBP6、MdIPT8在蘋果炭疽葉枯病菌侵染后顯著上調(diào)表達(dá),能夠提高品種抗性[86-87]。Guo等[88]報(bào)道湖北蘋果M. hupehensis YT521-B同源結(jié)構(gòu)域包含蛋白2(MhYTP2),其與MdRGA2L mRNA結(jié)合并降低其穩(wěn)定性,在調(diào)節(jié)對(duì)炭疽葉枯病的抗性中發(fā)揮重要作用,可用于開發(fā)具有GLS抗性的蘋果品種。劉源霞等[89]采用分離群體分組分析(BSA)方法,篩選獲得了一個(gè)與抗病性狀相關(guān)的分子標(biāo)記S0506206-24,在此基礎(chǔ)上,采用全基因組重測(cè)序和BSA相結(jié)合的方法,在該雜交群體中定位了1個(gè)蘋果抗炭疽葉枯病基因位點(diǎn)Rgls,并將其精細(xì)定位于標(biāo)記InDel4199和SNP4299之間[90],室內(nèi)接種驗(yàn)證與Rgls位點(diǎn)緊密連鎖的4個(gè)分子標(biāo)記S0405127(SSR)、S0304673(SSR)、SNP4236和InDel4254,準(zhǔn)確率均高于90%[91]。

    3.4 抗病相關(guān)轉(zhuǎn)錄因子參與的防御反應(yīng)

    植物被病原物感染后,當(dāng)病原體相關(guān)的分子模式(PAMP)或效應(yīng)器被植物識(shí)別時(shí),細(xì)胞內(nèi)的信號(hào)可以被激活,導(dǎo)致活性氧簇(ROS)的產(chǎn)生、絲裂原激活的蛋白激酶(MAPK)激活和防御基因的表達(dá)[62]。MAPKs能夠靶向并磷酸化調(diào)節(jié)下游基因轉(zhuǎn)錄的轉(zhuǎn)錄因子,最終響應(yīng)病原菌的侵入。已報(bào)道的與炭疽菌侵染響應(yīng)相關(guān)的轉(zhuǎn)錄因子有AP2/ERF、TGACG基序結(jié)合因子(BZIP)、MYC2(BHLH)、ARF、MYB、WRKY和NAC等7種,后兩者是高等植物特有的轉(zhuǎn)錄因子家族[92]。WRKYs轉(zhuǎn)錄因子作為MAPK級(jí)聯(lián)反應(yīng)的重要靶標(biāo),在植物對(duì)病原菌的抗性中起關(guān)鍵作用。當(dāng)病原菌侵入后,SA依賴的WRKY基因會(huì)迅速表達(dá)并積累,與抗病基因啟動(dòng)子上的W盒[W-box,TTGAC(C/T)]特異性結(jié)合,啟動(dòng)防御反應(yīng),從而形成復(fù)雜的WRKY調(diào)控網(wǎng)絡(luò)。在蘋果中,MKK4-MPK3下游轉(zhuǎn)錄因子MdWRKY15、MdWRKY17及MdWRKY100通過調(diào)控SA積累增強(qiáng)蘋果對(duì)炭疽菌的抗性[70,93]。其中,MdWRKY100正向調(diào)節(jié)蘋果對(duì)C. gloeosporioides的抗性;C. fructicola可提高感病品種中MdWRKY17蛋白積累,誘導(dǎo)MdMEK4-MdMPK3-MdWRKY17-MdDMR6-SA途徑,加速SA降解,從而降低果樹抗性[94]。此外,有研究表明,MdWRKY15通過激活SA合成酶MdICS1的表達(dá)增強(qiáng)對(duì)輪紋病的抗性[95]。酯酶/脂肪酶GELP1是MPK3/MPK6及其下游轉(zhuǎn)錄因子MdWRKY100的靶標(biāo),在蘋果抵御病原菌侵染中發(fā)揮重要作用[96]。Li等[97]和Lippok等[98]研究證實(shí),γ-氨基丁酸(GABA)關(guān)鍵合成基因MdGAD1能夠與MdWRKY33互作,增強(qiáng)轉(zhuǎn)基因蘋果愈傷組織形成和葉片的抗氧化能力,正向調(diào)控蘋果對(duì)C. gloeosporioides的抗性。此外,MdWRKY31能夠與蘋果超敏反應(yīng)蛋白MdHIR4(hypersensitive-induced reaction? protein,HIR)相互作用,影響SA信號(hào)通路中基因的轉(zhuǎn)錄從而調(diào)節(jié)蘋果對(duì)葡萄座腔菌B.dothidea的抗性[99]。MdWRKY75能夠與MdRAC7啟動(dòng)子結(jié)合,調(diào)節(jié)漆酶的生物合成,并在蘋果斑點(diǎn)落葉病菌Alternaria alternata感染期間促進(jìn)了木質(zhì)素的合成[100]。最新研究表明,MdVQ10能夠與MdWRKY75互作,增強(qiáng)衰老相關(guān)基因MdSAG12和MdSAG18的轉(zhuǎn)錄,促進(jìn)葉片損傷引發(fā)的衰老進(jìn)程[101]。然而,以上幾個(gè)轉(zhuǎn)錄因子是否在蘋果對(duì)炭疽菌抗性中也發(fā)揮著相同或類似的作用仍有待進(jìn)一步驗(yàn)證(圖3)。

    3.5 miRNA參與植物免疫的調(diào)控機(jī)制

    非編碼的RNA分為微小RNA(microRNAs,miRNAs)和小干擾RNA(small interfering RNAs,siRNA)兩大類,miRNA是植物生長(zhǎng)發(fā)育和脅迫應(yīng)答中重要的調(diào)控因子[102]。miRNA可能參與調(diào)節(jié)病原菌感染中胼胝質(zhì)沉積過程,在模式植物擬南芥中,miR773靶向抑制甲基轉(zhuǎn)移酶2(MET2),影響胼胝質(zhì)沉積和ROS累積,負(fù)調(diào)控C. higginianum的抗病性[103]。Zhang等[104]研究發(fā)現(xiàn),Md-miRln20靶向Md-TN1-GLS負(fù)調(diào)控蘋果對(duì)膠孢炭疽菌的侵染。此外,Zhang等[105]研究證實(shí)兩種CCR-NB-LRR蛋白MdRNL2和MdRNL6能夠形成復(fù)合物,抑制病原菌生長(zhǎng),提高了蘋果樹對(duì)蘋果斑點(diǎn)落葉病菌A. alternata的抗性,進(jìn)一步研究證實(shí)其同樣能夠提高果樹對(duì)C. gloeosporioides的抗性[106]。張亞楠等[107]分析了抗感品種中抗病相關(guān)miRNA的表達(dá)量差異,預(yù)測(cè)miR390a、miR482b及miR396b/c/f 在蘋果被炭疽菌侵染中發(fā)揮重要作用。Shen等[108]研究發(fā)現(xiàn),Mdm-miR160-MdARF17-MdWRKY33模塊能夠通過調(diào)節(jié)活性氧(ROS)提高蘋果耐寒性能,但其對(duì)病原菌致病力的影響仍未證實(shí)。上述結(jié)果對(duì)果樹抗病育種起重要的推動(dòng)作用。

    4 問題與展望

    近年來,在分子生物學(xué)和生物信息學(xué)的推動(dòng)下,蘋果和炭疽菌互作方面的研究取得了巨大進(jìn)展。筆者詳細(xì)闡述了蘋果炭疽菌組成、病原菌侵染相關(guān)基因及其與寄主互作的研究進(jìn)展。明確病原菌致病過程及其分子機(jī)制,對(duì)蘋果炭疽葉枯病的綜合防控具有重要意義,隨著各項(xiàng)研究的日益深入,研究者對(duì)炭疽病的防控思路必將有所轉(zhuǎn)變。

    炭疽菌對(duì)蘋果產(chǎn)業(yè)造成巨大危害,由于炭疽菌具有潛伏侵染的特性,果樹病害監(jiān)測(cè)不僅耗時(shí)費(fèi)力,還存在一定的技術(shù)難題。利用傳統(tǒng)的化學(xué)防控手段,通過大量使用殺菌劑和殺蟲劑等雖能達(dá)到對(duì)抗病原菌的效果,但對(duì)環(huán)境和人體也會(huì)造成嚴(yán)重的危害。隨著生活水平的不斷提高,健康問題已經(jīng)逐漸成為關(guān)注的焦點(diǎn)。目前,研發(fā)生態(tài)友好型生物防治策略已經(jīng)被人們廣泛接受和認(rèn)可,前景一片光明。開展抗性品種選育是從根本上解決果樹炭疽菌防控難問題的有效手段,符合現(xiàn)代農(nóng)業(yè)的生產(chǎn)需求[109-110]。解析抗病機(jī)制能夠?yàn)樘O果抗病性改良提供重要的理論依據(jù),是果業(yè)科研的重點(diǎn)研究領(lǐng)域。

    生物信息學(xué)和分子生物學(xué)的各種先進(jìn)技術(shù)為作物改良提供了其他途徑,能夠極大地縮短果樹育種周期,解決傳統(tǒng)實(shí)生苗選育耗時(shí)長(zhǎng)的難題。通過構(gòu)建蘋果高效遺傳轉(zhuǎn)化體系進(jìn)一步開展基因編輯、RNA干擾等生物育種技術(shù)研究,培育具有優(yōu)良性狀的蘋果新種質(zhì)或新品種是果樹科研工作者努力的方向[110]。

    總之,了解蘋果與炭疽菌互作的分子機(jī)制,能夠?yàn)榕嘤共∑贩N和創(chuàng)新病害防控策略提供新的見解,對(duì)果樹產(chǎn)業(yè)健康發(fā)展具有重要的指導(dǎo)意義。

    參考文獻(xiàn) References:

    [1] DEAN R,VAN KAN J A L,PRETORIUS Z A,HAMMOND-KOSACK K E,DI PIETRO A,SPANU P D,RUDD J J,DICKMAN M,KAHMANN R,ELLIS J,F(xiàn)OSTER G D. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology,2012,13(4):414-430.

    [2] DE SILVA D D,CROUS P W,ADES P K,HYDE K D,TAYLOR P W J. Life styles of Colletotrichum species and implications for plant biosecurity[J]. Fungal Biology Reviews,2017,31(3):155-168.

    [3] OCONNELL R,HERBERT C,SREENIVASAPRASAD S,KHATIB M,ESQUERR?-TUGAY? M T,DUMAS B. A novel Arabidopsis-Colletotrichum pathosystem for the molecular dissection of plant-fungal interactions[J]. Molecular Plant-Microbe Interactions,2004,17(3):272-282.

    [4] TUCKER S L,TALBOT N J. Surface attachment and pre-penetration stage development by plant pathogenic fungi[J]. Annual Review of Phytopathology,2001,39:385-417.

    [5] M?NCH S,LINGNER U,F(xiàn)LOSS D S,LUDWIG N,SAUER N,DEISING H B. The hemibiotrophic lifestyle of Colletotrichum species[J]. Journal of Plant Physiology,2008,165(1):41-51.

    [6] 梁曉飛,侯彥忠,白云芳,李蘇莉,孫廣宇,朱明旗. 防控蘋果炭疽葉枯病的化學(xué)農(nóng)藥減量增效研究[J]. 陜西農(nóng)業(yè)科學(xué),2022,68(1):39-43.

    LIANG Xiaofei,HOU Yanzhong,BAI Yunfang,LI Suli,SUN Guangyu,ZHU Mingqi. Studies on improvement of chemical fungicide efficiency in control of apple Glomerella leaf spot disease[J]. Shaanxi Journal of Agricultural Sciences,2022,68(1):39-43.

    [7] 劉安泰,張朝敏,李紫騰,曹克強(qiáng),孟祥龍,胡同樂. 有機(jī)硅助劑在蘋果炭疽葉枯病化學(xué)防控中的減藥增效作用評(píng)價(jià)[J]. 植物保護(hù),2022,48(1):284-290.

    LIU Antai,ZHANG Chaomin,LI Ziteng,CAO Keqiang,MENG Xianglong,HU Tongle. Evaluation of increasing control effect and reducing fungicide effect of organosilicon adjuvant on chemical control of Glomerella apple leaf spot[J]. Plant Protection,2022,48(1):284-290.

    [8] 劉禹彤,徐瑞旋,王洪濤,時(shí)彥嬌,李翠英,馬鋒旺,梁微. 外源甜菜堿提高蘋果對(duì)炭疽葉枯病的抗病性[J]. 果樹學(xué)報(bào),2022,39(7):1252-1261.

    LIU Yutong,XU Ruixuan,WANG Hongtao,SHI Yanjiao,LI Cuiying,MA Fengwang,LIANG Wei. Exogenous glycine betaine improved the resistance of apple to Glomerella leaf spot[J]. Journal of Fruit Science,2022,39(7):1252-1261.

    [9] WENNEKER M,PHAM K,KERKHOF E,HARTEVELD D O C. First report of preharvest fruit rot of ‘Pink Lady apples caused by Colletotrichum fructicola in Italy[J]. Plant Disease,2021,105(5):1561.

    [10] XU C N,ZHOU Z S,WU Y X,CHI F M,JI Z R,ZHANG H J. First report of stem and leaf anthracnose on blueberry caused by Colletotrichum gloeosporioides in China[J]. Plant Disease,2013,97(6):845.

    [11] 劉麗萍,高潔,李玉. 植物炭疽菌屬Colletotrichum真菌研究進(jìn)展[J]. 菌物研究,2020,18(4):266-281.

    LIU Liping,GAO Jie,LI Yu. Advances in knowledge of the fungi referred to the genus Colletotrichum[J]. Journal of Fungal Research,2020,18(4):266-281.

    [12] 王薇,符丹丹,張榮,孫廣宇. 蘋果炭疽葉枯病病原學(xué)研究[J]. 菌物學(xué)報(bào),2015,34(1):13-25.

    WANG Wei,F(xiàn)U Dandan,ZHANG Rong,SUN Guangyu. Etiology of apple leaf spot caused by Colletotrichum spp.[J]. Mycosystema,2015,34(1):13-25.

    [13] LI Q L,BU J Y,SHU J,YU Z H,TANG L H,HUANG S P,GUO T X,MO J Y,LUO S M,SOLANGI G S,HSIANG T. Colletotrichum species associated with mango in Southern China[J]. Scientific Reports,2019,9(1):18891.

    [14] ZHANG R,WANG S F,CUI J Q,SUN G Y,GLEASON M L. First report of bitter rot caused by Colletotrichum acutatum on apple in China[J]. Plant Disease,2008,92(10):1474.

    [15] CHEN Y,F(xiàn)U D D,WANG W,GLEASON M L,ZHANG R,LIANG X F,SUN G Y. Diversity of Colletotrichum species causing apple bitter rot and Glomerella leaf spot in China[J]. Journal of Fungi,2022,8(7):740.

    [16] YANG Z N,MO J Y,GUO T X,LI Q L,TANG L H,HUANG S P,WEI J G,HSIANG T. First report of Colletotrichum fructicola causing anthracnose on Pouteria campechiana in China[J]. Plant Disease,2021,105(3):708.

    [17] TANG Z Y,LOU J,HE L Q,WANG Q D,CHEN L H,ZHONG X T,WU C F,ZHANG L Q,WANG Z Q. First report of Colletotrichum fructicola causing anthracnose on cherry (Prunus avium) in China[J]. Plant Disease,2021,106(1):317.

    [18] HU Y F,LUO X X,XU Z H,ZHANG L H,WANG Y Q,CUI R Q,KUANG W G,XIA Y Y,MA J. First report of Colletotrichum fructicola causing anthracnose on Punica granatum in China[J]. Plant Disease,2023,107(9):2863.

    [19] LI W Z,RAN F,LONG Y H,MO F X,SHU R,YIN X H. Evidences of Colletotrichum fructicola causing anthracnose on Passiflora edulis Sims in China[J]. Pathogens,2021,11(1):6.

    [20] ZHANG Z H,YAN M J,LI W W,GUO Y Z,LIANG X F. First report of Colletotrichum aenigma causing apple Glomerella leaf spot on the Granny Smith cultivar in China[J]. Plant Disease,2021,105(5):1563.

    [21] ZHANG Y J,SUN W X,NING P,GUO T X,HUANG S P,TANG L H,LI Q L,MO J Y. First report of anthracnose of Papaya (Carica papaya L.) caused by Colletotrichum siamense in China[J]. Plant Disease,2021,105(8):2252.

    [22] FAN Y C,GUO F Y,WU R H,CHEN Z Q,LI Z. First report of Colletotrichum gloeosporioides causing anthracnose on grapevine (Vitis vinifera) in Shaanxi Province,China[J]. Plant Disease,2023,107(7):2249.

    [23] AHMAD T,WANG J J,ZHENG Y Q,MUGIZI A E,MOOSA A,NIE C R,LIU Y. First record of Colletotrichum alienum causing postharvest anthracnose disease of mango fruit in China[J]. Plant Disease,2021,105(6):1852.

    [24] WANG N,XU J,ZHAO X Z,WANG M Y,ZHANG J X. First report of Glomerella leaf spot of apple caused by Colletotrichum asianum[J]. Plant Disease,2020,104(10):2734.

    [25] 韓小路,白靜科,張瑋,張榮,孫廣宇. PEG介導(dǎo)的蘋果果生刺盤孢Colletotrichum fructicola原生質(zhì)體轉(zhuǎn)化[J]. 西北農(nóng)業(yè)學(xué)報(bào),2016,25(3):442-449.

    HAN Xiaolu,BAI Jingke,ZHANG Wei,ZHANG Rong,SUN Guangyu. PEG-mediated transformation of Colletotrichum fructicola[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2016,25(3):442-449.

    [26] 徐杰,王美玉,王娜,周宗山,張俊祥. 適用于ATMT介導(dǎo)的RNA干擾載體的構(gòu)建及在蘋果炭疽葉枯病菌中的應(yīng)用[J]. 基因組學(xué)與應(yīng)用生物學(xué),2020,39(9):4053-4057.

    XU Jie,WANG Meiyu,WANG Na,ZHOU Zongshan,ZHANG Junxiang. Construction of RNAi vector and application of ATMT-mediated genetic transformation in Colletotrichum gloeosporioides of apple[J]. Genomics and Applied Biology,2020,39(9):4053-4057.

    [27] WU J Y,JI Z R,WANG N,CHI F M,XU C N,ZHOU Z S,ZHANG J X. Identification of conidiogenesis-associated genes in Colletotrichum gloeosporioides by Agrobacterium tumefaciens-mediated transformation[J]. Current Microbiology,2016,73(6):802-810.

    [28] ZHOU Z S,WU J Y,WANG M Y,ZHANG J X. ABC protein CgABCF2 is required for asexual and sexual development,appressorial formation and plant infection in Colletotrichum gloeosporioides[J]. Microbial Pathogenesis,2017,110:85-92.

    [29] WANG M Y,JI Z R,YAN H F,XU J,ZHAO X Z,ZHOU Z S. Effector Sntf2 interacted with chloroplast-related protein Mdycf39 promoting the colonization of Colletotrichum gloeosporioides in apple leaf[J]. International Journal of Molecular Sciences,2022,23(12):6379.

    [30] 白靜科. 果生炭疽菌Colletotrichum fructicola與蘋果不同抗性品種互作研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2016.

    BAI Jingke. Interaction between resistant and susceptible apple cultivars and Colletotrichum fructicola[D]. Yangling:Northwest A & F University,2016.

    [31] 張興媛,王地廣,高菁,唐雯,李曉宇. 膠孢炭疽菌C2H2型轉(zhuǎn)錄因子CgGcp1的生物學(xué)功能[J]. 微生物學(xué)通報(bào),2022,49(7):2587-2598.

    ZHANG Xingyuan,WANG Diguang,GAO Jing,TANG Wen,LI Xiaoyu. Biological functions of a C2H2 transcription factor CgGcp1 in Colletotrichum gloeosporioides[J]. Microbiology China,2022,49(7):2587-2598.

    [32] 薛蓮. 采后蘋果與炭疽菌互作的生理生化機(jī)制的研究[D]. 合肥:安徽農(nóng)業(yè)大學(xué),2005.

    XUE Lian. Studies on physiological and biochemical mechanism of host-pathogen reaction between postharvest apple and Colletotrichum gloeosporioides[D]. Hefei:Anhui Agricultural University,2005.

    [33] 張俊祥,冀志蕊,王娜,徐成楠,遲福梅,周宗山. 蘋果炭疽葉枯病菌GcAP1復(fù)合體β亞基基因的克隆及功能分析[J]. 中國(guó)農(nóng)業(yè)科學(xué),2017,50(8):1430-1439.

    ZHANG Junxiang,JI Zhirui,WANG Na,XU Chengnan,CHI Fumei,ZHOU Zongshan. Gene cloning and functional analysis of GcAP1 complex beta subunit in Glomerella cingulata[J]. Scientia Agricultura Sinica,2017,50(8):1430-1439.

    [34] ALKAN N,MENG X C,F(xiàn)RIEDLANDER G,REUVENI E,SUKNO S,SHERMAN A,THON M,F(xiàn)LUHR R,PRUSKY D. Global aspects of pacC regulation of pathogenicity genes in Colletotrichum gloeosporioides as revealed by transcriptome analysis[J]. Molecular Plant-Microbe Interactions,2013,26(11):1345-1358.

    [35] ZHAO X Z,TANG B Z,XU J,WANG N,ZHOU Z S,ZHANG J X. A SET domain-containing protein involved in cell wall integrity signaling and peroxisome biogenesis is essential for appressorium formation and pathogenicity of Colletotrichum gloeosporioides[J]. Fungal Genetics and Biology,2020,145:103474.

    [36] 張俊祥,王美玉,遲福梅,徐杰,周宗山. 蘋果炭疽葉枯病菌CgCMK1基因的克隆與功能分析[J]. 植物病理學(xué)報(bào),2020,50(1):40-48.

    ZHANG Junxiang,WANG Meiyu,CHI Fumei,XU Jie,ZHOU Zongshan. Cloning and functional analysis of CgCMK1 in Colletotrichum gloeosporioides[J]. Acta Phytopathologica Sinica,2020,50(1):40-48.

    [37] 張俊祥,王美玉,徐成楠,周宗山. 蘋果炭疽葉枯病菌致病相關(guān)基因CgNVF1的功能初步分析[J]. 植物病理學(xué)報(bào),2018,48(6):810-816.

    ZHANG Junxiang,WANG Meiyu,XU Chengnan,ZHOU Zongshan. Functional analysis of the pathogenicity-related gene CgNVF1 in Colletotrichum gloeosporioides[J]. Acta Phytopathologica Sinica,2018,48(6):810-816.

    [38] 徐杰. 蘋果炭疽葉枯病菌GTP結(jié)合蛋白GTPBP1的功能分析[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2020.

    XU Jie. Function analysis of GTP-binding protein GTPBP1 in Colletotrichum gloeosporioides[D]. Beijing:Chinese Academy of Agricultural Sciences,2020.

    [39] 譚清群. 蘋果炭疽葉枯病菌CPA1基因的鑒定與功能分析[D]. 長(zhǎng)沙:湖南農(nóng)業(yè)大學(xué),2021.

    TAN Qingqun. Identification and functional analysis of CPA1 in Colletotrichum gloeosporioides[D]. Changsha:Hunan Agricultural University,2021.

    [40] CHAGU? V,MAOR R,SHARON A. CgOpt1,a putative oligopeptide transporter from Colletotrichum gloeosporioides that is involved in responses to auxin and pathogenicity[J]. BMC Microbiology,2009,9:173.

    [41] KIM Y K,WANG Y H,LIU Z M,KOLATTUKUDY P E. Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioides conidia as a sterol glycosyl transferase,a novel fungal virulence factor[J]. The Plant Journal,2002,30(2):177-187.

    [42] LIANG X F,CAO M Y,LI S,KONG Y Y,ROLLINS J A,ZHANG R,SUN G Y. Highly contiguous genome resource of Colletotrichum fructicola generated using long-read sequencing[J]. Molecular Plant-Microbe Interactions,2020,33(6):790-793.

    [43] LIU Q G,WANG Z C,XU X M,ZHANG H Z,LI C H. Genome-wide analysis of C2H2 zinc-finger family transcription factors and their responses to abiotic stresses in poplar (Populus trichocarpa)[J]. PLoS One,2015,10(8):e0134753.

    [44] LI X Y,KE Z J,YU X J,LIU Z Q,ZHANG C H. Transcription factor CgAzf1 regulates melanin production,conidial development and infection in Colletotrichum gloeosporioides[J]. Antonie Van Leeuwenhoek,2019,112(7):1095-1104.

    [45] WANG P,LI B,PAN Y T,ZHANG Y Z,LI D W,HUANG L. Calcineurin-responsive transcription factor CgCrzA is required for cell wall integrity and infection-related morphogenesis in Colletotrichum gloeosporioides[J]. The Plant Pathology Journal,2020,36(5):385-397.

    [46] LIU W K,LIANG X F,GLEASON M L,CAO M Y,ZHANG R,SUN G Y. Transcription factor CfSte12 of Colletotrichum fructicola is a key regulator of early apple Glomerella leaf spot pathogenesis[J]. Applied and Environmental Microbiology,2020,87(1):e02212-e02220.

    [47] 劉歡慶,周雙針,高菁,王金泓,唐雯,柳志強(qiáng),李曉宇. 暹羅炭疽菌同源異型盒轉(zhuǎn)錄因子CsHtf1的生物學(xué)功能[J]. 微生物學(xué)通報(bào),2023,50(12):5350-5362.

    LIU Huanqing,ZHOU Shuangzhen,GAO Jing,WANG Jinhong,TANG Wen,LIU Zhiqiang,LI Xiaoyu. Biological function of a homeobox transcription factor CsHtf1 in Colletotrichum siamense[J]. Microbiology China,2023,50(12):5350-5362.

    [48] SUN Y J,WANG Y L,TIAN C M. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides[J]. Fungal Genetics and Biology,2016,95:58-66.

    [49] LI X Y,WU Y T,LIU Z Q,ZHANG C H. The function and transcriptome analysis of a bZIP transcription factor CgAP1 in Colletotrichum gloeosporioides[J]. Microbiological Research,2017,197:39-48.

    [50] LIU W K,HAN L,CHEN J Z,LIANG X F,WANG B,GLEASON M L,ZHANG R,SUN G Y. The CfMcm1 regulates pathogenicity,conidium germination,and sexual development in Colletotrichum fructicola[J]. Phytopathology,2022,112(10):2159-2173.

    [51] ELLIS J G,RAFIQI M,GAN P,CHAKRABARTI A,DODDS P N. Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens[J]. Current Opinion in Plant Biology,2009,12(4):399-405.

    [52] RAFIQI M,ELLIS J G,LUDOWICI V A,HARDHAM A R,DODDS P N. Challenges and progress towards understanding the role of effectors in plant-fungal interactions[J]. Current Opinion in Plant Biology,2012,15(4):477-482.

    [53] SHIMADA C,LIPKA V,OCONNELL R,OKUNO T,SCHULZE-LEFERT P,TAKANO Y. Nonhost resistance in Arabidopsis-Colletotrichum interactions acts at the cell periphery and requires actin filament function[J]. Molecular Plant-Microbe Interactions,2006,19(3):270-279.

    [54] GAN P,IKEDA K,IRIEDA H,NARUSAKA M,OCONNELL R J,NARUSAKA Y,TAKANO Y,KUBO Y,SHIRASU K. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi[J]. New Phytologist,2013,197(4):1236-1249.

    [55] OCONNELL R J,THON M R,HACQUARD S,AMYOTTE S G,KLEEMANN J,TORRES M F,DAMM U,BUIATE E A,EPSTEIN L,ALKAN N,ALTM?LLER J,ALVARADO-BALDERRAMA L,BAUSER C A,BECKER C,BIRREN B W,CHEN Z H,CHOI J,CROUCH J A,DUVICK J P,F(xiàn)ARMAN M A,GAN P,HEIMAN D,HENRISSAT B,HOWARD R J,KABBAGE M,KOCH C,KRACHER B,KUBO Y,LAW A D,LEBRUN M H,LEE Y H,MIYARA I,MOORE N,NEUMANN U,NORDSTR?M K,PANACCIONE D G,PANSTRUGA R,PLACE M,PROCTOR R H,PRUSKY D,RECH G,REINHARDT R,ROLLINS J A,ROUNSLEY S,SCHARDL C L,SCHWARTZ D C,SHENOY N,SHIRASU K,SIKHAKOLLI U R,ST?BER K,SUKNO S A,SWEIGARD J A,TAKANO Y,TAKAHARA H,TRAIL F,VAN DER DOES H C,VOLL L M,WILL I,YOUNG S,ZENG Q D,ZHANG J Z,ZHOU S G,DICKMAN M B,SCHULZE-LEFERT P,VAN THEMAAT E V L,MA L J,VAILLANCOURT L J. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses[J]. Nature Genetics,2012,44(9):1060-1065.

    [56] SHANG S P,LIU G L,ZHANG S,LIANG X F,ZHANG R,SUN G Y. A fungal CFEM-containing effector targets NPR1 regulator NIMIN2 to suppress plant immunity[J]. Plant Biotechnology Journal,2024,22(1):82-97.

    [57] LIU L P,XU L,JIA Q,PAN R,OELM?LLER R,ZHANG W Y,WU C. Arms race:Diverse effector proteins with conserved motifs[J]. Plant Signaling & Behavior,2019,14(2):1557008.

    [58] SHANG S P,WANG B,ZHANG S,LIU G L,LIANG X F,ZHANG R,GLEASON M L,SUN G Y. A novel effector CfEC92 of Colletotrichum fructicola contributes to glomerella leaf spot virulence by suppressing plant defences at the early infection phase[J]. Molecular Plant Pathology,2020,21(7):936-950.

    [59] 王美玉. 蘋果炭疽葉枯病菌效應(yīng)蛋白Sntf2抑制植物免疫的分子機(jī)制研究[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2022.

    WANG Meiyu. Molecular mechanism of inhibition of plant immunity by effector Sntf2 from Colletotrichum gloeosporioides[D]. Beijing:Chinese Academy of Agricultural Sciences,2022.

    [60] KHODADADI F,GONZ?LEZ J B,MARTIN P L,GIROUX E,BILODEAU G J,PETER K A,DOYLE V P,A?IMOVI? S G. Identification and characterization of Colletotrichum species causing apple bitter rot in New York and description of C. noveboracense sp. nov.[J]. Scientific Reports,2020,10(1):11043.

    [61] PENG Y J,VAN WERSCH R,ZHANG Y L. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity[J]. Molecular Plant-Microbe Interactions,2018,31(4):403-409.

    [62] COUTO D,ZIPFEL C. Regulation of pattern recognition receptor signalling in plants[J]. Nature Reviews Immunology,2016,16(9):537-552.

    [63] TANG D Z,WANG G X,ZHOU J M. Receptor kinases in plant-pathogen interactions:More than pattern recognition[J]. The Plant Cell,2017,29(4):618-637.

    [64] BIA?AS A,ZESS E K,DE LA CONCEPCION J C,F(xiàn)RANCESCHETTI M,PENNINGTON H G,YOSHIDA K,UPSON J L,CHANCLUD E,WU C H,LANGNER T,MAQBOOL A,VARDEN F A,DEREVNINA L,BELHAJ K,F(xiàn)UJISAKI K,SAITOH H,TERAUCHI R,BANFIELD M J,KAMOUN S. Lessons in effector and NLR biology of plant-microbe systems[J]. Molecular Plant-Microbe Interactions,2018,31(1):34-45.

    [65] JONES J D G,DANGL J L. The plant immune system[J]. Nature,2006,444(7117):323-329.

    [66] TSUDA K,SATO M,STODDARD T,GLAZEBROOK J,KATAGIRI F. Network properties of robust immunity in plants[J]. PLoS Genetics,2009,5(12):e1000772.

    [67] DODDS P N,RATHJEN J P. Plant immunity:Towards an integrated view of plant-pathogen interactions[J]. Nature Reviews Genetics,2010,11(8):539-548.

    [68] QI Y P,TSUDA K,GLAZEBROOK J,KATAGIRI F. Physical association of pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) immune receptors in Arabidopsis[J]. Molecular Plant Pathology,2011,12(7):702-708.

    [69] 吳建圓,王娜,冀志蕊,遲福梅,周宗山,張俊祥. 蘋果炭疽葉枯病菌致病力分析及蘋果種質(zhì)抗病性鑒定[J]. 植物遺傳資源學(xué)報(bào),2017,18(2):210-216.

    WU Jianyuan,WANG Na,JI Zhirui,CHI Fumei,ZHOU Zongshan,ZHANG Junxiang. Pathogenicity differentiation of pathogen causing Glomerella leaf spot of apple (GLSA) and evaluation of resistance to GLSA in apple germplasms[J]. Journal of Plant Genetic Resources,2017,18(2):210-216.

    [70] ZHANG F,WANG F,YANG S,ZHANG Y Y,XUE H,WANG Y S,YAN S P,WANG Y,ZHANG Z H,MA Y. MdWRKY100 encodes a group Ⅰ WRKY transcription factor in Malus domestica that positively regulates resistance to Colletotrichum gloeosporioides infection[J]. Plant Science,2019,286:68-77.

    [71] 劉瑛雙,房中文,TURAKULOV K S,劉春曉,董超華,張玉剛. 接種蘋果炭疽葉枯病菌對(duì)蘋果葉片相關(guān)酶活性及基因表達(dá)的影響[J]. 青島農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,38(3):157-163.

    LIU Yingshuang,F(xiàn)ANG Zhongwen,TURAKULOV K S,LIU Chunxiao,DONG Chaohua,ZHANG Yugang. Effects on related enzymes activity and gene expression analysis of inoculate apple leaves under Glomerella leaf spot stress[J]. Journal of Qingdao Agricultural University (Natural Science),2021,38(3):157-163.

    [72] 吳成成,李婷,趙芮嘉,李保華,梁文星,王彩霞. 蘋果MpSNAT1的克隆與表達(dá)特性分析[J]. 植物生理學(xué)報(bào),2018,54(5):872-878.

    WU Chengcheng,LI Ting,ZHAO Ruijia,LI Baohua,LIANG Wenxing,WANG Caixia. Cloning and expression characterization of MpSNAT1 in Malus pumila[J]. Plant Physiology Journal,2018,54(5):872-878.

    [73] 吳芳芳,檀根甲. 蘋果感染炭疽病菌后6種酶活性的變化[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2004,31(1):46-50.

    WU Fangfang,TAN Genjia. Changes in six kinds of enzyme activities in apple fruit inoculatedwith Colletotrichum gloeosporioides[J]. Journal of Anhui Agricultural University,2004,31(1):46-50.

    [74] 吳芳芳,鄭有飛,胡正華,陳魁. UV-B輻射增強(qiáng)對(duì)蘋果炭疽菌生長(zhǎng)特性及其過氧化氫酶活性的影響[J]. 生態(tài)環(huán)境,2008,17(1):158-162.

    WU Fangfang,ZHENG Youfei,HU Zhenghua,CHEN Kui. Effects of enhancing ultraviolet-B radiation on grown character and catalase activity in Colletitrichum gloeosporiodes[J]. Ecology and Environment,2008,17(1):158-162.

    [75] 孔祥華,侯董亮,張偉,田義軻,劉源霞,王彩虹. 炭疽葉枯病菌誘導(dǎo)的不同蘋果種質(zhì)中防御酶活性及丙二醛含量比較[J]. 青島農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,34(1):5-8.

    KONG Xianghua,HOU Dongliang,ZHANG Wei,TIAN Yike,LIU Yuanxia,WANG Caihong. Comparison of defensive enzymes activities and malonaldehyde content induced by Glomerella cingulata among different apple resources[J]. Journal of Qingdao Agricultural University (Natural Science),2017,34(1):5-8.

    [76] 薛蓮,檀根甲,徐先松,李麗,韓翔. 蘋果炭疽病菌對(duì)蘋果果實(shí)致病機(jī)制初探[J]. 安徽農(nóng)業(yè)大學(xué)學(xué)報(bào),2006,33(4):522-525.

    XUE Lian,TAN Genjia,XU Xiansong,LI Li,HAN Xiang. Pathogenesis of the cell wall degrading enzymes produced by Colletotrichum gloeosporioides[J]. Journal of Anhui Agricultural University,2006,33(4):522-525.

    [77] 朱學(xué)明,史祥鵬,雍道敬,張穎,李保華,梁文星,王彩霞. 內(nèi)生放線菌A-1誘導(dǎo)蘋果對(duì)炭疽葉枯病的抗性[J]. 植物生理學(xué)報(bào),2015,51(6):949-954.

    ZHU Xueming,SHI Xiangpeng,YONG Daojing,ZHANG Ying,LI Baohua,LIANG Wenxing,WANG Caixia. Induction of resistance against Glomerella cingulata in apple by endophytic actinomycetes strain A-1[J]. Plant Physiology Journal,2015,51(6):949-954.

    [78] BARI R,JONES J D G. Role of plant hormones in plant defence responses[J]. Plant Molecular Biology,2009,69(4):473-488.

    [79] TANG L G,YANG G G,MA M,LIU X F,LI B,XIE J T,F(xiàn)U Y P,CHEN T,YU Y,CHEN W D,JIANG D H,CHENG J S. An effector of a necrotrophic fungal pathogen targets the calcium-sensing receptor in chloroplasts to inhibit host resistance[J]. Molecular Plant Pathology,2020,21(5):686-701.

    [80] DEMPSEY D A,VLOT A C,WILDERMUTH M C,KLESSIG D F. Salicylic acid biosynthesis and metabolism[J]. The Arabidopsis Book,2011,9:e0156.

    [81] ZHANG Y,SHI X P,LI B H,ZHANG Q M,LIANG W X,WANG C X. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple[J]. Plant Physiology and Biochemistry,2016,106:64-72.

    [82] 趙妍,王晨. 水楊酸處理對(duì)蘋果采后品質(zhì)及炭疽病害的影響[J]. 食品工業(yè),2015,36(9):195-198.

    ZHAO Yan,WANG Chen. Influence of salicylic acid on quality and anthracnose in postharvest apple fruit[J]. The Food Industry,2015,36(9):195-198.

    [83] 何曉文,孟慧,張家虎,范昆,李林光. ‘嘎拉蘋果及其雜交后代對(duì)炭疽葉枯病的抗性機(jī)制分析[J]. 西北植物學(xué)報(bào),2022,42(6):983-993.

    HE Xiaowen,MENG Hui,ZHANG Jiahu,F(xiàn)AN Kun,LI Linguang. Resistance analysis of ‘Gala and F1 individuals to Glomerella leaf spot[J]. Acta Botanica Boreali-Occidentalia Sinica,2022,42(6):983-993.

    [84] 張朝紅,陳東玫,楊鳳秋,趙同生,趙國(guó)棟,李揚(yáng),趙永波. 蘋果種質(zhì)及雜種對(duì)炭疽菌葉枯病的田間抗性分析[J]. 河北農(nóng)業(yè)科學(xué),2018,22(3):42-46.

    ZHANG Chaohong,CHEN Dongmei,YANG Fengqiu,ZHAO Tongsheng,ZHAO Guodong,LI Yang,ZHAO Yongbo. Field resistance of apple germplasm and hybrids to Glomerella leaf spot[J]. Journal of Hebei Agricultural Sciences,2018,22(3):42-46.

    [85] 馬玉鑫. ‘寒富蘋果CDPK基因家族分析及MdCDPK24對(duì)蘋果炭疽病抗性功能鑒定[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2023.

    MA Yuxin. Analysis of CDPK gene family and identification of resistance function of MdCDPK24 to Colletotrichum gloeosporioides in ‘Hanfu apple[D]. Shenyang:Shenyang Agricultural University,2023.

    [86] 趙偉玉. ‘寒富蘋果CaMBP基因家族分析及MdCaMBP6抗蘋果炭疽葉枯病的功能鑒定[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2023.

    ZHAO Weiyu. Analysis of CaMBP gene family in ‘Hanfu apple and function identification of MdCaMBP6 against apple Glomerella leaf spot[D]. Shenyang:Shenyang Agricultural University,2023.

    [87] 史佳俊. 蘋果細(xì)胞分裂素合成關(guān)鍵酶基因MdIPT8在抗炭疽病中的功能解析[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2022.

    SHI Jiajun. Functional analysis of MdIPT8,a key enzyme gene for cytokinin synthesis in apple,in resistance to anthracnose[D]. Shenyang:Shenyang Agricultural University,2022.

    [88] GUO T L,BAO R,YANG Z H,F(xiàn)U X M,HU L,WANG N,LIU C H,MA F W. The m6A reader MhYTP2 negatively modulates apple Glomerella leaf spot resistance by binding to and degrading MdRGA2L mRNA[J]. Molecular Plant Pathology,2023,24(10):1287-1299.

    [89] 劉源霞,李保華,王彩虹,劉春曉,孔祥華,祝軍,戴洪義. 蘋果對(duì)炭疽菌葉枯病抗性遺傳的研究及其分子標(biāo)記篩選[J]. 園藝學(xué)報(bào),2015,42(11):2105-2112.

    LIU Yuanxia,LI Baohua,WANG Caihong,LIU Chunxiao,KONG Xianghua,ZHU Jun,DAI Hongyi. Genetic studies and molecular markers screening of apple resistance to Glomerella leaf spot[J]. Acta Horticulturae Sinica,2015,42(11):2105-2112.

    [90] 劉源霞,蘭進(jìn)好,柏素花,孫曉紅,劉春曉,張玉剛,戴洪義. 蘋果抗炭疽菌葉枯病基因SNP和InDel標(biāo)記的HRM篩選[J]. 園藝學(xué)報(bào),2017,44(2):215-222.

    LIU Yuanxia,LAN Jinhao,BAI Suhua,SUN Xiaohong,LIU Chunxiao,ZHANG Yugang,DAI Hongyi. Screening of SNP and InDel markers to Glomerella leaf spot resistance gene locus in apple using HRM technology[J]. Acta Horticulturae Sinica,2017,44(2):215-222.

    [91] 劉春曉,蘭進(jìn)好,侯鴻敏,張玉剛,戴洪義,劉源霞. 蘋果抗炭疽菌葉枯病基因相關(guān)的4個(gè)分子標(biāo)記的準(zhǔn)確性驗(yàn)證[J]. 園藝學(xué)報(bào),2017,44(7):1355-1362.

    LIU Chunxiao,LAN Jinhao,HOU Hongmin,ZHANG Yugang,DAI Hongyi,LIU Yuanxia. Accuracy test of four molecular markers of Glomerella leaf spot resistant gene in apple cultivars[J]. Acta Horticulturae Sinica,2017,44(7):1355-1362.

    [92] LI W X,PANG S Y,LU Z G,JIN B. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants[J]. Plants,2020,9(11):1515.

    [93] 谷彥冰. 蘋果兩個(gè)WRKY轉(zhuǎn)錄因子的克隆和表達(dá)分析[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2016.

    GU Yanbing. Cloning and expression analysis of two WRKY transcription factors in apple (Malus domestica Borkh.)[D]. Beijing:Chinese Academy of Agricultural Sciences,2016.

    [94] SHAN D Q,CHANYU W,ZHENG X D,HU Z H,ZHU Y P,ZHAO Y,JIANG A W,ZHANG H X,SHI K,BAI Y X,YAN T C,WANG L,SUN Y Z,LI J F,ZHOU Z Y,GUO Y,KONG J. MKK4-MPK3-WRKY17-mediated salicylic acid degradation increases susceptibility to Glomerella leaf spot in apple[J]. Plant Physiology,2021,186(2):1202-1219.

    [95] ZHAO X Y,QI C H,JIANG H,ZHONG M S,YOU C X,LI Y Y,HAO Y J. MdWRKY15 improves resistance of apple to Botryosphaeria dothidea via the salicylic acid-mediated pathway by directly binding the MdICS1 promoter[J]. Journal of Integrative Plant Biology,2020,62(4):527-543.

    [96] JI Z R,WANG M Y,ZHANG S W,DU Y N,CONG J L,YAN H F,GUO H M,XU B L,ZHOU Z S. GDSL esterase/lipase GELP1 involved in the defense of apple leaves against Colletotrichum gloeosporioides infection[J]. International Journal of Molecular Sciences,2023,24(12):10343.

    [97] LI Y X,CUI Y L,LIU B Y,XU R X,SHI Y J,LV L L,WANG H T,SHANG Y M,LIANG W,MA F W,LI C Y. γ-aminobutyric acid plays a key role in alleviating Glomerella leaf spot in apples[J]. Molecular Plant Pathology,2023,24(6):588-601.

    [98] LIPPOK B,BIRKENBIHL R P,RIVORY G,BR?MMER J,SCHMELZER E,LOGEMANN E,SOMSSICH I E. Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W-box elements[J]. Molecular Plant-Microbe Interactions,2007,20(4):420-429.

    [99] ZHAO X Y,QI C H,JIANG H,ZHONG M S,YOU C X,LI Y Y,HAO Y J. MdHIR4 transcription and translation levels associated with disease in apple are regulated by MdWRKY31[J]. Plant Molecular Biology,2019,101(1/2):149-162.

    [100] HOU Y J,YU X Y,CHEN W P,ZHUANG W B,WANG S H,SUN C,CAO L F,ZHOU T T,QU S C. MdWRKY75e enhances resistance to Alternaria alternata in Malus domestica[J]. Horticulture Research,2021,8(1):225.

    [101] ZHANG X W,XU R R,LIU Y K,YOU C X,AN J P. MdVQ10 promotes wound-triggered leaf senescence in association with MdWRKY75 and undergoes antagonistic modulation of MdCML15 and MdJAZs in apple[J]. The Plant Journal,2023,115(6):1599-1618.

    [102] ZHANG S S,WU Y Q,HUANG X,WU W L,LYU L F,LI W L. Research progress about microRNAs involved in plant secondary metabolism[J]. International Journal of Biological Macromolecules,2022,216:820-829.

    [103] SALVADOR-GUIRAO R,BALDRICH P,WEIGEL D,RUBIO-SOMOZA I,SAN SEGUNDO B. The microRNA miR773 is involved in the Arabidopsis immune response to fungal pathogens[J]. Molecular Plant-Microbe Interactions,2018,31(2):249-259.

    [104] ZHANG Y,ZHANG Q L,HAO L,WANG S N,WANG S Y,ZHANG W N,XU C R,YU Y F,LI T Z. A novel miRNA negatively regulates resistance to Glomerella leaf spot by suppressing expression of an NBS gene in apple[J]. Horticulture Research,2019,6:93.

    [105] ZHANG Q L,XU C R,WEI H Y,F(xiàn)AN W Q,LI T Z. Two pathogenesis-related proteins interact with leucine-rich repeat proteins to promote Alternaria leaf spot resistance in apple[J]. Horticulture Research,2021,8:219.

    [106] ZHANG Q L,WANG Y H,WEI H Y,F(xiàn)AN W Q,XU C R,LI T Z. CCR-NB-LRR proteins MdRNL2 and MdRNL6 interact physically to confer broad-spectrum fungal resistance in apple (Malus × domestica)[J]. The Plant Journal,2021,108(5):1522-1538.

    [107] 張亞楠,陳新慧,張杰. 蘋果炭疽病抗性miRNA的篩選[J]. 中國(guó)農(nóng)學(xué)通報(bào),2021,37(7):106-111.

    ZHANG Yanan,CHEN Xinhui,ZHANG Jie. Screening of Malus miRNA:Mediated resistance to Colletotrichum gloeosporioides[J]. Chinese Agricultural Science Bulletin,2021,37(7):106-111.

    [108] SHEN X X,PING Y K,BAO C N,LIU C,TAHIR M M,LI X W,SONG Y,XU W R,MA F W,GUAN Q M. Mdm-miR160-MdARF17-MdWRKY33 module mediates freezing tolerance in apple[J]. The Plant Journal,2023,114(2):262-278.

    [109] YU X Y,HOU Y J,CAO L F,ZHOU T T,WANG S H,HU K X,CHEN J R,QU S C. MicroRNA candidate miRcand137 in apple is induced by Botryosphaeria dothidea for impairing host defense[J]. Plant Physiology,2022,189(3):1814-1832.

    [110] LIU K,YANG A,YAN J D,LIANG Z L,YUAN G P,CONG P H,ZHANG L Y,HAN X L,ZHANG C X. MdAIL5 overexpression promotes apple adventitious shoot regeneration by regulating hormone signaling and activating the expression of shoot development-related genes[J]. Horticulture Research,2023,10(11):uhad198.

    收稿日期:2024-03-13 接受日期:2024-04-07

    基金項(xiàng)目:中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(1610182023012);國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-27);中國(guó)農(nóng)業(yè)科學(xué)院科技創(chuàng)新工程專項(xiàng)(CAAS-ASTIP-2021-RIP-05)

    作者簡(jiǎn)介:冀志蕊,女,在讀博士研究生,研究方向?yàn)楣麡洳『α餍信c綜合防控。Tel:0429-3598236,E-mail:xinyu_jzr@163.com

    *通信作者 Author for correspondence. E-mail:xubl@gsau.edu.cn;Tel:0429-3598268,E-mail:zhouzongshan@caas.cn

    猜你喜歡
    蘋果
    快樂蘋果鎮(zhèn)
    0分也能拿第一
    第一個(gè)大蘋果
    收獲蘋果
    有毒的蘋果
    拿蘋果
    梨與蘋果
    會(huì)說話的蘋果
    蘋果豐收啦
    洗蘋果
    日韩亚洲欧美综合| 一a级毛片在线观看| 免费搜索国产男女视频| 在线观看av片永久免费下载| 国产精品乱码一区二三区的特点| 久久久精品大字幕| 一级av片app| 一级作爱视频免费观看| 老鸭窝网址在线观看| 日本免费a在线| 国产精品爽爽va在线观看网站| 99在线人妻在线中文字幕| 欧美黑人欧美精品刺激| 国产高清视频在线观看网站| 草草在线视频免费看| 精华霜和精华液先用哪个| 国产高清激情床上av| 久久人人爽人人爽人人片va | 两个人的视频大全免费| 日韩中字成人| 床上黄色一级片| 一区二区三区四区激情视频 | 十八禁国产超污无遮挡网站| 欧美日韩瑟瑟在线播放| 大型黄色视频在线免费观看| 男人舔女人下体高潮全视频| 久久久久久国产a免费观看| 狠狠狠狠99中文字幕| 日本a在线网址| 国产美女午夜福利| av在线老鸭窝| 欧美乱色亚洲激情| 欧美一区二区精品小视频在线| 久久精品人妻少妇| 9191精品国产免费久久| 人妻久久中文字幕网| 性色avwww在线观看| 久久久久久大精品| 国产一区二区在线av高清观看| 亚洲激情在线av| 中文资源天堂在线| 中文字幕av在线有码专区| 成人一区二区视频在线观看| 国产精品一区二区免费欧美| 高清在线国产一区| 91九色精品人成在线观看| 悠悠久久av| 搡老岳熟女国产| 哪里可以看免费的av片| 一边摸一边抽搐一进一小说| aaaaa片日本免费| 又爽又黄a免费视频| 久久久久久久久久成人| 国产乱人视频| 97碰自拍视频| h日本视频在线播放| 国产亚洲精品综合一区在线观看| 国产在视频线在精品| 精品久久久久久久久久免费视频| 97超级碰碰碰精品色视频在线观看| 亚洲av一区综合| 美女大奶头视频| 在线观看舔阴道视频| 十八禁国产超污无遮挡网站| 精品日产1卡2卡| 首页视频小说图片口味搜索| 青草久久国产| 天天躁日日操中文字幕| 我要搜黄色片| 男女做爰动态图高潮gif福利片| 丁香欧美五月| 亚洲 欧美 日韩 在线 免费| 亚洲最大成人中文| 亚洲三级黄色毛片| 国产成人啪精品午夜网站| 一级av片app| 欧美丝袜亚洲另类 | 亚洲久久久久久中文字幕| 夜夜夜夜夜久久久久| 中国美女看黄片| 51午夜福利影视在线观看| 午夜亚洲福利在线播放| 51午夜福利影视在线观看| 欧美成人性av电影在线观看| 狠狠狠狠99中文字幕| 男女视频在线观看网站免费| 91久久精品国产一区二区成人| 欧美成狂野欧美在线观看| 免费在线观看亚洲国产| 亚洲人成网站在线播| av在线老鸭窝| 亚洲av五月六月丁香网| 亚洲av成人不卡在线观看播放网| 天堂动漫精品| 美女cb高潮喷水在线观看| 直男gayav资源| 韩国av一区二区三区四区| 亚洲国产高清在线一区二区三| 成人三级黄色视频| 亚洲国产精品成人综合色| 国产v大片淫在线免费观看| 中文字幕av在线有码专区| 亚洲电影在线观看av| 国内揄拍国产精品人妻在线| 欧美zozozo另类| 成年女人毛片免费观看观看9| 窝窝影院91人妻| 亚洲专区国产一区二区| 亚洲,欧美精品.| av视频在线观看入口| 国产精品美女特级片免费视频播放器| 九色国产91popny在线| 一区二区三区激情视频| 亚洲乱码一区二区免费版| 日本与韩国留学比较| 99视频精品全部免费 在线| 欧美+亚洲+日韩+国产| 欧美日本亚洲视频在线播放| 精品一区二区三区人妻视频| 亚洲人成网站在线播放欧美日韩| 内射极品少妇av片p| 亚洲国产精品999在线| 看十八女毛片水多多多| 欧美日韩国产亚洲二区| 91九色精品人成在线观看| 国产探花极品一区二区| 又紧又爽又黄一区二区| 日韩中文字幕欧美一区二区| 午夜福利高清视频| 此物有八面人人有两片| 91av网一区二区| 久久99热这里只有精品18| a级毛片免费高清观看在线播放| 男女视频在线观看网站免费| 亚洲第一欧美日韩一区二区三区| 国产成+人综合+亚洲专区| 亚洲 国产 在线| 国产高清视频在线观看网站| 99精品久久久久人妻精品| 日本一本二区三区精品| 亚洲精品在线美女| 成年女人永久免费观看视频| 国产欧美日韩一区二区精品| 美女高潮喷水抽搐中文字幕| 精品一区二区三区视频在线| 国产在线男女| 亚洲精品在线观看二区| 一个人免费在线观看电影| 亚洲成a人片在线一区二区| 赤兔流量卡办理| 免费无遮挡裸体视频| av在线蜜桃| 亚洲精品成人久久久久久| 国产精品一区二区三区四区久久| 成年人黄色毛片网站| 国产在线精品亚洲第一网站| 成人毛片a级毛片在线播放| 亚洲18禁久久av| 一本久久中文字幕| 美女高潮的动态| 最近最新中文字幕大全电影3| 国产伦一二天堂av在线观看| 久久99热这里只有精品18| 亚洲五月天丁香| 欧美成人免费av一区二区三区| 国产精品1区2区在线观看.| 久久热精品热| 九九久久精品国产亚洲av麻豆| 偷拍熟女少妇极品色| 一级作爱视频免费观看| 伦理电影大哥的女人| av欧美777| 毛片一级片免费看久久久久 | 欧美色视频一区免费| 国产在线精品亚洲第一网站| 91午夜精品亚洲一区二区三区 | 俺也久久电影网| av黄色大香蕉| 久久精品91蜜桃| 国产高清视频在线观看网站| 国内精品久久久久久久电影| 国产黄片美女视频| 波多野结衣高清作品| 国产淫片久久久久久久久 | 日韩欧美精品v在线| av在线天堂中文字幕| 国产单亲对白刺激| 女同久久另类99精品国产91| 男女床上黄色一级片免费看| 99久国产av精品| 亚洲av五月六月丁香网| 精品午夜福利在线看| 十八禁人妻一区二区| 国产高清三级在线| 国产精品影院久久| 69人妻影院| 亚洲第一电影网av| 国产高潮美女av| 国产精品女同一区二区软件 | 天堂网av新在线| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美免费精品| 丰满人妻熟妇乱又伦精品不卡| .国产精品久久| 精品乱码久久久久久99久播| 久久久久性生活片| 特级一级黄色大片| 男人舔女人下体高潮全视频| 精品欧美国产一区二区三| 啦啦啦韩国在线观看视频| 91久久精品电影网| 日韩欧美免费精品| 尤物成人国产欧美一区二区三区| 免费在线观看影片大全网站| 床上黄色一级片| 99久国产av精品| 国产乱人伦免费视频| 国产成+人综合+亚洲专区| 精品一区二区三区视频在线| 亚洲精品日韩av片在线观看| 美女大奶头视频| 搡老妇女老女人老熟妇| 99riav亚洲国产免费| 成年免费大片在线观看| 美女被艹到高潮喷水动态| 黄色日韩在线| 国产野战对白在线观看| 亚洲国产欧洲综合997久久,| 深爱激情五月婷婷| 99久久无色码亚洲精品果冻| 国产人妻一区二区三区在| 欧美黑人巨大hd| 亚洲18禁久久av| 伦理电影大哥的女人| 久久人妻av系列| 中文字幕人妻熟人妻熟丝袜美| 成人欧美大片| 麻豆久久精品国产亚洲av| av中文乱码字幕在线| 3wmmmm亚洲av在线观看| 色哟哟·www| 成人无遮挡网站| 国产美女午夜福利| 美女高潮喷水抽搐中文字幕| 美女高潮喷水抽搐中文字幕| www.色视频.com| 久久精品影院6| 十八禁网站免费在线| 亚洲国产欧洲综合997久久,| 美女免费视频网站| 亚洲18禁久久av| 最近中文字幕高清免费大全6 | 日本三级黄在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99久久精品国产亚洲精品| 99热这里只有精品一区| 亚洲国产精品合色在线| 亚洲成人免费电影在线观看| 精华霜和精华液先用哪个| 国产精品,欧美在线| 哪里可以看免费的av片| 国产一区二区三区在线臀色熟女| 在线观看午夜福利视频| 国产精品久久久久久久久免 | 中文字幕av在线有码专区| 全区人妻精品视频| 亚洲欧美日韩无卡精品| 亚洲精品粉嫩美女一区| 深爱激情五月婷婷| 国产真实乱freesex| 亚洲av不卡在线观看| 国产亚洲精品综合一区在线观看| 一区二区三区激情视频| 日本与韩国留学比较| 国产精品免费一区二区三区在线| av在线天堂中文字幕| 最后的刺客免费高清国语| xxxwww97欧美| 别揉我奶头 嗯啊视频| 亚洲午夜理论影院| 精品国产亚洲在线| 自拍偷自拍亚洲精品老妇| 一个人免费在线观看的高清视频| x7x7x7水蜜桃| 久久精品国产亚洲av天美| 欧美日韩国产亚洲二区| 亚洲一区二区三区色噜噜| 婷婷六月久久综合丁香| 国产精品自产拍在线观看55亚洲| 麻豆国产av国片精品| 日本在线视频免费播放| 亚洲最大成人中文| 国产野战对白在线观看| 88av欧美| 18禁裸乳无遮挡免费网站照片| 色av中文字幕| 欧美日韩瑟瑟在线播放| 丁香欧美五月| 噜噜噜噜噜久久久久久91| xxxwww97欧美| 日日摸夜夜添夜夜添小说| 动漫黄色视频在线观看| 亚洲美女视频黄频| 中文字幕熟女人妻在线| 久久性视频一级片| 亚洲人成网站在线播| 看黄色毛片网站| 欧美激情久久久久久爽电影| 日本五十路高清| 女生性感内裤真人,穿戴方法视频| or卡值多少钱| 给我免费播放毛片高清在线观看| 亚洲人成网站在线播| 亚洲午夜理论影院| 亚洲成人免费电影在线观看| 搡老岳熟女国产| 一夜夜www| 午夜精品在线福利| 高清在线国产一区| 欧美激情国产日韩精品一区| 一个人看视频在线观看www免费| 亚洲国产高清在线一区二区三| 宅男免费午夜| 免费人成视频x8x8入口观看| 可以在线观看的亚洲视频| 午夜精品一区二区三区免费看| 精品国产亚洲在线| 精品一区二区免费观看| 乱人视频在线观看| 最近在线观看免费完整版| av在线老鸭窝| 亚洲国产高清在线一区二区三| 久久这里只有精品中国| 久久6这里有精品| 国产日本99.免费观看| 免费一级毛片在线播放高清视频| 精品一区二区三区人妻视频| 久久精品久久久久久噜噜老黄 | 久久6这里有精品| 一级av片app| 搞女人的毛片| 亚洲国产精品sss在线观看| 美女黄网站色视频| 亚洲精华国产精华精| 麻豆国产av国片精品| 在线播放国产精品三级| 亚洲美女搞黄在线观看 | 最近在线观看免费完整版| 成人性生交大片免费视频hd| 欧美黄色淫秽网站| 国产成+人综合+亚洲专区| 日韩欧美 国产精品| 热99re8久久精品国产| 能在线免费观看的黄片| 免费在线观看成人毛片| 日日夜夜操网爽| 一级黄色大片毛片| 婷婷色综合大香蕉| or卡值多少钱| 可以在线观看的亚洲视频| 禁无遮挡网站| 国产视频内射| 精品人妻一区二区三区麻豆 | 亚洲电影在线观看av| 国产蜜桃级精品一区二区三区| 九九热线精品视视频播放| 黄片小视频在线播放| 欧美激情在线99| 蜜桃亚洲精品一区二区三区| 男女那种视频在线观看| 99国产精品一区二区三区| 夜夜看夜夜爽夜夜摸| 91久久精品电影网| 亚州av有码| 露出奶头的视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲av免费高清在线观看| 精品人妻一区二区三区麻豆 | 成年人黄色毛片网站| 日韩欧美在线二视频| 特级一级黄色大片| 国产伦精品一区二区三区视频9| 听说在线观看完整版免费高清| 免费人成视频x8x8入口观看| 亚洲一区高清亚洲精品| 色5月婷婷丁香| 国产乱人伦免费视频| 不卡一级毛片| 一进一出好大好爽视频| 99国产综合亚洲精品| 午夜精品在线福利| 免费人成在线观看视频色| 国产主播在线观看一区二区| 亚洲精品影视一区二区三区av| 日本在线视频免费播放| 成人特级黄色片久久久久久久| 他把我摸到了高潮在线观看| 久久久久久久午夜电影| 欧美成狂野欧美在线观看| 天堂av国产一区二区熟女人妻| 成年女人看的毛片在线观看| 97热精品久久久久久| 首页视频小说图片口味搜索| 亚洲一区二区三区不卡视频| 草草在线视频免费看| 欧美黄色淫秽网站| 亚洲av五月六月丁香网| 高清日韩中文字幕在线| 毛片女人毛片| 亚洲国产日韩欧美精品在线观看| 女生性感内裤真人,穿戴方法视频| 热99re8久久精品国产| 91狼人影院| 97人妻精品一区二区三区麻豆| 国产精品自产拍在线观看55亚洲| 欧美3d第一页| 亚洲专区国产一区二区| 亚洲av成人av| 又爽又黄无遮挡网站| 99视频精品全部免费 在线| 男女床上黄色一级片免费看| 一级黄片播放器| 一个人看视频在线观看www免费| 搡老岳熟女国产| 一a级毛片在线观看| 亚洲精品亚洲一区二区| 一夜夜www| 久久久久久久亚洲中文字幕 | 12—13女人毛片做爰片一| 午夜福利免费观看在线| av视频在线观看入口| 美女高潮的动态| 中文字幕av在线有码专区| 午夜两性在线视频| 成人毛片a级毛片在线播放| av在线天堂中文字幕| 免费看日本二区| 小蜜桃在线观看免费完整版高清| 国产精品久久久久久亚洲av鲁大| 免费看美女性在线毛片视频| aaaaa片日本免费| 亚洲无线观看免费| 日本与韩国留学比较| 免费搜索国产男女视频| 国产熟女xx| 深夜精品福利| 色精品久久人妻99蜜桃| 欧美潮喷喷水| 亚洲av五月六月丁香网| 宅男免费午夜| 国产成人av教育| 免费一级毛片在线播放高清视频| 91av网一区二区| 午夜精品久久久久久毛片777| 内射极品少妇av片p| 国产成年人精品一区二区| 中文字幕精品亚洲无线码一区| 久久精品国产亚洲av涩爱 | 欧美性猛交╳xxx乱大交人| 老女人水多毛片| 波多野结衣巨乳人妻| 日韩成人在线观看一区二区三区| 我要看日韩黄色一级片| 在线观看午夜福利视频| av专区在线播放| 国产精品影院久久| 国产一区二区在线av高清观看| 丝袜美腿在线中文| 免费av不卡在线播放| 国产精品,欧美在线| 综合色av麻豆| 性色avwww在线观看| 免费人成在线观看视频色| 在线国产一区二区在线| 午夜福利在线观看免费完整高清在 | 成人永久免费在线观看视频| 久久国产乱子免费精品| 97热精品久久久久久| 成人午夜高清在线视频| 国产在视频线在精品| 啦啦啦韩国在线观看视频| 白带黄色成豆腐渣| 无遮挡黄片免费观看| 一区二区三区免费毛片| 国产成人欧美在线观看| 国产精品久久久久久久久免 | 成人无遮挡网站| 麻豆av噜噜一区二区三区| 久久久久久久久中文| h日本视频在线播放| 婷婷色综合大香蕉| 长腿黑丝高跟| 别揉我奶头 嗯啊视频| 欧美一区二区精品小视频在线| 日本 欧美在线| 天堂影院成人在线观看| 看免费av毛片| 最好的美女福利视频网| 老鸭窝网址在线观看| 成人性生交大片免费视频hd| 级片在线观看| 国产精品98久久久久久宅男小说| 亚洲国产高清在线一区二区三| 国产高清视频在线播放一区| 国产伦精品一区二区三区视频9| 久久久色成人| 在线国产一区二区在线| 国产精品不卡视频一区二区 | 久久热精品热| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有精品一区| 国产精品1区2区在线观看.| 午夜福利在线在线| 久久亚洲真实| 国产欧美日韩精品一区二区| 亚洲综合色惰| 日本一二三区视频观看| 欧美xxxx黑人xx丫x性爽| 欧美黄色片欧美黄色片| 九九热线精品视视频播放| 日本一二三区视频观看| 亚洲精品影视一区二区三区av| 亚洲国产色片| 午夜视频国产福利| 日本五十路高清| 在线观看美女被高潮喷水网站 | 非洲黑人性xxxx精品又粗又长| 窝窝影院91人妻| 婷婷色综合大香蕉| 深爱激情五月婷婷| 精品一区二区三区av网在线观看| 日本免费一区二区三区高清不卡| or卡值多少钱| 可以在线观看毛片的网站| 男人舔奶头视频| 毛片一级片免费看久久久久 | 欧美另类亚洲清纯唯美| av在线观看视频网站免费| 亚洲黑人精品在线| 最近最新中文字幕大全电影3| 热99在线观看视频| 一本一本综合久久| 麻豆一二三区av精品| 国产精品,欧美在线| 亚洲人成伊人成综合网2020| 日韩精品中文字幕看吧| 欧美激情在线99| 在线播放无遮挡| 嫩草影院精品99| 亚洲中文日韩欧美视频| a级毛片a级免费在线| 欧美国产日韩亚洲一区| 村上凉子中文字幕在线| 国产v大片淫在线免费观看| 波多野结衣高清无吗| 日韩欧美精品免费久久 | 国内精品美女久久久久久| 国产高清视频在线播放一区| 搡老妇女老女人老熟妇| 级片在线观看| 人人妻,人人澡人人爽秒播| 亚洲国产色片| 亚洲一区二区三区不卡视频| 欧美午夜高清在线| 日本 欧美在线| 国产精品乱码一区二三区的特点| 精品午夜福利在线看| 91麻豆av在线| 精华霜和精华液先用哪个| 99在线视频只有这里精品首页| 亚洲av五月六月丁香网| 久久6这里有精品| 看片在线看免费视频| 搡女人真爽免费视频火全软件 | 九九久久精品国产亚洲av麻豆| 欧美黄色淫秽网站| 国产老妇女一区| 99国产综合亚洲精品| 亚洲欧美精品综合久久99| 国产精品久久久久久久电影| 国产一区二区三区在线臀色熟女| 成年免费大片在线观看| 久久久久亚洲av毛片大全| 欧美zozozo另类| 99热精品在线国产| 久久中文看片网| 桃色一区二区三区在线观看| 国产精品1区2区在线观看.| 男女之事视频高清在线观看| 午夜久久久久精精品| 午夜福利18| 久久久久性生活片| 在线观看66精品国产| a级毛片免费高清观看在线播放| 色av中文字幕| 12—13女人毛片做爰片一| 免费大片18禁| 中文字幕人妻熟人妻熟丝袜美| 午夜福利高清视频| 男女视频在线观看网站免费| 国产伦一二天堂av在线观看| 亚洲国产欧洲综合997久久,| 成年女人毛片免费观看观看9| 精华霜和精华液先用哪个| 51国产日韩欧美| 国产老妇女一区| 日本a在线网址| 色尼玛亚洲综合影院| 免费电影在线观看免费观看| 国产69精品久久久久777片| 永久网站在线| 亚洲黑人精品在线| 人人妻人人看人人澡| 色吧在线观看| 精品久久久久久久久久免费视频|