• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination of epsilon for Omega vortex identification method *

    2018-09-28 05:33:40XiangruiDong董祥瑞YiqianWang王義乾XiaopingChen陳小平YinlinDongYuningZhang張宇寧ChaoqunLiu
    關(guān)鍵詞:祥瑞

    Xiang-rui Dong (董祥瑞), Yi-qian Wang(王義乾), Xiao-ping Chen(陳小平), Yinlin Dong,Yu-ning Zhang (張宇寧), Chaoqun Liu

    1. National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094,China

    2. Department of Mathematics, University of Texas at Arlington, Arlington, Texas, USA

    3. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

    4. School of Mechanical Engineering, Zhejiang Sci-Tech University, Zhejiang 310018, China

    5. Department of Mathematics, University of Central Arkansas, Conway, Arkansas, USA

    6. Key Laboratory of Condition Monitoring and Control for Power Plant Equipment (Ministry of Education),School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206,China

    7. Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China

    Abstract: In the present paper, epsilon ()ε in the Omega vortex identification criterion (Ω method) is defined as an explicit function in order to apply the Ω method to different cases and even different time steps for the unsteady cases. In our method, ε is defined as a function relating with the flow without any subjective adjustment on its coefficient. The newly proposed criteria for the determination of ε is tested in several typical flow cases and is proved to be effective in the current work. The test cases given in the present paper include boundary layer transition, shock wave and boundary layer interaction, and channel flow with different Reynolds numbers.

    Key words: Vortex identification, vorticity, deformation, turbulence

    The definition or identification of vortex is a longstanding issue in fluid dynamics. Several vortex identification methods, such as Δ~-method[1], Q[2]and2λ[3]criteria have been widely used to capture vortex structures in turbulent boundary layers of DNS data[4]. However, in order to capture the vortex, a threshold is generally required in the aforementioned methods. However, a proper choice of the threshold is still quite illusive, leading to many limitations.Recently, Zhang et al.[5]reviewed various kinds of existing vortex identification methods in the literature,and classified the methods into several different groups. In many existing methods, a selection of the threshold for the vortex identification is necessary.Hence, an improper threshold could lead to incorrect results. A new Omega method (Ω), firstly proposed by Liu et al.[6], appears to overcome those weaknesses.Recently, Zhang et al.[5]applied this new Ω method into the analysis of the reversible pump turbine and indicated that this new omega method is quite suitable for the analysis of the inner flow of hydro-turbines,especially the complex flow cases. Tao et al.[7]also utilized this Ω method to investigate the wake flow of the moving bodies in their study, and they pointed out that comparing to other vortex identification methods, the new Ω method has a clear physical meaning. The Ω method has also been used by other researchers[8-9]to compare with the existing vortex identification methods. Different with most of the existing vortex identification methods with an absolute threshold, the new Ω method employs a determinative value to capture the vortex with a normalized value ranging from 0 to 1. Meanwhile, Ω has a clear physical meaning through defining the vortices with the vorticity overtaking the deformation.Vorticity can directly represent the rotation of a solid body, but not that of fluid. In other words, vorticity not only represents the fluid rotation, but also the fluid deformation. Therefore, the basic idea of the Ω method is that a ratio of vorticity and deformation is employed to measure the rotation level. The pure deformation can be defined as flows with Ω=0 while the rigidly rotational flow is defined as flows with Ω=1. However, no previous literature gives a detailed study on an involved significant parameter in the new Ω method, named as Epsilon ()ε. In this study, the determination of ε in the new Ω method is discussed and compared with different values of ε and also the widely employed Q criterion. Several examples are presented to demonstrate the validities of the present work.

    1. ε determination

    In order to study the significance of the parameter ε and also determine its value, the Ω method is reviewed in this section. Although rigid body rotation must possess vorticity, vorticity cannot directly represent the fluid rotation. Therefore, in fluid flow, the vorticity could be small in a strong rotation and could be large in a weak or zero rotation. The laminar boundary layer flow by Blasius solution is a typical example. For the vortex flow, deformation is also an important factor in a rotational flow. Therefore,for a physical definition of the vortex, it is reasonable to consider the ratio of the vorticity and the deformation. As given in our previous papers[6,10-12]and also shown in Eq. (1), Ω is defined as a ratio of vorticity squared over the sum of vorticity squared and deformation squared

    where A is the symmetric part of the velocity gradient tensor ?V, B is the anti-symmetric part,is the Frobenius norm.

    In the practical application, we pick

    where

    It should be noted that the ε in Eq. (4) is a small positive number used to avoid division by zero[6].However, in the previous Ω method[6], the non-dimensional typical length scales and velocity must be employed in order to calculate Ω with a proper choice of ε. This could be an obstacle to many users of the Ω method.

    Fig. 1 Boundary layer transition iso-surfaces of Ω=0.52 with different ε levels

    Although Ω is non-dimensional and satisfies Ω∈[0,1], some serious noises (clouds) may appear inside the flow domain if both term a and b in this ratio (Eq. (1)) are in close proximity to zero due to the systematic computational errors. These noises can be reduced or even removed by introducing a proper positive number of ε in the denominator of Ω as shown in Eq. (4). Therefore, in the present method,the new method for the determination of ε is introduced to remove the noises caused by the consequence of division by zero. Apparently, as a small number, ε is dependent upon the dimension of the physical variables and needs to be adjusted to be a proper number case by case and time by time. Based on the description of the above issues, the determination of ε is a critical issue for the application of Ω method. In our current study, a linear correlation is found between ε and the maximum of b-a. The ε is defined as a function of (b-a)max, which is a fixed parameter at each time step in each case. In this study, ε is proposed as follows

    Fig. 2 Boundary layer transition iso-surfaces at t=8.2T

    It should be noted that Eq. (5) is an empirical formula based on a large number of test results from different cases. The term (b-a)maxrepresents the maximum of the difference of vorticity squared and deformation squared, and could be easily obtained as a fixed number at each time step in a certain case.

    2. Comparisons with Q criterion

    In this section, the Omega method is compared with the Q criterion. Actually, as stated below, Ω has many essential differences with the Q criterion or other similar methods (e.g. the kinematic vorticity number[13]).

    Fig. 3 Boundary layer transition iso-surfaces of Ω=0.52 at different time steps

    On the one hand, Q is a special situation of Ω when Ω=0.5 and ε=Qth, where Qthis a certain number picked from a series of varying thresholds by experience. For instance, if we pick Ω=b/( a+b+Qth)=0.5, b-a=Qth. Hence, both Ω=0.5 and Q=Qthwill give exactly the same results. However,for most general cases, the new Ω method is essentially different with the Q criterion.

    Fig. 4 Iso-surfaces of Ω=0.52 with different ε levels in case 2

    On the other hand, Ω method can capture both strong and weak vortex structures simultaneously by setting Ω=0.52 but Q criterion may not[10]. Ω denotes a ratio ranging from 0 to 1, which represents the rotational quality of the vorticity. For instance, for weak vortices, the value of Q or 0.5(b-a) may be very small. When choosing a large value of Q, the weak vortices will be lost with only strong vortices left. However, no matter how weak these vortices are,they are always well shown in the region where the vorticity overtakes the deformation. Alternatively, if we reduce Q to show the weak vortices, the strong vortices may be smeared and cannot be visualized clearly.

    3. Application examples of a newly determined ε method

    To verify the above ε determination method, a number of several typical computational examples are presented and analyzed in this section. Different ε levels are tested for case 1 and case 2 at different time steps. Meanwhile, the Ω method with the new ε determination is also utilized in case 3 and case 4 for the comparison with the Q criterion.

    3.1 Case 1: Boundary layer transition

    Fig. 5 Iso-surfaces of Ω=0.52 at different times in case 2

    A Mach 0.5 boundary layer transition on a flat plate based on high order direct numerical simulation(DNS) is chosen as Case 1 to test the new ε determination method. The grid system is nstreamwise×nspanwise×nnormal=1920× 128× 241. Firstly we give a comparison of different ε levels at t=8.2T, where T is the period of T-S wave. ε is chosen as 1.28×10-3based on the new ε determination in Eq.(5). Figure 1 shows the iso-surfaces of Ω=0.52. As clearly shown in Fig. 1, with smaller ε, there are too many clouds (noises) in Figure 1(a) which is marked in a red square. However, some significant vortex structures cannot be shown with a larger ε (Fig.1(c)). For instance, in the downstream region marked in a red square in Figure 1(c), the vortex rings disappear compared with the one in Figure 1(b).Therefore, for this case, the ε based on the new ε function is proper to be used in vortex identification given by Ω=0.52.

    Furthermore, Ω has been reported to have a capability of well capturing both strong and weak vortex structures simultaneously in our previous work[6]. In current work, =0.52 Ω with newly determined ε still inherits its advantage. The isosurfaces of Ω=0.52 with ε=1.28× 10-3and Q=0.003 at t=8.2T are compared in Fig. 2.Q=0.003 is chosen for comparison with Ω=0.52 since it shows the same strong vortex surfaces in the upstream of the transition flow. However, as can be seen in the red circle of Fig. 2, the vortex rings in the downstream of the flow especially their heads cannot be captured by Q=0.003. That means a larger Q may le ad to we ak vort ices disa ppear altho ugh the m ain strongvorticescouldbestillcaptured.However,if Alternatively, if one adjust Q to be a smaller value,the weak vortices are captured but strong vortices are smeared.

    On the other hand, the new determination of the ε is also tested in different time steps of case 1.Figure 3 shows the iso-surfaces of Ω=0.52 at different time steps. The newly determined ε in each time step is listed in Table 1 accordingly. As shown in Table 1, a typical vortex structures are well captured in different time steps without noises appearing in the space. Note that one do not need to adjust the ε to be a proper value for different time steps. During the vortex identification in different time steps, one could calculate the ε using the values ofmax(b-a)obtained in each time step as shown in Eq. (5).

    Table 1 New ε determination at different time steps in case 1

    3.2 Case 2: SWBLI controlled by MVG

    Fig. 6 Different iso-surfaces in case 3 with different values of Ω and Q

    Table 2 New ε determination at different time steps in case 2

    The shock wave and boundary layer interaction(SWBLI) in a supersonic ramp flow with MVG control at Mach number 2.5 is selected as case 2. In this case, the simulation was accomplished by the implicitly implemented LES (ILES) method. The body-fitted grid system of the computational domain is nstreamwise×nspanwise×nnormal=1600× 192× 137. Similarly, the iso-surfaces of Ω=0.52 with different ε levels for the case 2 at t=1 984T*are compared in Figure 4, where T*is the characteristic time in case 2. The newly determined ε is 5.368 since (b-a)maxis 5,368 at t=1 984T*and the corresponding iso-surface is shown in Fig. 4(b). As shown in Fig.4(b), the vortex rings behind MVG are visualized and even the number of the rings can be clearly counted.However, the vortex rings may not be clearly captured in Fig. 4(a) with ε=0.5368, due to too many small-scale structures around them. In Fig. 4(c)with ε=53.68, the large vortex structures like vortex rings a re absent fr om the domain, and only small-scale vortexstructuresaredemonstrated,whichmakesit meaningless for the analysis of the MVG control.

    Figure 5 shows the iso-surfaces of Ω=0.52 with the newly determined ε at different times. The term(b-a)maxand the newly determined ε in each time step are listed in Table 2, respectively. At different time steps, it can be observed that the strong vortex structures like vortex rings are well captured without any clouds in the upper space of the vortex rings.

    3.3 Case 3: Channel flow with Reτ=950

    The new ε determination of the Ω method is tested in a turbulent channel flow with Reτ=950(case 3), and the comparison with Q criteria is also shown here. The computational domain is 2π×π×2 with 768×768×385 grid points in the streamwise,spanwise and normal directions, respec- tively. Half domain in the normal direction is employed due to the symmetry condition given in the simulation. For the computational details, readers are referred to Lozano-Duran and Jimenez[14].

    The compari sons between Ωme thod with new ε determinationand Q criteriononcapturing the vortex structures in this channel flow are given in Fig.6. Figures 6(a) and 6(b) show the iso-surface of Ω=0.52 and Ω=0.60, where the newly determined ε is 2.9698. Figures 6(c) and 6(d) show the iso-surface of Q=2 and Q=5. As shown in the figure, similar vortex structures can be captured by the iso-surfaces of Ω=0.52 and Q=2, as well as the iso-surfaces of Ω=0.60 and Q=5. However, it is convenient to obtain both strong and weak vortex structures by Ω=0.52 with ε=0.001(b-a)max,while the adjustment of Q is needed due to its uncertainty of the threshold. In addition, although a similar vortex structures can be captured by Q=2 after its adjustment, we still do not know the clear physical meaning of Q=2. However, Ω ranges from 0 to 1, and represents the dominance of the fluid rotation and Ω is set as 0.52 for capturing both strong and weak vortices.

    In addition, Figs. 6(e) and 6(f) give a zoom view of Figs. 6(b) and 6(d). In Figs. 6(e) and 6(f), the same strong vortex structures could be both captured by Ω and Q referring to the blue circle. However, it is found that some weak vortices (with the red circle) are lost by using Q.

    3.4 Case 4: Channel flow with Reτ=451

    Another compressible turbulent channel flow[15-16]with Reτ=451 is tested as case 4 for the validation.The computational domain is 4π×4π/3×2 with the grid system of nstreamwise×nspanwise×nnormal=571× 251×261. Figures 7(a) and 7(b) show the 3-D view and the top view of a half normal channel flow by the iso-surfaces of Ω=0.52 and Q=0.2. In Fig. 7(a),the term (b-a)maxis 161.98, thus, the newly determined ε is around 0.162. From the Fig. 7,similar vortex structures can be recognized by Ω=0.52 and Q=0.2. However, the iso-surface with Q=0.2 is selected through adjusting the Q values many times in order to fit the results with Ω=0.52. Whereas, with the present method for the ε determination, Ω can always be set as 0.52 for capturing both strong and weak vortices without any subjective adjustment of both itself and ε.

    4. Conclusions

    In this study, the new definition and determination of ε are proposed in order to improve the Ω vortex identification method as follows.

    Fig. 7 Iso-surfaces for a channel flow (the upper plot for the 3-D view and the downward plot for the top view).

    (1) The new method for the determination of ε in the denominator of Ω is easy to perform, since ε does not need to be adjusted from an arbitrary threshold but can be calculated as a proper and a fixed number depending on the term (b-a)max.

    (2) Ω indicates a region where vorticity overtakes deformation in a flow field and could capturing both strong and weak vortices simultaneously. It is difficult to obtain the accurate surface of vortex structures by Q, λ2or other criteria since their thresholds vary in different cases.

    (3) Ω method is quite robust with no obvious change in the vortex visualization when Ω varies from 0.52 to 0.60.

    Presently, the new omega method has been widely employed for the vortex identification in various kinds of industrial-level flows (e.g., reversible pump turbine[17]). In the future, the new Ω method will be further applied to a more broad range of complex flows for the purpose of vortex identification e.g. wind turbine[18], hydroturbines[19-20], cavitating flow[21-23], silt-laden flow[24], pumps[25-27], acoustic bubbly flow[28-29], and pressure wave induced flow[30].

    Acknowledgements

    This work was supported by the Department of Mathematics at University of Texas at Arlington. The authors are grateful to Texas Advanced Computing Center (TACC) for the computation hours provided.This work is accomplished by using Code DNSUTA released by Prof. Chaoqun Liu at University of Texas at Arlington in 2009.

    猜你喜歡
    祥瑞
    瑞意搖滾
    睿士(2024年5期)2024-05-24 17:37:36
    青山遮不住、江山多嬌、天降祥瑞
    寶藏(2022年1期)2022-08-01 02:12:46
    竹韻自在祥瑞賦,自然風(fēng)物顯風(fēng)華——紫砂壺“祥竹”創(chuàng)作談
    金豬慶祥瑞
    青年歌聲(2019年2期)2019-12-09 12:59:29
    樂(lè)以筆墨祈祥瑞——我作鱖魚(yú)畫(huà)的感悟漫談
    瑞金國(guó)際“古法祥瑞金器”新品發(fā)布盛大亮相
    祥瑞
    寶藏(2017年10期)2018-01-03 01:53:10
    麒麟祥瑞(七絕)
    寶藏(2017年4期)2017-05-17 03:33:49
    黑水城出土西夏文《十二緣生祥瑞經(jīng)(卷上)》考釋
    西夏研究(2016年1期)2016-07-19 10:09:11
    西夏文《十二緣生祥瑞經(jīng)》初釋
    西夏學(xué)(2016年1期)2016-02-12 02:22:48
    av国产免费在线观看| 级片在线观看| 乱人视频在线观看| 亚洲av.av天堂| 婷婷亚洲欧美| 久久精品国产鲁丝片午夜精品| 久久6这里有精品| 我的女老师完整版在线观看| 97人妻精品一区二区三区麻豆| 国产伦一二天堂av在线观看| 最新在线观看一区二区三区| 一夜夜www| 久久精品综合一区二区三区| 中文字幕av成人在线电影| 国产精品电影一区二区三区| 在现免费观看毛片| 日本精品一区二区三区蜜桃| 黄片wwwwww| 伦理电影大哥的女人| 色尼玛亚洲综合影院| 国模一区二区三区四区视频| 天美传媒精品一区二区| 精品久久久久久久久亚洲| 老熟妇乱子伦视频在线观看| 内地一区二区视频在线| 日韩高清综合在线| 熟女人妻精品中文字幕| 九九热线精品视视频播放| 波多野结衣高清无吗| 国产探花极品一区二区| 亚洲成a人片在线一区二区| 99热这里只有是精品在线观看| 国产一区二区亚洲精品在线观看| 国产精品久久久久久亚洲av鲁大| 国产精品不卡视频一区二区| 天堂影院成人在线观看| 最后的刺客免费高清国语| 亚洲18禁久久av| 男女啪啪激烈高潮av片| 内射极品少妇av片p| 免费无遮挡裸体视频| 亚洲国产精品国产精品| 1024手机看黄色片| 亚洲最大成人av| 一级a爱片免费观看的视频| 国产在视频线在精品| 美女内射精品一级片tv| 五月玫瑰六月丁香| 欧美+亚洲+日韩+国产| 看免费成人av毛片| 亚洲专区国产一区二区| 亚洲在线观看片| 成人av在线播放网站| 噜噜噜噜噜久久久久久91| 欧美日韩在线观看h| 少妇熟女aⅴ在线视频| 久久精品国产亚洲av天美| 国产亚洲精品久久久com| 中文字幕熟女人妻在线| 久久久精品94久久精品| 成人av一区二区三区在线看| 欧美日韩国产亚洲二区| 亚洲不卡免费看| 日韩亚洲欧美综合| 在线免费观看不下载黄p国产| 日韩强制内射视频| 婷婷六月久久综合丁香| 三级国产精品欧美在线观看| 国产精品不卡视频一区二区| 国产av麻豆久久久久久久| 欧美xxxx性猛交bbbb| 我要搜黄色片| 久久亚洲精品不卡| 日韩欧美精品v在线| 黄色日韩在线| 午夜视频国产福利| 日本三级黄在线观看| 欧美色视频一区免费| 国产精华一区二区三区| 欧美性猛交黑人性爽| 久久精品国产自在天天线| 国产成人精品久久久久久| 尾随美女入室| 亚洲成人av在线免费| 赤兔流量卡办理| 日本三级黄在线观看| 久久精品夜色国产| 亚洲精品久久国产高清桃花| 在线观看午夜福利视频| 我要搜黄色片| 国产精品,欧美在线| 此物有八面人人有两片| 免费无遮挡裸体视频| 日本一本二区三区精品| 男人狂女人下面高潮的视频| 午夜精品在线福利| 嫩草影院新地址| 九九久久精品国产亚洲av麻豆| 亚洲精品粉嫩美女一区| 亚洲成人中文字幕在线播放| 身体一侧抽搐| 熟妇人妻久久中文字幕3abv| 亚洲国产精品久久男人天堂| 亚洲在线观看片| a级毛色黄片| 久久九九热精品免费| 亚洲七黄色美女视频| 男女边吃奶边做爰视频| 有码 亚洲区| 欧美bdsm另类| 日日啪夜夜撸| 国产极品精品免费视频能看的| 天天一区二区日本电影三级| h日本视频在线播放| 午夜免费男女啪啪视频观看 | 国产高清视频在线播放一区| 国产毛片a区久久久久| 亚洲人成网站在线观看播放| 欧美最黄视频在线播放免费| 成人亚洲精品av一区二区| 国产麻豆成人av免费视频| 午夜免费激情av| 一级毛片久久久久久久久女| 91久久精品国产一区二区成人| 99热只有精品国产| 日韩欧美精品v在线| 日韩av不卡免费在线播放| 少妇高潮的动态图| 午夜福利在线观看免费完整高清在 | 亚洲av成人av| 菩萨蛮人人尽说江南好唐韦庄 | 欧美性猛交╳xxx乱大交人| 色噜噜av男人的天堂激情| 少妇高潮的动态图| 久久久久久久久中文| 国产精品不卡视频一区二区| 97超级碰碰碰精品色视频在线观看| 国产精品日韩av在线免费观看| 国产 一区精品| 大型黄色视频在线免费观看| 久久精品国产清高在天天线| 欧美日韩在线观看h| ponron亚洲| 在线观看66精品国产| 精品少妇黑人巨大在线播放 | 老师上课跳d突然被开到最大视频| 91精品国产九色| 可以在线观看的亚洲视频| 日本欧美国产在线视频| 免费人成视频x8x8入口观看| 欧美性感艳星| 亚洲最大成人av| 国产一区二区激情短视频| 高清日韩中文字幕在线| 男女下面进入的视频免费午夜| 日韩人妻高清精品专区| 免费观看在线日韩| 91av网一区二区| 国产av在哪里看| 12—13女人毛片做爰片一| 久久精品91蜜桃| 亚洲人成网站在线播放欧美日韩| 成年女人看的毛片在线观看| 人人妻人人澡人人爽人人夜夜 | 成人二区视频| 99热这里只有是精品在线观看| 一本一本综合久久| 美女内射精品一级片tv| 亚洲av一区综合| 日韩强制内射视频| 久久精品综合一区二区三区| 99九九线精品视频在线观看视频| 变态另类丝袜制服| 免费电影在线观看免费观看| 久久99热这里只有精品18| 久久这里只有精品中国| 91在线精品国自产拍蜜月| 深爱激情五月婷婷| 中国国产av一级| 久久久久久大精品| 国产一区二区激情短视频| 十八禁网站免费在线| 日韩av在线大香蕉| 丝袜美腿在线中文| 91久久精品国产一区二区三区| 国产成年人精品一区二区| 亚洲美女视频黄频| 在线免费观看的www视频| 我的女老师完整版在线观看| 草草在线视频免费看| 一a级毛片在线观看| 精品久久久久久久久亚洲| 亚洲成人中文字幕在线播放| 成年女人永久免费观看视频| 天堂√8在线中文| 国产精品三级大全| 少妇的逼好多水| 变态另类丝袜制服| a级毛片a级免费在线| 午夜激情欧美在线| 日本欧美国产在线视频| 国产片特级美女逼逼视频| 免费观看的影片在线观看| 午夜精品在线福利| 久99久视频精品免费| 亚洲成a人片在线一区二区| 最新在线观看一区二区三区| 在线看三级毛片| 女人被狂操c到高潮| 性欧美人与动物交配| 老师上课跳d突然被开到最大视频| 欧美一级a爱片免费观看看| 联通29元200g的流量卡| 久久久久久久久中文| 一个人看视频在线观看www免费| 国产 一区 欧美 日韩| 99热精品在线国产| 国产精品不卡视频一区二区| 国产午夜精品论理片| 亚洲欧美日韩东京热| 99久久九九国产精品国产免费| 女同久久另类99精品国产91| 男女做爰动态图高潮gif福利片| 欧美日本亚洲视频在线播放| 黄色日韩在线| 精品熟女少妇av免费看| 成人特级黄色片久久久久久久| 身体一侧抽搐| 美女黄网站色视频| 99久久精品热视频| 天堂√8在线中文| 超碰av人人做人人爽久久| 欧美在线一区亚洲| 国产亚洲av嫩草精品影院| 国产69精品久久久久777片| 亚洲国产精品久久男人天堂| 大又大粗又爽又黄少妇毛片口| 国产激情偷乱视频一区二区| 国产伦在线观看视频一区| 老熟妇乱子伦视频在线观看| 日本-黄色视频高清免费观看| 成人av一区二区三区在线看| 国产精品无大码| 最新中文字幕久久久久| 久久中文看片网| 乱人视频在线观看| 乱系列少妇在线播放| 国产视频内射| 韩国av在线不卡| 中文字幕免费在线视频6| 中文在线观看免费www的网站| 久久久久久久久中文| 国产一级毛片七仙女欲春2| 91午夜精品亚洲一区二区三区| www日本黄色视频网| 婷婷六月久久综合丁香| 免费高清视频大片| 久久久精品94久久精品| 少妇猛男粗大的猛烈进出视频 | 一级黄色大片毛片| 你懂的网址亚洲精品在线观看 | 老司机午夜福利在线观看视频| 直男gayav资源| 国产探花在线观看一区二区| 欧美高清成人免费视频www| 又粗又爽又猛毛片免费看| 看非洲黑人一级黄片| 日韩三级伦理在线观看| 成人漫画全彩无遮挡| 最后的刺客免费高清国语| 一级黄片播放器| 日韩欧美国产在线观看| 伊人久久精品亚洲午夜| 身体一侧抽搐| 精品久久久久久久久亚洲| 日韩欧美三级三区| 嫩草影院精品99| 午夜福利在线观看吧| 内地一区二区视频在线| 国产激情偷乱视频一区二区| 免费无遮挡裸体视频| 国产精品一区二区性色av| 日产精品乱码卡一卡2卡三| 亚洲一级一片aⅴ在线观看| 简卡轻食公司| 色av中文字幕| 国产伦精品一区二区三区四那| 变态另类成人亚洲欧美熟女| 国产av在哪里看| 久久精品国产清高在天天线| 我要搜黄色片| 欧美中文日本在线观看视频| 亚洲第一电影网av| 91在线观看av| 寂寞人妻少妇视频99o| 久久精品人妻少妇| 免费电影在线观看免费观看| 99在线视频只有这里精品首页| 国产精品久久电影中文字幕| 日韩成人伦理影院| 国产极品精品免费视频能看的| 深夜a级毛片| АⅤ资源中文在线天堂| 欧美xxxx黑人xx丫x性爽| 日本在线视频免费播放| 国产亚洲精品av在线| 色哟哟哟哟哟哟| 久久精品国产亚洲av香蕉五月| 久久久精品欧美日韩精品| 免费观看的影片在线观看| 老女人水多毛片| 不卡视频在线观看欧美| 国产免费一级a男人的天堂| 久久精品国产亚洲av香蕉五月| 激情 狠狠 欧美| 欧美色视频一区免费| 国产精品久久电影中文字幕| 国产午夜福利久久久久久| 久久亚洲精品不卡| 欧美一区二区亚洲| 国产精品美女特级片免费视频播放器| 精品久久久久久久久久久久久| 国产伦一二天堂av在线观看| 12—13女人毛片做爰片一| 校园人妻丝袜中文字幕| 麻豆成人午夜福利视频| 精品日产1卡2卡| 波多野结衣巨乳人妻| 亚洲人成网站在线播放欧美日韩| 美女大奶头视频| 淫秽高清视频在线观看| 成人二区视频| 午夜视频国产福利| 亚洲成人久久性| 校园春色视频在线观看| 伦精品一区二区三区| 国产乱人视频| 欧美精品国产亚洲| 欧美xxxx黑人xx丫x性爽| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产日韩欧美精品在线观看| 悠悠久久av| 91麻豆精品激情在线观看国产| 成人午夜高清在线视频| 国产大屁股一区二区在线视频| 亚洲电影在线观看av| 久久亚洲精品不卡| 日日摸夜夜添夜夜爱| 国产v大片淫在线免费观看| av在线亚洲专区| 男女啪啪激烈高潮av片| 国产av不卡久久| 麻豆av噜噜一区二区三区| a级一级毛片免费在线观看| 亚洲中文字幕一区二区三区有码在线看| 草草在线视频免费看| 亚洲欧美日韩卡通动漫| 一级av片app| 久久久久免费精品人妻一区二区| 国产私拍福利视频在线观看| 国产精品久久久久久av不卡| 亚洲人成网站在线播| 欧美+日韩+精品| 免费看a级黄色片| 我要看日韩黄色一级片| 久久久久性生活片| 亚洲av二区三区四区| 香蕉av资源在线| 日韩欧美精品免费久久| 亚洲国产精品国产精品| 精品福利观看| 日韩欧美精品v在线| 天美传媒精品一区二区| 晚上一个人看的免费电影| 精品人妻偷拍中文字幕| 我的女老师完整版在线观看| 97热精品久久久久久| 一本精品99久久精品77| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久精品电影| 亚洲aⅴ乱码一区二区在线播放| 亚洲美女搞黄在线观看 | 免费不卡的大黄色大毛片视频在线观看 | 亚洲成人av在线免费| 国产一区二区激情短视频| 成年女人毛片免费观看观看9| 尾随美女入室| 深夜a级毛片| 色播亚洲综合网| 99热这里只有精品一区| 婷婷亚洲欧美| 久久婷婷人人爽人人干人人爱| 欧美色欧美亚洲另类二区| 国产成人一区二区在线| 成人三级黄色视频| 嫩草影院新地址| 老司机福利观看| 精品福利观看| 久久精品国产清高在天天线| 国产精华一区二区三区| 成年版毛片免费区| 国国产精品蜜臀av免费| 可以在线观看的亚洲视频| 精品久久久久久久人妻蜜臀av| 欧美又色又爽又黄视频| 国产成人福利小说| 美女 人体艺术 gogo| 内射极品少妇av片p| 国产欧美日韩精品亚洲av| videossex国产| 日本在线视频免费播放| 免费观看在线日韩| 男女边吃奶边做爰视频| 午夜激情欧美在线| 在线观看66精品国产| 国产高清有码在线观看视频| 欧美另类亚洲清纯唯美| av专区在线播放| 国产男靠女视频免费网站| 欧美激情在线99| 欧美成人免费av一区二区三区| 波野结衣二区三区在线| 激情 狠狠 欧美| 久久精品国产鲁丝片午夜精品| 国产探花极品一区二区| 国产精品av视频在线免费观看| 99riav亚洲国产免费| 日韩一区二区视频免费看| 日产精品乱码卡一卡2卡三| 一夜夜www| 看黄色毛片网站| 国产精品一区二区三区四区久久| 一进一出抽搐动态| 欧美人与善性xxx| 精品一区二区免费观看| 久久久色成人| 国产精品人妻久久久久久| 美女大奶头视频| 18禁裸乳无遮挡免费网站照片| 日本熟妇午夜| 精品一区二区免费观看| 国产真实乱freesex| 欧美人与善性xxx| 国产蜜桃级精品一区二区三区| 好男人在线观看高清免费视频| 成人一区二区视频在线观看| 国产av在哪里看| 日本精品一区二区三区蜜桃| 久久99热6这里只有精品| 伦精品一区二区三区| 欧美一区二区精品小视频在线| 欧美性猛交黑人性爽| 精品99又大又爽又粗少妇毛片| 在线观看66精品国产| 女生性感内裤真人,穿戴方法视频| 女人被狂操c到高潮| 男女啪啪激烈高潮av片| videossex国产| 久久鲁丝午夜福利片| 免费av毛片视频| 一本久久中文字幕| 午夜精品一区二区三区免费看| 免费看a级黄色片| 99久国产av精品国产电影| 色综合色国产| 国产欧美日韩精品亚洲av| 啦啦啦啦在线视频资源| 三级经典国产精品| 国产一区二区激情短视频| 中文字幕免费在线视频6| 两个人的视频大全免费| 亚洲av一区综合| av专区在线播放| 日韩欧美一区二区三区在线观看| 久久午夜亚洲精品久久| 成人永久免费在线观看视频| 久久99热这里只有精品18| 国产精品一区www在线观看| 久久久久国产网址| 波多野结衣高清作品| 美女高潮的动态| 国产精品亚洲一级av第二区| 97在线视频观看| 免费黄网站久久成人精品| 91久久精品电影网| 91在线精品国自产拍蜜月| 亚洲在线自拍视频| 一级a爱片免费观看的视频| 亚洲欧美日韩高清专用| 国产探花极品一区二区| 色综合站精品国产| 国产精品伦人一区二区| 日本-黄色视频高清免费观看| 亚洲av一区综合| 最近最新中文字幕大全电影3| ponron亚洲| 97热精品久久久久久| 亚洲性久久影院| 成年女人永久免费观看视频| 看片在线看免费视频| 久久99热这里只有精品18| 国产美女午夜福利| 久久久久国产网址| 欧美性猛交黑人性爽| 国产aⅴ精品一区二区三区波| 午夜影院日韩av| 麻豆国产av国片精品| 伦理电影大哥的女人| 观看美女的网站| 伦精品一区二区三区| 亚洲一级一片aⅴ在线观看| 美女高潮的动态| 日韩欧美 国产精品| 天天躁日日操中文字幕| 国产成人一区二区在线| 亚洲内射少妇av| 日韩欧美国产在线观看| 日韩欧美精品v在线| 亚洲精品456在线播放app| 12—13女人毛片做爰片一| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲美女久久久| 国产国拍精品亚洲av在线观看| 日本三级黄在线观看| 国产免费一级a男人的天堂| 久久午夜福利片| 国产精品99久久久久久久久| 露出奶头的视频| 国产在线男女| 精品午夜福利在线看| 欧洲精品卡2卡3卡4卡5卡区| av天堂在线播放| 好男人在线观看高清免费视频| 欧美最新免费一区二区三区| 午夜亚洲福利在线播放| 午夜视频国产福利| 国产精品人妻久久久影院| 国产在视频线在精品| 国产欧美日韩精品亚洲av| 内地一区二区视频在线| 一级a爱片免费观看的视频| 99热全是精品| 国产精品综合久久久久久久免费| 久久久久国内视频| 少妇高潮的动态图| 在线观看美女被高潮喷水网站| 看片在线看免费视频| 长腿黑丝高跟| 国产欧美日韩精品一区二区| 久久精品影院6| 国产综合懂色| 男女做爰动态图高潮gif福利片| 欧美成人精品欧美一级黄| 日本与韩国留学比较| 国产黄色视频一区二区在线观看 | 精品久久久久久久久av| 大又大粗又爽又黄少妇毛片口| 色综合亚洲欧美另类图片| 精品久久久久久成人av| 18禁黄网站禁片免费观看直播| 欧美色欧美亚洲另类二区| 天天躁夜夜躁狠狠久久av| 好男人在线观看高清免费视频| 国产亚洲精品久久久久久毛片| 少妇猛男粗大的猛烈进出视频 | 乱系列少妇在线播放| 国产午夜福利久久久久久| 99riav亚洲国产免费| 亚洲专区国产一区二区| 最近中文字幕高清免费大全6| 午夜免费男女啪啪视频观看 | 成人精品一区二区免费| 天美传媒精品一区二区| 亚洲无线观看免费| 噜噜噜噜噜久久久久久91| 小蜜桃在线观看免费完整版高清| 国产精品一区二区三区四区久久| 丝袜喷水一区| 久久久久免费精品人妻一区二区| 噜噜噜噜噜久久久久久91| 成人欧美大片| 国产一区二区亚洲精品在线观看| 精品久久久久久久久久免费视频| 日本爱情动作片www.在线观看 | 亚洲成人久久性| 国产黄色视频一区二区在线观看 | 欧美xxxx性猛交bbbb| 色哟哟哟哟哟哟| 日本欧美国产在线视频| 九九在线视频观看精品| 国产成人a∨麻豆精品| 老熟妇乱子伦视频在线观看| 一边摸一边抽搐一进一小说| 熟女电影av网| 亚洲va在线va天堂va国产| 亚洲人成网站在线播放欧美日韩| 18禁裸乳无遮挡免费网站照片| 国产精品久久久久久久电影| 日韩高清综合在线| 日本-黄色视频高清免费观看| 日本欧美国产在线视频| 国产精品一区二区性色av| 午夜爱爱视频在线播放| 又粗又爽又猛毛片免费看| 桃色一区二区三区在线观看| 国产真实伦视频高清在线观看| 成人二区视频| 日韩精品有码人妻一区| 尤物成人国产欧美一区二区三区| 久久久成人免费电影| 天堂影院成人在线观看| 免费不卡的大黄色大毛片视频在线观看 | 精品久久国产蜜桃| 99久久精品一区二区三区| 噜噜噜噜噜久久久久久91|