• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Optimization and Analysis of Magnetic Coupled Inductive Power Transfer System

    2018-09-27 11:12:54LUChaoLIXunboFENGDaiweiOUYANGZhiyuanLIYoucheng

    LU Chao ( ), LI Xunbo (), FENG Daiwei (), OUYANG Zhiyuan (), LI Youcheng ()

    School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

    Abstract: Along with the prosperous of magnetic coupled inductive power transfer (MCIPT) technology which is widely used in industrial applications such as electric vehicle charging, the topology of double D coils(DD coils) with a spatial quadrature Q coil arises with great research interest. The Q coil, however, has been thoroughly studied by adding to the receiving side but seldom to the transmitting side. By using finite element simulation, this paper presents a preliminary study on the effectiveness of Q coil in the transmitting side, and its inner dimension is optimized for optimal compensating the misalignment between the transmitting and receiver sides. Simulation results show that the windings of the Q coil should be placed in the center of the aperture of the DD coils, and these results render a useful guidance for mechanical structural design and circuit controller design of MCIPT.

    Key words: structural optimization; particle swarm optimization; inductive power transfer; finite element analysis

    Introduction

    Because of its high safety, high convenience and high reliablility, magnetic coupling inductive power transfer (MCIPT) was an engineering curiosity in the past three decades. MCIPT began with industrial applications such as clean factories[1-3], lighting applications[4], instrumentation and electronic systems[5-7],etc. Recently its applications have shifted to designs that can meet the challenge of powering electric vehicles under both stationary and dynamic conditions[8-10].

    With the success of such systems, the focus of the last decade has been on developing systems that have improved tolerance to misalignment and can handle the variation in coupling which result. This has required improvements in magnetic design and control of power so that practical systems can now be considered for stationary charging systems without alignment aid, although dynamic power transfer to things on the move is still a challenge[11].

    To date, circular designs are by far the most common coupler topology; these are the most intuitive and have been derived from pot cores[12-13]. The relationship between the size of a pad (primary or secondary magnetic inductive coupler) and its ability to throw flux to a secondary pad placed above it has been explained using the concept of fundamental flux path height[14]. In this sense, the flux path height of a circular pad is approximately proportional to one quarter of the pad diameter[15]. It is meaningful to increase this height for improving the tolerance of both the air gap between primary and secondary pads and their misalignment. Consequently, polarized couplers have recently been investigated which have a flux path height approximately to half of the pad length[16-17]. By sitting flattened DD coils on a Ferrite base in both primary and secondary pad which placed face to face, a new single sided flux path pad topology which can significantly improve coupling effectiveness has attracted great research interest, and is often labeled as DD. As the secondary (receiver) DD coils can only couple horizontal flux components, the tolerance of the receiver pad can be significantly improved if a second receiver coil is added. This spatial quadrature coil should be designed and optimized along with the DD structure to balance the capture of vertical and horizontal flux in a similar way to the quadrature receivers developed for material handling systems, this combined structure is referred to as DD structure plus Q structure(DDQ structure)[10, 18]. It is so far in literature the Q coil only added in the secondary (receiver) pad has been studied as which can balance performance and circuit complexity, the Q coil added in the primary (transmitting) pad was seldom studied, and is the scope of this research.

    Using finite element simulation, this paper presents a preliminary study on the effectiveness of Q coil in the primary pad, and begins with its structural optimization to find the best way on how to place it. The content of this paper is as follows. Section 1 gives a brief introduction of the MCIPT with DDQ topology, and then followed by specifying the content and objective of the optimization in section 2; Section 3 describes the simulation settings, and the simulation results are analyzed in section 4 and concluded in section 5.

    1 Principe of the Magnetic Coupled Inductive Power Transfer System

    1.1 Mechanical structure

    The power pad structure of the primary side of the MCIPT with DDQ topology can be depicted as shown in Fig. 1. By placing a secondary counterpart face to face over the primary one, a single-sided flux path can be produced when current is fed into the DD coils and Q coil on the primary pad, and thus electric power can be transferred from the primary to the secondary. Neglecting the power supply, electric control circuits and mechanical shield, the kernel mechanical structure of the transmitting (primary) and receiving (secondary) part is much simple. Usually the DD coils and Q coil(DDQ coils) made of Litz-wire and used to reshape the flux path. Therefore the coupling effects are enhanced.

    Fig.1 Layout of the DDQ pad mechanical structure

    1.2 Analysis of the resonant circuit

    Figure 2 shows a four-coil MCIPT system using the transformer model with two full-bridge invertors. This system also consist of two square wave generators, two resonators and two output rectifiers, and all of them are connected in parallel. The two full-bridge invertors should work in phase, and by tuning the ratio of the current fed into the DD coils and that into the Q coil in the primary side, the misalignment in thex-direction (see in Fig. 1) between the secondary pad and the primary pad can be well compensated. It’s worth denoting that with Q coil in the transmitter pad, the Q coil in the receiver pad is thus optional.

    Fig.2 Layout of the MCIPT circuit

    Since the DD coils and Q coil are working in phase, they can be treated as one for simplification of analysis and then can be modeled as an ordinary coupling inductors as shown in Fig.3, in which the inductorsL1,L2andLMaccount for the primary coil inductance, secondary coil inductances, and mutual inductance, respectively. The reason that it can be processed this way lies in that the four coil associated circuits can be tuned and controlled to work in the resonant state by carefully tuning the serially connected capacitors (C1,C2,C3,C4) in Fig. 2, separately.

    Fig.3 Coupling inductor model of MCIPT

    The voltages and currents of the input and output ports of the coupling inductor model is expressed in Formula(1).

    (1)

    Typically in electric vehicle charging systems, the primary and secondary pads are made mechanically the same, whatever in coils and pad sizes, which means thatL1=L2=L. With the capacitors taking into consideration and taking the SS topology (capacitors are connected in series both in primary and secondary as shown in Fig. 4) as an example , the alternating curent(AC) equivalent circuit of the system is obtained as shown in Fig. 5 by using the fundamental approximation, which can be used to simplify the analysis, and where theLSdenotes the equal primary and secondary leakage inductances.

    Fig.4 MCIPT with SS topology

    Fig. 5 AC equivalent circuit

    Fig.6 Norton equivalent circuit

    2 Content and Objective of Optimization

    The main aim of this paper is to explore how the size and placement of the Q coil affects the power transfer effectiveness in the conditions of different misalignment between the primary and secondary pad, and then to find out the optimal mechanical size.

    The key parameter to be optimized in this study is the inside dimension of the Q coilWQas shown in Fig. 7. To simplify the optimization analysis, the Ferrite base is fixed to be 200 mm×160 mm, and the coil widths are set to be 30 mm for both the DD coils and the Q coil.

    Fig.7 Dimensions of the DD-Pad

    Another problem that should be figured out in this study is how to specify the amplitude of the current fed into Q coil versus the current fed into the DD coils. The result would be a very useful guidance for circuit controller design.

    3 Optimization Simulation Settings

    The optimization is conducted by simulation; the software “JMAG” and finite-element analysis are adopted in this study.

    3.1 2-D simulation model

    A 2-D model of MCIPT was built in JMAG with DDQ transmitting coils in primary side and DD receiving coils in the secondary side as shown in Fig.8. Here the Q coil is only placed in the primary pad. Without the interaction of the Q coil in the secondary pad, the effect of how the inside dimension of Q coil influence the power transmission can be more clearly demonstrated, and the simulation can be simplified as well.

    Fig.8 2-D model in JMAG

    The winding corners are omitted in 2-D model to reduce the complexity, which may be questioned that it would result innon-negligible simulation accuracy. Actually, this has been found to have little effect.

    To mimic the real situation, a physical pad as shown in Fig.9 was made in accordance with the models in simulation, and its parameters were precisely measured and used for simulation parameter settings, and these parameters are listed in Table 1.

    Fig.9 Physical pad of DDQ topology

    It’s worth noting that the internal resistance of the Q coil increases with increase of its internal dimensionWQ. This variation can be well compensated in simulation by varying its internal resistance, as which is proportional to the total length of the Litz-wire of the Q coil. Its self-inductance, however, does not vary withWQ, since the number of its coil turns is fixed to be 12.

    Table 1 Physical parameters of coils

    3.2 Schematic of variation of WQ and misalignment

    In JMAG, the study with case control is adopted in the simulation, the parameterWQand misalignment between primary and secondary pad varies in each case. The minimum and maximum of 40 mm and 140 mm, separately, which can be graphically represented in Fig.10.

    (a) Minimum WQ

    (b) Maximum WQ

    The aligned position and its maximum x-direction misaligned position (50 mm) can be depicted in Fig.11.

    (a) Aligned position

    (b) Maximum misaligned position

    3.3 Simulation circuit

    Two alternative currents are directly fed into DD and Q coils as shown in Fig. 12,and they are in phase but with different current amplitude. The parameters of DD coils and Q coil of both the primary and secondary side are set as shown in Table 1.

    Compared with Fig. 2, the capacitors connect to coils are omitted. In real applications, the capacitors are used and tuned for resonance, but in simulation, sinusoidal currents (AC1 and AC2) make the coils resonate in nature, and leave the resonance capacitors unnecessary. As this study focus on the optimization of shaping the Q coil,i.e. its optimal internal dimensionWQ, the details of the real circuit is not in this scope, the output full-wave rectifiers as shown in Fig. 2 is also neglected, instead, a resistance loadRL=30 Ω is directly connect to the secondary DD coils.

    Fig.12 Simulation circuit

    Compared with Fig. 2, the capacitors connect to coils are omitted. In real applications, the capacitors are used and tuned for resonance, but in simulation, sinusoidal currents (AC1 and AC2) make the coils resonate in nature, and leave the resonance capacitors unnecessary. As this study focus on the optimization of shaping the Q coil,i.e. its optimal internal dimensionWQ, the details of the real circuit is not in this scope, the output full-wave rectifiers as shown in Fig. 2 is also neglected, instead, a resistance loadRL=30 Ω is directly connect to the secondary DD coils.

    4 Simulation Results and Analysis

    The frequency of both AC1 and AC2 are 30 kHz, and their current amplitudes are 2 A and 1 A, separately.

    4.1 Optimal WQ

    With the simulation settings described above, the active electric power consumed byRLwith variousWQand misalignment is shown in Fig. 13. The power is small comparing to the pad size, because the current AC1 and AC2 are set relatively small, which does not make this MCIPT work at its suitable conditions. It does not affect the simulation results, as the transmitting power capacity is not in the scope of this study, however.

    Fig.13 Effects on active power transfer of WQ and misalignment

    It can be shown in Fig. 13 that at each given misalignment, the power presents bi-directional changes withWQ, and all the peak values appear atWQ=70 mm, which clearly demonstrates that the optimal inter dimension of Q coil in the transmitting pad is 70 mm. There is an exception at the case that when the primary and secondary pad are aligned,i.e.Misalignment=0 mm, as the Q coil has no effects on power transmitting in this condition, the power does not vary withWQ.

    4.2 Active misalignment compensation of Q coil

    It can also be shown in Fig. 13 that at each givenWQ, the power also presents bi-directional changes with misalignments, and all the peak values appear atMisalignment=-20 mm. Special attention should be paid that this optimal misalignment associates with the current ratio of AC1 to AC2. In this case, it is shown that when AC1=2 A, AC2=1 A, the misalignment which can be best compensated is the -20 mm. It’s worthy of noting that the misalignment can be compensated in both the positive and negative direction of the x direction. For example, if AC2 were set to be -1 A and all the other parameters remained the same, the best compensated misalignment should be 20 mm.

    In the case thatWQ=70 mm andMisalignment=-20 mm, the flux path can be clearly illustrated in Fig.14. In contrast to the center line of primary pad, the flux path is reshaped to be left-side concentrated by the Q coil, and this gives a physical insight into how the Q coil can actively compensate the misalignments. Figure 14 also gives a clear instruction on the best way to place the Q coil, that is the windings of the Q coil should be located in the center of the aperture of the DD coil.

    5 Conclusions

    By using finite element simulation analysis, this paper explores how the size and placement of the Q coil in a magnetic coupling inductive power transfer system with DDQ topology in the transmitting pad affects the power transfer effectiveness in the conditions of different misalignment between the primary and secondary pad. Simulation results have shown that (1) the best way to place the Q coil is that the windings of the Q coil should be located in the center of the aperture of the DD coils; (2) a physical insight into how the Q coil can actively compensate the misalignments. Meanwhile, these results produce useful guidance to the optimization of mechanicalstructural design and electric circuit controller design.

    Fig.14 Flux path

    97超视频在线观看视频| 久久天躁狠狠躁夜夜2o2o| 日本色播在线视频| 全区人妻精品视频| 亚洲在线观看片| 一级av片app| videossex国产| 久久精品综合一区二区三区| av天堂在线播放| 99视频精品全部免费 在线| 午夜视频国产福利| 干丝袜人妻中文字幕| 国产亚洲精品久久久com| 99在线人妻在线中文字幕| 最好的美女福利视频网| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩高清在线视频| 麻豆精品久久久久久蜜桃| 亚洲aⅴ乱码一区二区在线播放| 九九久久精品国产亚洲av麻豆| 国产男靠女视频免费网站| 久久香蕉精品热| 一个人看视频在线观看www免费| 久久人妻av系列| 国产亚洲欧美98| 99久久精品国产国产毛片| 欧美性猛交╳xxx乱大交人| 淫秽高清视频在线观看| 国产一区二区在线观看日韩| 日本成人三级电影网站| 国产精品国产高清国产av| 成人永久免费在线观看视频| 成人一区二区视频在线观看| 能在线免费观看的黄片| 国产人妻一区二区三区在| 毛片女人毛片| 毛片女人毛片| 在线观看午夜福利视频| 久久6这里有精品| 国产精品三级大全| 亚洲精品色激情综合| 久久久成人免费电影| avwww免费| 精品国产三级普通话版| eeuss影院久久| 村上凉子中文字幕在线| 日日啪夜夜撸| 老熟妇仑乱视频hdxx| 亚洲中文字幕日韩| 在线播放无遮挡| 啦啦啦观看免费观看视频高清| 啦啦啦观看免费观看视频高清| 直男gayav资源| 免费看日本二区| 国产69精品久久久久777片| 成人av在线播放网站| 99久久精品国产国产毛片| 久久天躁狠狠躁夜夜2o2o| 狠狠狠狠99中文字幕| 欧美性猛交╳xxx乱大交人| АⅤ资源中文在线天堂| 日本 av在线| 日韩精品青青久久久久久| 国产精品一区二区三区四区免费观看 | av.在线天堂| 999久久久精品免费观看国产| 伊人久久精品亚洲午夜| 国产av麻豆久久久久久久| 人妻丰满熟妇av一区二区三区| 久久精品国产亚洲av天美| 热99re8久久精品国产| 国产人妻一区二区三区在| 别揉我奶头~嗯~啊~动态视频| 久久6这里有精品| 精品免费久久久久久久清纯| 国产一区二区激情短视频| 亚洲一级一片aⅴ在线观看| 18禁黄网站禁片免费观看直播| 精品人妻1区二区| 动漫黄色视频在线观看| 欧美精品啪啪一区二区三区| 看黄色毛片网站| 日韩大尺度精品在线看网址| 亚洲第一电影网av| 人妻久久中文字幕网| 一级av片app| 麻豆精品久久久久久蜜桃| 非洲黑人性xxxx精品又粗又长| 熟女人妻精品中文字幕| 亚洲精品影视一区二区三区av| 亚洲黑人精品在线| 国产精品自产拍在线观看55亚洲| 九九热线精品视视频播放| a级毛片免费高清观看在线播放| 国产av不卡久久| 美女黄网站色视频| 国产伦精品一区二区三区视频9| 无遮挡黄片免费观看| 2021天堂中文幕一二区在线观| 亚洲av中文av极速乱 | 观看美女的网站| 制服丝袜大香蕉在线| 国产高清有码在线观看视频| 岛国在线免费视频观看| 国产精品精品国产色婷婷| 日韩强制内射视频| 高清日韩中文字幕在线| 午夜免费成人在线视频| 欧美又色又爽又黄视频| 国产女主播在线喷水免费视频网站 | 亚洲一区高清亚洲精品| av在线老鸭窝| 免费av观看视频| 免费一级毛片在线播放高清视频| 婷婷丁香在线五月| 成人二区视频| 国产v大片淫在线免费观看| 久久久国产成人精品二区| 国产av一区在线观看免费| 成人一区二区视频在线观看| 亚洲av中文字字幕乱码综合| netflix在线观看网站| 午夜免费男女啪啪视频观看 | 人妻少妇偷人精品九色| 久久久色成人| 免费观看的影片在线观看| 亚洲aⅴ乱码一区二区在线播放| 一夜夜www| 免费搜索国产男女视频| 99国产精品一区二区蜜桃av| 国产伦人伦偷精品视频| 国产精品女同一区二区软件 | 国产aⅴ精品一区二区三区波| 久久久久精品国产欧美久久久| 亚洲国产精品久久男人天堂| 亚洲精品乱码久久久v下载方式| 成人亚洲精品av一区二区| 国产精品伦人一区二区| 干丝袜人妻中文字幕| 欧美丝袜亚洲另类 | 波野结衣二区三区在线| 婷婷亚洲欧美| 老熟妇乱子伦视频在线观看| 国产毛片a区久久久久| 亚洲av五月六月丁香网| 黄色一级大片看看| 色综合色国产| 99久久九九国产精品国产免费| 不卡视频在线观看欧美| 国产探花极品一区二区| 国产精品国产高清国产av| 成人国产综合亚洲| 国产毛片a区久久久久| 白带黄色成豆腐渣| 免费av不卡在线播放| 免费av不卡在线播放| 亚洲av二区三区四区| 精品人妻视频免费看| 波多野结衣高清作品| 国产精品爽爽va在线观看网站| 亚洲精品粉嫩美女一区| 色哟哟·www| 亚洲av日韩精品久久久久久密| 国产一区二区亚洲精品在线观看| 九色成人免费人妻av| 丰满乱子伦码专区| 极品教师在线免费播放| 俄罗斯特黄特色一大片| 免费观看人在逋| 亚洲av熟女| 欧美成人a在线观看| 日韩欧美精品免费久久| 美女cb高潮喷水在线观看| 国产精华一区二区三区| 午夜精品在线福利| 国产真实乱freesex| 最近在线观看免费完整版| 18禁黄网站禁片午夜丰满| 色视频www国产| 久久久久久久久久久丰满 | 亚洲最大成人中文| 欧美不卡视频在线免费观看| 国产老妇女一区| 三级国产精品欧美在线观看| 最好的美女福利视频网| 久久精品夜夜夜夜夜久久蜜豆| 他把我摸到了高潮在线观看| 国产成年人精品一区二区| 精品午夜福利在线看| 亚洲内射少妇av| 国产精品爽爽va在线观看网站| 免费大片18禁| 欧美黑人巨大hd| 免费观看的影片在线观看| 国产真实乱freesex| 97超级碰碰碰精品色视频在线观看| 欧美3d第一页| 99热这里只有精品一区| 国产在线精品亚洲第一网站| 天堂网av新在线| 在线播放无遮挡| 国产毛片a区久久久久| 日本-黄色视频高清免费观看| 又粗又爽又猛毛片免费看| 成人三级黄色视频| 日韩欧美一区二区三区在线观看| 日韩欧美三级三区| 国产精品女同一区二区软件 | 国产成人aa在线观看| 两人在一起打扑克的视频| 亚洲人成网站在线播| 国产色婷婷99| 国产精品不卡视频一区二区| 欧美精品啪啪一区二区三区| 一区二区三区激情视频| 97碰自拍视频| 午夜a级毛片| 亚洲熟妇中文字幕五十中出| 成年女人永久免费观看视频| 18禁裸乳无遮挡免费网站照片| 成年女人毛片免费观看观看9| av专区在线播放| 欧美最新免费一区二区三区| 精华霜和精华液先用哪个| 亚洲自偷自拍三级| 欧美在线一区亚洲| 热99re8久久精品国产| 国产又黄又爽又无遮挡在线| 天天一区二区日本电影三级| 国产爱豆传媒在线观看| 久久精品国产亚洲av香蕉五月| a级毛片a级免费在线| 中国美女看黄片| 无人区码免费观看不卡| 色av中文字幕| 真人做人爱边吃奶动态| 三级男女做爰猛烈吃奶摸视频| а√天堂www在线а√下载| 国产成人影院久久av| 麻豆精品久久久久久蜜桃| 一本精品99久久精品77| 中文资源天堂在线| 成人特级黄色片久久久久久久| 亚洲精品成人久久久久久| 亚洲精品粉嫩美女一区| 亚洲av一区综合| 18禁裸乳无遮挡免费网站照片| 桃色一区二区三区在线观看| 精品久久久噜噜| av福利片在线观看| 日韩一本色道免费dvd| 色噜噜av男人的天堂激情| 变态另类丝袜制服| 亚洲黑人精品在线| 狂野欧美白嫩少妇大欣赏| av黄色大香蕉| 精品不卡国产一区二区三区| 国产一级毛片七仙女欲春2| 日韩精品有码人妻一区| 欧美日韩中文字幕国产精品一区二区三区| 中亚洲国语对白在线视频| 熟女人妻精品中文字幕| 中国美白少妇内射xxxbb| 国产高清不卡午夜福利| 黄色日韩在线| 人人妻,人人澡人人爽秒播| 高清日韩中文字幕在线| 亚洲七黄色美女视频| 简卡轻食公司| 黄色丝袜av网址大全| 欧美日韩瑟瑟在线播放| 日韩人妻高清精品专区| 久久精品国产清高在天天线| 少妇裸体淫交视频免费看高清| 毛片女人毛片| 国内久久婷婷六月综合欲色啪| 成人永久免费在线观看视频| 悠悠久久av| 国产男人的电影天堂91| 69人妻影院| aaaaa片日本免费| 最近最新中文字幕大全电影3| 国产精品亚洲美女久久久| 在线观看免费视频日本深夜| 午夜福利在线在线| 欧美黑人欧美精品刺激| а√天堂www在线а√下载| 午夜爱爱视频在线播放| 99久久成人亚洲精品观看| 欧美日韩国产亚洲二区| 国产高潮美女av| 日韩欧美一区二区三区在线观看| 亚洲七黄色美女视频| 国产成人aa在线观看| 亚洲第一电影网av| 欧美日本视频| 亚洲成人久久性| 久久久久久伊人网av| 国产黄色小视频在线观看| 午夜激情欧美在线| 日日摸夜夜添夜夜添小说| 国产老妇女一区| 男人舔女人下体高潮全视频| 校园人妻丝袜中文字幕| 精品无人区乱码1区二区| 免费人成在线观看视频色| 小说图片视频综合网站| 精品国产三级普通话版| 一夜夜www| 成人鲁丝片一二三区免费| 91在线观看av| 国产精品一区二区性色av| 美女黄网站色视频| 亚洲五月天丁香| 久久精品国产99精品国产亚洲性色| 免费人成在线观看视频色| 日韩大尺度精品在线看网址| 午夜视频国产福利| 2021天堂中文幕一二区在线观| 免费不卡的大黄色大毛片视频在线观看 | 美女cb高潮喷水在线观看| 精品日产1卡2卡| 中国美白少妇内射xxxbb| 99国产极品粉嫩在线观看| 淫秽高清视频在线观看| 三级毛片av免费| 国产伦精品一区二区三区四那| 午夜福利在线观看免费完整高清在 | 国产精品精品国产色婷婷| 51国产日韩欧美| 亚洲最大成人中文| 国产精品福利在线免费观看| 亚洲av日韩精品久久久久久密| 久久久国产成人免费| 波多野结衣巨乳人妻| 亚洲真实伦在线观看| 一级毛片久久久久久久久女| 成年女人毛片免费观看观看9| 熟妇人妻久久中文字幕3abv| 少妇人妻一区二区三区视频| 黄色视频,在线免费观看| 97超级碰碰碰精品色视频在线观看| 久久久久久久久中文| 国产高潮美女av| 亚洲国产欧洲综合997久久,| 亚洲欧美清纯卡通| 一本精品99久久精品77| av福利片在线观看| 国产主播在线观看一区二区| 少妇猛男粗大的猛烈进出视频 | 美女 人体艺术 gogo| 国产伦精品一区二区三区四那| 两个人的视频大全免费| 少妇的逼好多水| av女优亚洲男人天堂| 欧美一级a爱片免费观看看| av.在线天堂| 99久久中文字幕三级久久日本| 国产成人影院久久av| 久久久久精品国产欧美久久久| 一个人看的www免费观看视频| 国产主播在线观看一区二区| 少妇猛男粗大的猛烈进出视频 | 麻豆精品久久久久久蜜桃| 中文字幕av在线有码专区| 精品人妻偷拍中文字幕| 琪琪午夜伦伦电影理论片6080| 可以在线观看的亚洲视频| 联通29元200g的流量卡| 成人av一区二区三区在线看| 久久人人爽人人爽人人片va| 精品日产1卡2卡| 国产熟女欧美一区二区| 99热只有精品国产| 亚洲av免费高清在线观看| 亚洲在线观看片| 亚洲一区二区三区色噜噜| 欧美精品国产亚洲| 嫁个100分男人电影在线观看| 老师上课跳d突然被开到最大视频| 国产精品1区2区在线观看.| 精品一区二区免费观看| 久久久久国内视频| 国产精品一区二区免费欧美| 亚洲成人免费电影在线观看| 在线免费观看的www视频| 日本一二三区视频观看| 成人美女网站在线观看视频| 麻豆久久精品国产亚洲av| 偷拍熟女少妇极品色| 亚洲人成网站在线播| 女同久久另类99精品国产91| 深夜精品福利| 一进一出抽搐动态| 国产精品99久久久久久久久| 日韩精品有码人妻一区| 亚洲欧美清纯卡通| 人妻丰满熟妇av一区二区三区| 国产高潮美女av| 欧美性感艳星| 国产精品伦人一区二区| 婷婷精品国产亚洲av| 在线观看一区二区三区| 俺也久久电影网| 欧美最黄视频在线播放免费| 亚洲精品在线观看二区| 色播亚洲综合网| 99热这里只有是精品50| 午夜福利在线在线| 亚洲七黄色美女视频| 国内久久婷婷六月综合欲色啪| 在线a可以看的网站| 国产亚洲91精品色在线| aaaaa片日本免费| 国产毛片a区久久久久| 国产免费av片在线观看野外av| 国产精品嫩草影院av在线观看 | 网址你懂的国产日韩在线| 国产91精品成人一区二区三区| 欧美色视频一区免费| 色综合婷婷激情| 五月伊人婷婷丁香| 春色校园在线视频观看| 亚洲av中文字字幕乱码综合| 欧美日本亚洲视频在线播放| 免费搜索国产男女视频| 国产在线精品亚洲第一网站| 男女啪啪激烈高潮av片| 偷拍熟女少妇极品色| 色尼玛亚洲综合影院| 人妻夜夜爽99麻豆av| 俄罗斯特黄特色一大片| 高清在线国产一区| 国内精品美女久久久久久| 露出奶头的视频| 亚洲精品乱码久久久v下载方式| 全区人妻精品视频| a级毛片a级免费在线| 亚洲久久久久久中文字幕| 91久久精品电影网| 欧美zozozo另类| 国产单亲对白刺激| 女同久久另类99精品国产91| 嫩草影院新地址| 窝窝影院91人妻| 久久精品久久久久久噜噜老黄 | 男女之事视频高清在线观看| 国产av一区在线观看免费| 成人国产一区最新在线观看| 日日干狠狠操夜夜爽| 99热这里只有是精品50| 免费看a级黄色片| 桃红色精品国产亚洲av| 久久久久免费精品人妻一区二区| 草草在线视频免费看| 国产淫片久久久久久久久| 欧美激情国产日韩精品一区| 色尼玛亚洲综合影院| 午夜久久久久精精品| 久久精品人妻少妇| 欧美在线一区亚洲| 国产探花在线观看一区二区| 国产午夜精品久久久久久一区二区三区 | 九色国产91popny在线| 男人舔奶头视频| 一区二区三区免费毛片| 国产伦精品一区二区三区四那| 色噜噜av男人的天堂激情| 精品欧美国产一区二区三| 国产伦在线观看视频一区| 久久中文看片网| 亚洲成a人片在线一区二区| av福利片在线观看| 久久久久久大精品| 国产精品永久免费网站| 又粗又爽又猛毛片免费看| 毛片一级片免费看久久久久 | 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区在线av高清观看| 国产精品久久久久久久久免| 三级国产精品欧美在线观看| 成人午夜高清在线视频| 窝窝影院91人妻| 最新中文字幕久久久久| 国产中年淑女户外野战色| 日本成人三级电影网站| 国产精品自产拍在线观看55亚洲| 欧美国产日韩亚洲一区| 神马国产精品三级电影在线观看| 性色avwww在线观看| 99久久九九国产精品国产免费| 极品教师在线免费播放| 成人美女网站在线观看视频| 丰满的人妻完整版| 桃色一区二区三区在线观看| 亚洲电影在线观看av| 一级毛片久久久久久久久女| av在线老鸭窝| 搡老岳熟女国产| 国产精品一区www在线观看 | 成人特级av手机在线观看| 亚洲第一电影网av| 日本与韩国留学比较| 美女cb高潮喷水在线观看| 欧美绝顶高潮抽搐喷水| 国产黄a三级三级三级人| 亚洲久久久久久中文字幕| 国产乱人视频| 性色avwww在线观看| 欧美绝顶高潮抽搐喷水| 亚洲内射少妇av| 亚洲图色成人| 最好的美女福利视频网| 国产欧美日韩一区二区精品| 色综合色国产| 亚洲最大成人av| 亚洲欧美日韩高清在线视频| 精品国产三级普通话版| 亚洲成a人片在线一区二区| 1000部很黄的大片| 国产成人影院久久av| 夜夜看夜夜爽夜夜摸| 一边摸一边抽搐一进一小说| 亚洲人成网站在线播放欧美日韩| 午夜福利在线观看吧| 三级男女做爰猛烈吃奶摸视频| 日韩欧美精品免费久久| 国产精品国产高清国产av| 嫩草影院入口| 黄色一级大片看看| 欧美性感艳星| 成人精品一区二区免费| 精品午夜福利在线看| 精品人妻一区二区三区麻豆 | 18+在线观看网站| 亚洲熟妇熟女久久| 真实男女啪啪啪动态图| 国产不卡一卡二| 国产亚洲欧美98| 91午夜精品亚洲一区二区三区 | 两性午夜刺激爽爽歪歪视频在线观看| 免费高清视频大片| 午夜久久久久精精品| 少妇丰满av| 免费看av在线观看网站| 亚洲av中文av极速乱 | 精品福利观看| 一个人免费在线观看电影| 国产伦一二天堂av在线观看| 中文字幕熟女人妻在线| 国产欧美日韩精品一区二区| 国产精品人妻久久久影院| 日韩欧美国产在线观看| 日韩欧美一区二区三区在线观看| 国产精品伦人一区二区| 国产精品福利在线免费观看| 一级黄片播放器| 在线观看av片永久免费下载| 久久午夜亚洲精品久久| 一级黄色大片毛片| 少妇裸体淫交视频免费看高清| 中国美白少妇内射xxxbb| 亚洲最大成人av| 看黄色毛片网站| 国产精品,欧美在线| 国产在视频线在精品| 久久这里只有精品中国| 亚洲av不卡在线观看| 久久国产乱子免费精品| 在线看三级毛片| 又粗又爽又猛毛片免费看| 国产成人aa在线观看| 国产高清视频在线播放一区| 久99久视频精品免费| 免费看光身美女| 长腿黑丝高跟| 淫妇啪啪啪对白视频| 波多野结衣高清作品| 国产又黄又爽又无遮挡在线| 亚洲一级一片aⅴ在线观看| 天堂影院成人在线观看| 香蕉av资源在线| 九色国产91popny在线| 免费电影在线观看免费观看| 亚洲人成网站在线播| 少妇丰满av| 欧美另类亚洲清纯唯美| 精品久久久久久久久亚洲 | 国产精品综合久久久久久久免费| 一本一本综合久久| 全区人妻精品视频| 1024手机看黄色片| 麻豆久久精品国产亚洲av| 国产成人aa在线观看| 国产精品久久久久久亚洲av鲁大| 午夜激情福利司机影院| 波多野结衣高清无吗| 在线免费观看不下载黄p国产 | 一个人免费在线观看电影| 老女人水多毛片| 美女高潮喷水抽搐中文字幕| 黄色丝袜av网址大全| 欧美日本亚洲视频在线播放| 国产美女午夜福利| 欧美又色又爽又黄视频| 国产日本99.免费观看| 深夜a级毛片| 校园春色视频在线观看| 国产伦精品一区二区三区视频9| 亚洲第一电影网av| 我的女老师完整版在线观看| 国产 一区 欧美 日韩| 国产精品免费一区二区三区在线| 午夜精品一区二区三区免费看| 久久人人爽人人爽人人片va|