• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Design for Wireless Power Transfer System with Relay Resonators

    2018-09-27 11:12:48CHENXinHUANGShoudao

    CHEN Xin ( ), HUANG Shoudao ()

    1 College of Electrical and Information Engineering, Hunan University, Changsha 410082, China2 University of Humanities, Science and Technology, Loudi 417000, China

    Abstract: The optimization method by adjusting load and distances between two adjacent coils (or resonators) is presented on basis of wireless power transfer (WPT) system with relay resonators. 2-port network and impedance matching theory are applied to analyzing power flow of incidence and reflection in WPT system, then setting up power flow model. The maximum power transmission efficiency can be obtained when the load and distance between secondary resonator and output coil meets impedance matching at 2-port network’s output port. The simulation and experimental results shown the impedance matching method can effectively improve and maintain transmission efficiency by adjusting load and distances between coils or relay resonators.

    Key words: wireless power transfer; relay resonators; 2-port network; impedance matching; power flow model

    Introduction

    The technology and theory of wireless power transfer have emerged for a long time since the 19thcentury. A global system of wireless transmission of electricity power was proposed, but the Tesla experiment is very low in efficiency and considered dangerous. In the process of achieving this goal, obstacles include the low efficiency of transferring power over long distance. There are many approaches taken to improve it including coil design, topology and circuit optimization. Another approach to improve this phenomenon is using relay resonators.

    The wireless power transfer (WPT)system with relay resonators has attracted substantial researchers and institutions to research and implement it. In 2006, the term WiTricity was led by Kursetal.[1]at Massachuetts Institute of Techology(MIT), successfully demonstrating the ability of wirelessly light a 60 W light bulb. This WPT system has two copper resonator coils which similarly tuned resonant frequencies, and at only 40% efficiency[1]. The research project was spun off into a private company called WiTricity. WPT system with relay resonators is several times larger than traditional WPT system in the distance of transfer power. What’s more, it can also maintain high transmission efficiency if the WPT system is designed and controlled properly. Many researches have been showed in the fields of S-parameter[2-8], coupled mode theory[1, 9-10], 3-D finite element analysis (FEA)[11-13]and a frequency-tuning method[14-15].

    In this paper,2-port network and impedance matching methods are used to design and optimize WPT system with relay resonators. Firstly, the paper analyzes the incidence and reflection of power flow through 2-port network and power wave theory, thus the power flow model is established. Secondly, impedance matching of the equivalent 2-port network with relay resonators is analyzed through power flow model. Lastly, the optimum design of WPT system with relay resonators is presented by optimizing the distance of two adjacent coils (resonators) as well as their load.

    1 Port Network Analysis

    As shown in Fig.1, the WPT system with relay resonators usually contains an AC power source, input coil, relay resonators, output coil and load. The distance between an input coil and a primary resonator isD12;D23is the distance between two resonators;D34is between a secondary resonator and an output coil.

    Fig.1 Schematic diagram of WPT system with relay resonators

    The primary coil is driven by an AC power source with high frequency and power move from the primary coil to the secondary coil through the air. The primary and secondary coils often connect capacity or other electronic components to realize circuit resonance and enhance its power transfer capability.

    Fig.2 Block diagram of WPT system with S-S topology

    In Fig.2VSis AC power source output voltage,RSis source impedance,L1/L2is Primary/Secondary coil inductance,Mis mutual inductance of coils,R1/R2is primary/secondary coil resistance,C1/C2is compensated capacitance of primary/secondary coil,RLis load.

    The equivalent 2-port network of WPT system with S-S topology is shown in Fig.3. It includes coupling coils, resistance united to the 2-port network N2, the compensation capacitance of primary coil composed of the 2-port network N1and the compensation capacitance of secondary coil composed of the N32-port network.

    Fig.3 The equivalent 2-port network with S-S topology

    In Fig.3,Z01/Z02is input/output of characteristic impedance;V1is 2-port network input voltage;V2is 2-port network output voltage.

    In order to facilitate analysis of 2-port network, it doesn’t consider the parasitic capacitance of coils.ωis the angular frequency in system operating, the transferABCD-parameter matrix of coupling coils is as follows.

    (1)

    Generally, operation frequency is less than 20 MHz and each element is connected through short-length lines, so it is unnecessary to consider the properties of circuit cable. As shown in Fig.3, the 2-port networks ofN1,N2, andN3are connected with cascade connection mode. Thus, theABCD-parameter matrix of the combined networkNof whole equivalent circuit is equal to the matrix multiplication of the three individualABCDparameter matrices.

    (2)

    Substituting compensated capacitanceC1/C2, coil resistanceR1/R2and equation to equation, theABCD-parameter matrices of 2-port networkNis obtained as

    (3)

    (4)

    2 Power Flow Model

    According toABCD-parameter matrix of 2-port network N, input active powerPIN, load powerPLand transmission efficiencyηare expressed as follows.

    (5)

    (6)

    (7)

    (8)

    (9)

    (10)

    The characteristic impedance (Z01/Z02) is only related to the parameter (coil parameter and mutual inductance) of 2-port network. And when loadRLis equal to output characteristic impedanceZ02, input impedanceZinis exactly equal to input characteristic impedanceZ01.

    In terms of theory of impedance matching of 2-port network and energy conservation law, Fig.4 analyzes power flow transfer direction, incidence and reflection and establishes the power flow model of WPT system.

    Fig.4 Power flow model of WPT system

    It considers the power flow when resonant frequency ofprimary side is equal to that of secondary side. In the primary side, source impedanceRSis not equal to 2-port network input impedanceZin(RS≠Zin) and source impedanceRSdoesn’t match for input characteristic impedanceZ01(RS≠Z01). Thus, power source output power is only part of the active power enter 2-port network. And because input impedanceZindoesn’t match input characteristic impedanceZ01(Zin≠Z01), it leads to part of active power flowing into 2-port network reflect, namely the reflection power consumed in the input port through electromagnetic wave energy because of LC resonance. Meanwhile, small part of active power into the 2-port network is consumed by the resistance of input or output coil. In the secondary side, because loadRLis not equal to output characteristic impedanceZ02(RL≠Z02), part of active power is reflected in 2-port network output port. This part of power is also consumed in the way of electromagnetic wave energy, andRLconsumes another part of power.

    In terms of the power flow model and 2-port network theory, when the output port impedance is matched, there will be no power reflection at the input and output ports. Impedance matched of output port means that reflection coefficient ГLis equal to zero (RL=Z02) and the reflection coefficient Гinis also equal to zero (Zin=Z01). So transmission efficiency reaches maximum, and is simplified as follows.

    (11)

    The power flow model can effectively track power flow and power reflection by analyzing impedance matching of 2-port network and optimizing WPT system. When output characteristic impedanceZ02is unmatched for loadRL, it can reduce power reflection and improve transmission efficiency by adding impedance matching network or compensating network. Impedance matching network and compensating network in primary side play a role in regulating impedance. Thus, they can enhance or adjust the input power of 2-port network.

    3 Modeling of WPT System with Relay Resonators

    Figure 5 shows an equivalent circuit of WPT system with relay-resonators. The distance between the primary resonator and the secondary resonator (D23) is sufficiently large, and the input and output coils are usually small in WPT system with relay resonators. Thus, the mutual inductance between the input coil and the secondary resonator is as negligible as the one between the output coil and the primary resonator.

    According to 2-port network theory and T-type coupling equivalent circuit of electromagnetic resonant coupling coils[8], the model of WPT system with relay resonators can be simplified to an equivalent 2-port network in Fig.6. The input and output coils are respectively connected to AC power source and load.

    Fig.5 Equivalent circuit of WPT system with relay-resonators

    Fig.6 Equivalent 2-port network of WPT system with relay resonators

    The equivalent 2-port network of WPT systemwith relay resonators can be divided into three 2-port networks:Nin,N, andNout.Nininput port is cascade-connected with the output port ofNout, and the output port ofNoutis cascade-connected with the input port ofNin. The 2-port networks ofNinandNoutplay a role in impedance matching.

    (12)

    (13)

    (14)

    (15)

    In Eqs. (12) and (13)RL3=RL+R3,RS1=RS+R1.

    The load power and the transmission efficiency of WPT system with relay resonators are related to the distance between coils (mutual inductance of coils), loads and coil parameters. It is difficult to accurately calculate transmission efficiency and load power in Eqs.(12) and(13) because the above parameters are variable.

    Characteristic impedanceZ01-relayandZ02-relayare only connected with the parameters of 2-port network without any relations to power source impedance and load. According to power flow model, transmission efficiency reaches to the maximum whenZ02-relayis equal to load. At the same time,Z01-relaydetermines active power input of 2-port network in a certain range, and ultimately determines load power.

    4 Simulation and Experimental Verification

    As shown in Fig.7, a WPT system with relay resonators is set up, the experimental platform includes DC voltage source (Xantrex XDC 10(V)-600(A)), power analyzer PZ4000, MOSFET driving module, LITZ coils, compensation capacitor and load,etc. As shown in Fig.8, input/output coils and relay resonators select double-coil of LITZ line. There are some coil parameters and electrical parameters of experimental platform in Table 1.

    Fig.7 WPT system experiment platform

    Fig.8 Coil and resonators photographs

    ParameterValueLITZ line diameter/mm0.1×400Turns13Layer2Begin radius/mm30Terminal radius/mm70Coil inductance/μH76.1Coil resistance/Ω0.094Resonant frequency/kHz80Series compensation capacitor/nF52DC power source/V10DC voltage source resistance/Ω0.01

    4.1 Simulation verification

    The simulation calculation of LITZ coil inductance is 74.95 μH and its resistance is 0.1053 Ω using Maxwell finite element analysis. In Table 1, finite element simulation results are very close to measure results. Figure 9 is the variation curve of mutual inductance and distance between two coils with Maxwell simulation software and experimental data.

    Fig.9 The distance between two coils versus mutual inductance

    If experimental platform parameters in Table 1 are substituted into Eq.(15), the three-dimensional waveforms of output characteristicZ02-relayvariations with mutual inductancesM23andM34when mutual inductanceM12at different constants is shown in Fig.10.

    (a)

    (b)

    (a)M12=7.5 μH and (b)M12=15 μH

    From Fig.10, output characteristic impedanceZ02-relaymainly depends on mutual inductanceM23andM34even if mutual inductanceM12slightly changes. Especially when mutual inductanceM34is low, the variation of mutual inductanceM23has little effect on output characteristic impedanceZ02-relay. Due to the symmetry of 2-port network, input characteristic impedanceZ01-relayis mainly determined by mutual inductanceM12.

    To ensure that WPT system with relay resonators acquires higher transmission efficiency, the WPT system must meet output characteristic impedanceZ02-relayequal to loadRL. If mutual inductanceM34is low andZ02-relayand loadRLmatched, the change of mutual inductanceM23andM12should have little influence on transmission efficiency. This means slightly change of distanceD12andD23have little effect on the transmission efficiency.

    Similarly, input characteristic impedance is mainly determined by distanceD12, the change of mutual inductanceM12causes significant changes of characteristic impedanceZ01-relay. So the variation of the distanceD12can directly adjust active power into the WPT system with relay resonators and eventually influencing load power. Meanwhile transmission efficiency remains relatively stable.

    4.2 Experimental verification

    Thewaveforms of transmission efficiency versus loadRLwith simulation and experiment at different distanceD34is shown in Fig. 11.

    Fig.11 Transmission efficiency versus load (RL)

    In this paper, transmission efficiency is the ratio of load powerand output active power of voltage source. Due to power loss of Metal-Qxide-Semiconductor Field-Effect Transistor(MOSFET) drive and compensation capacitors, transmission efficiency of experimental test is slightly lower than the results of formulation. The changes of distanceD12,D23andD34lead to output characteristic impedanceZ02-relayfluctuation, maximum transmission efficiency should be achieved at optimal load whenZ02-relayand LoadRLexactly matching. In Fig. 11, loadRLis equal to 11 Ω whenD12=50 mm,D23=70 mm andD34=50 mm, loadRLis equal to 5 Ω whenD12=50 mm,D23=70 mm andD34=70 mm.

    Figure 12 shows the experimental and simulation curves of transmission efficiency versusD12,D23orD34whenD12=50 mm,D23=70 mm andD34=50 mm, respectively.

    As shown in Fig. 10, the variation of mutual inductanceM12andM23have little influence on output characteristic

    impedanceZ02-relaywhen mutual inductanceM34is low. So distanceD12and distanceD23have little effect on transmission efficiency when distanceD34is long enough and characteristic impedanceZ02-relayequals to loadRL. The transmission efficiency decreases rapidly when distanceD34increases, because output characteristic impedanceZ02-relayimpedance increase as distanceD34increases and it leads 2-port networkNoutput port impedance mismatched.

    Figure 13 shows the curves of load power versus distanceD12whenD34=50 mm,D23=70 mm,RL=11 Ω andD23=70 mm,D34=70 mm,RL=5 Ω.

    Similar with the impedanceZ02-relay, input characteristic impedanceZ01-relayis mainly determined by distanceD12. ImpedanceZ01-relaysignificantly decreases with distanceD12increases, and it causes more active power input to 2-port network increases, and obvious increase of load power, meanwhile transmission efficiency remains relatively stable.

    Fig.12 Transmission efficiency versus D12, D23or D34

    Fig.13 Load power versus distance D12

    5 Conclusions

    In this paper, WPT system with relay resonators is simplifiedto a 2-port network which is composed of two RLC 2-port network and a coupling coil. It analyzes how to optimize the load and the distance between two near coils(or resonators) and meet maximum transmission efficiency and load power regulation. To ensure WPT system with relay resonators realizes high transmission efficiency, impedanceZ02-relaymust achieve impedance matching with load. The impedancematching can be acquired by adjusting distanceD34or/and loadRL. The transmission efficiency can keep relatively stable as the slight variation of distanceD12andD23when impedanceZ02-relayand load matched. The variation of distanceD12leads to the change of impedanceZ01-relay, and can effectively improve/adjust load power. The optimal design method is proposed in this paper, which fully considers the relationship of the distance between coils and load. The change of the distance between coils(or resonators) can effectively improve the transmission efficiency of WPT system with relay resonators and realize the regulation of load power. These conclusions also can be extended to the WPT system with multi-resonators.

    能在线免费观看的黄片| 最近中文字幕高清免费大全6 | 久久天躁狠狠躁夜夜2o2o| 很黄的视频免费| 国产色婷婷99| 国产一区二区三区视频了| 黄色女人牲交| 高清毛片免费观看视频网站| 如何舔出高潮| 免费看光身美女| 国产男靠女视频免费网站| 国产成年人精品一区二区| 国产精品久久久久久av不卡| 亚洲av电影不卡..在线观看| 亚洲av二区三区四区| 国产一区二区三区av在线 | 久久久久久久久久黄片| 亚洲va在线va天堂va国产| 校园春色视频在线观看| 看十八女毛片水多多多| 精品一区二区免费观看| 久久午夜福利片| 精品日产1卡2卡| 可以在线观看毛片的网站| 久久香蕉精品热| 热99在线观看视频| 午夜老司机福利剧场| 性欧美人与动物交配| 国产亚洲精品综合一区在线观看| 国内精品美女久久久久久| 香蕉av资源在线| 亚洲av熟女| 老司机福利观看| 欧美激情国产日韩精品一区| 久久精品国产自在天天线| 午夜亚洲福利在线播放| 午夜福利成人在线免费观看| 婷婷精品国产亚洲av| 最新中文字幕久久久久| 亚洲精品久久国产高清桃花| 国产在视频线在精品| 色综合色国产| 一a级毛片在线观看| 搡老妇女老女人老熟妇| 欧美高清性xxxxhd video| 成人高潮视频无遮挡免费网站| 婷婷精品国产亚洲av在线| 色综合站精品国产| 欧美中文日本在线观看视频| 看十八女毛片水多多多| 99热只有精品国产| 日韩 亚洲 欧美在线| 国产精品电影一区二区三区| 神马国产精品三级电影在线观看| 久久久久久大精品| 国产中年淑女户外野战色| 日韩一区二区视频免费看| 不卡一级毛片| or卡值多少钱| 蜜桃亚洲精品一区二区三区| 亚洲av二区三区四区| 国产高清激情床上av| 久久久久久久精品吃奶| 一本精品99久久精品77| av.在线天堂| 免费不卡的大黄色大毛片视频在线观看 | 国产亚洲精品久久久久久毛片| 国产主播在线观看一区二区| 在线观看午夜福利视频| 窝窝影院91人妻| 91久久精品电影网| 久久久久久大精品| 欧美极品一区二区三区四区| 亚洲色图av天堂| 男女做爰动态图高潮gif福利片| 久久久久久久精品吃奶| 淫妇啪啪啪对白视频| 色哟哟哟哟哟哟| 长腿黑丝高跟| 美女高潮的动态| 国产伦一二天堂av在线观看| 精品国产三级普通话版| 日本欧美国产在线视频| 色综合婷婷激情| 嫩草影视91久久| 久久久精品欧美日韩精品| 亚洲人成伊人成综合网2020| 欧美精品啪啪一区二区三区| 精品一区二区免费观看| 欧美色视频一区免费| 免费观看精品视频网站| 国产男靠女视频免费网站| 免费观看人在逋| 一卡2卡三卡四卡精品乱码亚洲| 国产精品一区二区三区四区免费观看 | 99热网站在线观看| 国产精品一区www在线观看 | 国产成人影院久久av| 精品久久久久久久久久免费视频| 国产精品一区二区性色av| 床上黄色一级片| 国产麻豆成人av免费视频| 中文字幕高清在线视频| av中文乱码字幕在线| 日韩欧美免费精品| 黄色丝袜av网址大全| 白带黄色成豆腐渣| av在线观看视频网站免费| 97碰自拍视频| 午夜免费成人在线视频| 欧美日韩黄片免| 神马国产精品三级电影在线观看| 18禁黄网站禁片免费观看直播| 免费电影在线观看免费观看| 露出奶头的视频| 国内精品宾馆在线| 婷婷丁香在线五月| 91精品国产九色| 大又大粗又爽又黄少妇毛片口| av在线亚洲专区| 日韩欧美 国产精品| av国产免费在线观看| 久久精品综合一区二区三区| 亚洲欧美清纯卡通| 午夜福利成人在线免费观看| 免费av观看视频| 国产极品精品免费视频能看的| 久久精品久久久久久噜噜老黄 | 1000部很黄的大片| 男女之事视频高清在线观看| av在线老鸭窝| 国产一区二区三区av在线 | 一夜夜www| 色av中文字幕| 国产在线男女| 国产亚洲精品久久久久久毛片| 日韩精品有码人妻一区| 午夜精品在线福利| 国产探花极品一区二区| 亚洲精品色激情综合| 午夜爱爱视频在线播放| 成年版毛片免费区| 亚洲av日韩精品久久久久久密| 欧美丝袜亚洲另类 | 男插女下体视频免费在线播放| 国内精品久久久久精免费| 久久热精品热| 免费搜索国产男女视频| 麻豆一二三区av精品| 人人妻,人人澡人人爽秒播| 日本a在线网址| 欧美国产日韩亚洲一区| 成人av一区二区三区在线看| av视频在线观看入口| 久久人妻av系列| 欧美+亚洲+日韩+国产| 搡老妇女老女人老熟妇| 99精品在免费线老司机午夜| 国产午夜精品久久久久久一区二区三区 | 亚洲18禁久久av| 无人区码免费观看不卡| 女同久久另类99精品国产91| 亚洲av日韩精品久久久久久密| 成年女人毛片免费观看观看9| 99视频精品全部免费 在线| 亚洲熟妇熟女久久| 美女高潮的动态| 又紧又爽又黄一区二区| 乱人视频在线观看| 最近最新中文字幕大全电影3| 国产三级中文精品| 97热精品久久久久久| 精品国内亚洲2022精品成人| 日本色播在线视频| 在线免费十八禁| 色5月婷婷丁香| 免费av毛片视频| 男人的好看免费观看在线视频| 免费人成在线观看视频色| 亚洲乱码一区二区免费版| 亚洲av熟女| 黄色欧美视频在线观看| 亚洲成人中文字幕在线播放| 久99久视频精品免费| 国产精品乱码一区二三区的特点| 变态另类丝袜制服| 内地一区二区视频在线| 午夜免费男女啪啪视频观看 | 亚洲精品日韩av片在线观看| 在线观看美女被高潮喷水网站| 欧美国产日韩亚洲一区| 村上凉子中文字幕在线| 91在线精品国自产拍蜜月| 国产成人av教育| 色精品久久人妻99蜜桃| 少妇人妻精品综合一区二区 | 亚洲国产精品合色在线| 我的老师免费观看完整版| 国产蜜桃级精品一区二区三区| 免费大片18禁| 男女视频在线观看网站免费| 麻豆av噜噜一区二区三区| 亚洲精华国产精华液的使用体验 | 欧美色视频一区免费| 淫妇啪啪啪对白视频| 动漫黄色视频在线观看| www.色视频.com| 99久久无色码亚洲精品果冻| 99热这里只有精品一区| 国产毛片a区久久久久| 热99在线观看视频| 夜夜爽天天搞| 精品久久久久久成人av| 国产精品98久久久久久宅男小说| 九九久久精品国产亚洲av麻豆| 欧美在线一区亚洲| 精品午夜福利视频在线观看一区| 国产精品不卡视频一区二区| 亚洲真实伦在线观看| 欧美性感艳星| 亚洲三级黄色毛片| 九九久久精品国产亚洲av麻豆| 99热6这里只有精品| 又黄又爽又免费观看的视频| 久久久久久九九精品二区国产| 国产一区二区亚洲精品在线观看| 国产淫片久久久久久久久| 级片在线观看| 欧美人与善性xxx| 国产精品综合久久久久久久免费| 亚洲精品色激情综合| 免费大片18禁| 亚洲欧美日韩高清专用| 亚洲av五月六月丁香网| 免费大片18禁| 中文在线观看免费www的网站| 久久久久久九九精品二区国产| 久久亚洲真实| 在线播放无遮挡| 亚洲精品色激情综合| 成人二区视频| 欧美+亚洲+日韩+国产| 亚洲aⅴ乱码一区二区在线播放| 桃色一区二区三区在线观看| 不卡一级毛片| 色播亚洲综合网| 免费人成在线观看视频色| 婷婷色综合大香蕉| 国产麻豆成人av免费视频| 欧美日韩综合久久久久久 | 精品久久久久久久久久免费视频| 精品一区二区免费观看| 精品99又大又爽又粗少妇毛片 | 欧美3d第一页| 色哟哟哟哟哟哟| 天天躁日日操中文字幕| 一个人看视频在线观看www免费| 国产精品一区二区三区四区久久| 久久精品国产鲁丝片午夜精品 | 成熟少妇高潮喷水视频| 亚洲欧美日韩无卡精品| 精品无人区乱码1区二区| 久久精品91蜜桃| 亚洲av第一区精品v没综合| 日韩一区二区视频免费看| 久久久成人免费电影| 99热这里只有是精品在线观看| av.在线天堂| 成人午夜高清在线视频| 国产精品亚洲美女久久久| 哪里可以看免费的av片| 欧洲精品卡2卡3卡4卡5卡区| www日本黄色视频网| 热99re8久久精品国产| 99视频精品全部免费 在线| 国产高清有码在线观看视频| 麻豆一二三区av精品| 在线观看av片永久免费下载| a在线观看视频网站| 久久精品国产亚洲av涩爱 | 国产91精品成人一区二区三区| 干丝袜人妻中文字幕| 国产精品综合久久久久久久免费| 日韩亚洲欧美综合| 日韩中文字幕欧美一区二区| 中亚洲国语对白在线视频| 91狼人影院| 男女边吃奶边做爰视频| 亚洲欧美日韩高清在线视频| 久久久久久久久久黄片| 久久人妻av系列| 久久精品久久久久久噜噜老黄 | 久久久久久伊人网av| 久久久国产成人精品二区| 午夜福利高清视频| 人妻少妇偷人精品九色| 国产免费一级a男人的天堂| 天天躁日日操中文字幕| 免费无遮挡裸体视频| 美女xxoo啪啪120秒动态图| 啦啦啦观看免费观看视频高清| www.色视频.com| 亚洲av不卡在线观看| 免费看a级黄色片| 国产精品一区www在线观看 | 最新在线观看一区二区三区| 日韩欧美国产一区二区入口| 国产成人av教育| 国内精品美女久久久久久| 最后的刺客免费高清国语| 国产毛片a区久久久久| 一级毛片久久久久久久久女| 亚洲国产日韩欧美精品在线观看| 亚洲最大成人av| 日韩欧美国产在线观看| 97碰自拍视频| 无人区码免费观看不卡| 日本黄大片高清| 亚洲精品久久国产高清桃花| 国产视频一区二区在线看| 亚洲国产精品成人综合色| 欧美日韩国产亚洲二区| 欧美一区二区亚洲| 国产在线男女| 噜噜噜噜噜久久久久久91| 国产高清三级在线| 香蕉av资源在线| 亚洲精品乱码久久久v下载方式| 日本色播在线视频| 女的被弄到高潮叫床怎么办 | 久久精品国产鲁丝片午夜精品 | 日日夜夜操网爽| 97超视频在线观看视频| 日本一本二区三区精品| 国产精品一区二区三区四区久久| 国内精品久久久久精免费| 美女黄网站色视频| 日本一本二区三区精品| 国产精品免费一区二区三区在线| 日本一本二区三区精品| 国产精品一区二区三区四区久久| 亚洲三级黄色毛片| 国产一区二区激情短视频| 成人美女网站在线观看视频| 国产欧美日韩精品亚洲av| 精品久久久久久久久久免费视频| 波多野结衣高清作品| 国产 一区 欧美 日韩| 婷婷六月久久综合丁香| 免费看日本二区| 在线天堂最新版资源| 免费看美女性在线毛片视频| 国产av一区在线观看免费| 亚洲精品亚洲一区二区| 简卡轻食公司| 亚洲av中文av极速乱 | 日本免费一区二区三区高清不卡| 最近中文字幕高清免费大全6 | 亚洲av美国av| 久久人妻av系列| 村上凉子中文字幕在线| 国产精华一区二区三区| 亚洲成av人片在线播放无| 亚洲真实伦在线观看| 我要搜黄色片| 亚洲精品乱码久久久v下载方式| 99久久久亚洲精品蜜臀av| 成年女人永久免费观看视频| 婷婷丁香在线五月| 亚洲精品一卡2卡三卡4卡5卡| 十八禁网站免费在线| 午夜精品在线福利| 在线国产一区二区在线| 少妇丰满av| 国产真实乱freesex| 国产白丝娇喘喷水9色精品| 国产精品日韩av在线免费观看| 亚洲avbb在线观看| 在线观看av片永久免费下载| 少妇猛男粗大的猛烈进出视频 | av天堂中文字幕网| 淫秽高清视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久国产乱子免费精品| 久久久色成人| 亚洲国产精品合色在线| 嫩草影院精品99| 精品久久久噜噜| 亚洲av免费在线观看| 婷婷丁香在线五月| 欧美日本亚洲视频在线播放| 久久精品国产99精品国产亚洲性色| 无遮挡黄片免费观看| 一级av片app| 少妇被粗大猛烈的视频| 黄色丝袜av网址大全| 免费电影在线观看免费观看| 亚洲三级黄色毛片| 欧美日韩中文字幕国产精品一区二区三区| 小蜜桃在线观看免费完整版高清| 我要搜黄色片| 国产白丝娇喘喷水9色精品| 中亚洲国语对白在线视频| 九九在线视频观看精品| 久久九九热精品免费| 欧美日韩黄片免| av女优亚洲男人天堂| 又粗又爽又猛毛片免费看| 韩国av在线不卡| 亚洲欧美日韩无卡精品| 国产毛片a区久久久久| 亚洲国产精品成人综合色| 亚洲专区国产一区二区| 禁无遮挡网站| 91久久精品电影网| 亚洲成a人片在线一区二区| 亚洲精品日韩av片在线观看| 高清在线国产一区| 免费高清视频大片| 国产精品不卡视频一区二区| av视频在线观看入口| av福利片在线观看| 欧美色视频一区免费| 日韩一本色道免费dvd| 桃色一区二区三区在线观看| 一a级毛片在线观看| 99久久成人亚洲精品观看| 国产私拍福利视频在线观看| 美女被艹到高潮喷水动态| 国国产精品蜜臀av免费| 不卡视频在线观看欧美| 欧美成人一区二区免费高清观看| 国产极品精品免费视频能看的| 国产人妻一区二区三区在| 99国产极品粉嫩在线观看| 91精品国产九色| 美女免费视频网站| 99热6这里只有精品| 国产高潮美女av| 亚洲精华国产精华精| videossex国产| 日日摸夜夜添夜夜添小说| 99热网站在线观看| 成人二区视频| 久久久久久九九精品二区国产| 真人一进一出gif抽搐免费| 免费大片18禁| 久久久久性生活片| 22中文网久久字幕| 夜夜爽天天搞| 亚洲欧美日韩东京热| 长腿黑丝高跟| 成年女人毛片免费观看观看9| 国内精品美女久久久久久| 国产亚洲精品久久久com| 日韩,欧美,国产一区二区三区 | 男人的好看免费观看在线视频| 亚洲精品一卡2卡三卡4卡5卡| 国产精品自产拍在线观看55亚洲| 在线观看舔阴道视频| 露出奶头的视频| 小蜜桃在线观看免费完整版高清| 欧美精品国产亚洲| 蜜桃久久精品国产亚洲av| 午夜影院日韩av| 99在线视频只有这里精品首页| 九九在线视频观看精品| 午夜福利在线观看吧| 亚洲av二区三区四区| 欧美zozozo另类| 中文资源天堂在线| 美女黄网站色视频| 欧美另类亚洲清纯唯美| av国产免费在线观看| 亚洲欧美精品综合久久99| 久久国产乱子免费精品| 成年女人毛片免费观看观看9| 亚洲欧美日韩无卡精品| 成年女人毛片免费观看观看9| av中文乱码字幕在线| xxxwww97欧美| 久久热精品热| 国产亚洲av嫩草精品影院| 亚洲精品一卡2卡三卡4卡5卡| 岛国在线免费视频观看| 日韩欧美在线乱码| 午夜a级毛片| 久久午夜亚洲精品久久| 一级黄色大片毛片| 色哟哟·www| 精品久久久久久久久久免费视频| 国产爱豆传媒在线观看| 露出奶头的视频| 可以在线观看毛片的网站| 国产精品综合久久久久久久免费| 成人特级av手机在线观看| 天堂av国产一区二区熟女人妻| www.色视频.com| 蜜桃久久精品国产亚洲av| 日本色播在线视频| 免费看av在线观看网站| 亚洲真实伦在线观看| 两人在一起打扑克的视频| av中文乱码字幕在线| 麻豆精品久久久久久蜜桃| 成人毛片a级毛片在线播放| 亚洲国产精品成人综合色| 伦精品一区二区三区| 深爱激情五月婷婷| 久久久久免费精品人妻一区二区| 少妇人妻一区二区三区视频| 国内精品久久久久久久电影| 婷婷精品国产亚洲av在线| 干丝袜人妻中文字幕| 欧美日本亚洲视频在线播放| 亚洲成a人片在线一区二区| 我的老师免费观看完整版| 好男人在线观看高清免费视频| 身体一侧抽搐| 国产欧美日韩一区二区精品| 国内少妇人妻偷人精品xxx网站| 日本欧美国产在线视频| 国产精品99久久久久久久久| 国产精品自产拍在线观看55亚洲| 日本一本二区三区精品| 亚洲av.av天堂| 欧美中文日本在线观看视频| 婷婷色综合大香蕉| 极品教师在线视频| 成人三级黄色视频| 91麻豆av在线| 他把我摸到了高潮在线观看| 久久久久久久亚洲中文字幕| 免费高清视频大片| 亚洲三级黄色毛片| 麻豆国产97在线/欧美| 免费av观看视频| 免费观看人在逋| 成人国产综合亚洲| 一本久久中文字幕| 12—13女人毛片做爰片一| 精品欧美国产一区二区三| 91久久精品电影网| 18禁黄网站禁片午夜丰满| 午夜影院日韩av| 欧美成人免费av一区二区三区| 99热网站在线观看| 国产aⅴ精品一区二区三区波| 男女做爰动态图高潮gif福利片| 黄色丝袜av网址大全| 天堂√8在线中文| 日日摸夜夜添夜夜添小说| 亚洲无线在线观看| 国产亚洲精品综合一区在线观看| 18禁在线播放成人免费| 亚洲人成网站高清观看| 国产一区二区亚洲精品在线观看| 尾随美女入室| 性插视频无遮挡在线免费观看| 国产亚洲精品久久久久久毛片| 1024手机看黄色片| 亚洲精品在线观看二区| aaaaa片日本免费| 最好的美女福利视频网| 成年女人毛片免费观看观看9| www日本黄色视频网| 欧美成人免费av一区二区三区| 2021天堂中文幕一二区在线观| 老司机午夜福利在线观看视频| 久久精品久久久久久噜噜老黄 | 最近视频中文字幕2019在线8| 久久久久免费精品人妻一区二区| 制服丝袜大香蕉在线| 国产毛片a区久久久久| 一本久久中文字幕| 国产高潮美女av| 免费在线观看成人毛片| 亚洲精品日韩av片在线观看| 欧美国产日韩亚洲一区| 日韩欧美三级三区| 小蜜桃在线观看免费完整版高清| 国产精品女同一区二区软件 | 亚洲七黄色美女视频| 三级男女做爰猛烈吃奶摸视频| 男人的好看免费观看在线视频| 欧美一区二区精品小视频在线| 韩国av在线不卡| 久久精品国产自在天天线| 久久国产精品人妻蜜桃| 精品久久国产蜜桃| 亚洲,欧美,日韩| 亚洲黑人精品在线| 成人特级黄色片久久久久久久| 久久亚洲真实| 夜夜看夜夜爽夜夜摸| 别揉我奶头~嗯~啊~动态视频| 亚洲精品亚洲一区二区| 国产综合懂色| av视频在线观看入口| 又粗又爽又猛毛片免费看| 久久国产精品人妻蜜桃| 亚洲七黄色美女视频| 97碰自拍视频| 久久久久久久亚洲中文字幕| 日本爱情动作片www.在线观看 | 丰满乱子伦码专区| 99视频精品全部免费 在线| 蜜桃亚洲精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲精品456在线播放app | 伦理电影大哥的女人| 国产日本99.免费观看| 国产成年人精品一区二区| 亚洲av五月六月丁香网|