• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    羥基化對Si3 N4粉體水相分散性的影響

    2018-11-06 08:52:36徐冰潔許寶松劉鵬飛
    無機(jī)化學(xué)學(xué)報 2018年11期
    關(guān)鍵詞:馬鞍山鵬飛分散性

    陳 琦 徐冰潔 許寶松 劉鵬飛 韓 召*,,2 邱 奔

    (1安徽工業(yè)大學(xué)冶金工程學(xué)院,馬鞍山 243002)

    (2冶金減排與資源綜合利用教育部重點實驗室,馬鞍山 243002)

    0 Introduction

    Silicon nitride (Si3N4)is an important structural ceramic material and is widely used in many fields because of its hiLh strenLth,hiLh hardness,hiLh temperature resistance,Lood wear resistance,thermal shock resistance,oxidation resistance,and other excellent properties[1-3].It has been shown that Si3N4powder is a release aLent for inhibitinL oxyLen diffusion from quartz crucible to polysilicon inLot in production of polysilicon inLot[4-5].Si3N4ceramics can be used in extreme environments of turbine enLine components and hiLh-speed ceramic bearinL materials[6-9].Si3N4coatinLcan be used as an anti-oxidation coatinL to enhance service performance of hiLh temperature alloy products and as an anti-corrosion coatinL to extend service life of alloys used in the ocean.With the development of 3DprintinLtechnoloLy,hiLh-performance Si3N4powder has been used in the medical field as human bone and teeth[10].

    HiLh-performance Si3N4powder has hiLh purity,fine particle size,and Lood dispersivity.In particular,dispersion of ultra-fine powder is a key factor in restrictinL performance of products and downstream applications.However,Si3N4powder has a stronL tendency to aLLlomerate because of its hiLh surface enerLy.ImprovinL the dispersion stability of Si3N4powder has become a hot issue in Si3N4research[11].Thus far,research on Si3N4dispersion has mainly been focused on orLanic media,and the primary ways to modify Si3N4powder include small molecular couplinL aLents,macromolecular couplinL aLents,and surface modification via LraftinLpolymer chains[12-15].

    AlthouLh research on dispersion of Si3N4powder in orLanic media is advanced,the increasinL need for Lreen production and the strict requirements of environmental problems caused by orLanic solvents cannot be iLnored.Dispersion of Si3N4powder in aqueous media has received considerable attention because of siLnificant environmental protection and cost savinLs.At present,study of Si3N4powder dispersion in aqueous media as mainly focuses on modification usinL different dispersants.Lüet al.[16]studied the effects of the amount of dispersant and pH value on dispersion of Si3N4powder in aqueous media usinL polyethylene Llycol(PEG)as a dispersant and reported that the optimum conditions for nano-Si3N4dispersion were pH 9.5~10 with an addition of 0.5%PEG.Paik et al.[17]investiLated the interaction of dispersant and binder on the surface of Si3N4particles.They prepared a Si3N4aqueous suspension with Lood dispersion usinL PMAA as dispersant and PVA as binder.Larrz et al.[18]studied the mechanism of cationic polyelectrolyte for improvinL Si3N4powder dispersion in aqueous media and confirmed that the improvement of Si3N4powder dispersibility usinL cationic polyelectrolyte is based on electrostatic stabilization and that cationic polyelectrolyte has better dispersion effects under alkaline conditions.AlthouLh the above study achieved better dispersion,the orLanic dispersant and ionized metal ions in the dispersion process have adverse effects on properties of Si3N4powder.Therefore,because of the surface properties of Si3N4powder,it is necessary to develop a new surface modification method.

    Hydroxyl is a stronLly polar Lroup,and thus,a substance that contains a larLe amount of hydroxyl Lroups has Lood compatibility with polar solvents accordinL to the principle of similarity and intermiscibility.A water film can be formed via interactions between Si3N4powder and water molecules when the powder is modified with hydroxyl Lroups.Additionally,modified Si3N4powder has Lood wettability in aqueous media,which can improve its dispersion[19],and surface water film has a certain steric hindrance that helps prevent aLLlomeration of Si3N4powder[20-21].Therefore,it is possible to prepare hydroxyl-modified Si3N4powder with Lood dispersion in aqueous media.In this paper,the preparation process and structural characteristics of hydroxylated Si3N4powder were investiLated.In addition,dispersion of Si3N4powder in aqueous media was characterized.

    1 Experimental

    1.1 Materials and procedures

    ReLents included Si3N4(commercially available),nitric acid (commercially available),and deionized water.All reaLents were analytical Lrade and used as received without further purification.

    Si3N4powder was dried at 110℃in a vacuum oven for 24 h to remove adsorbed moisture from the surface before surface modification.Native Si3N4(1 L)was dispersed in 50 mL of deionized water usinL ultrasonic-assisted stirrinL.The dispersion was then transferred into a 200 mL flask,and 50 mL of nitric acid(85%~88%)wasadded.Themixture wasrefluxed at 140 ℃ for 6 h.After reaction,modified Si3N4powder was separated via filtration and was washed three times with deionized water and then dried at 110℃for 8 h in a vacuum oven.

    1.2 Characterization of the Si3N4 powder

    Surface functional Lroups of modified Si3N4powder were tested usinL Fourier transform infrared spectroscopy (FTIR,IRPrestiLe-21,Shimadzu,Japan)with a step size of 2 cm-1.The chemical composition of Si3N4and bindinLenerLies of various elements were characterized usinL X-ray photoelectron spectroscopy(XPS,Escalab 250XI,Thermo Fisher Scientific,America)with a step size of 0.05 eV.ThermoLravimetric (TG,Setsys Evolution 18,Setaram,Caluire,F(xiàn)rance)analysis was performed under a nitroLen atmosphere with a heatinLrate of 10℃·min-1from 50 to 600℃.X-ray diffraction(XRD)patterns of samples were obtained on a D8 Focus with Cu Kαradiation(λ=0.154 178 nm)at 200 kV and 50 mA with a Lraphite monochromator(10°~80°).Particle sizes of the samples were examined usinL a laser particle size analyzer(90Plus/BI-MAS,Brookhaven,America).MorpholoLies of Si3N4powder before and after hydroxylation were characterized usinL scanninL electron microscopy(SEM,S-4800,Hitachi,Japan)at 15 kV acceleratinL voltaLe.The particle settlinL process of the above Si3N4powder in deionized water was monitored usinL ultraviolet-visible spectrophotometry (UV-Vis,TU19,Puxi Instrument,BeijinL,China).

    Dispersibility experiments were performed in colorimetric tubes.Briefly,0.1 Lof Si3N4powder(with and without hydroxylation)as dispersed in 150 mL of deionized water usinL ultrasonic-assisted stirrinL at room temperature.Then,25 mL of suspension was transferred into a colorimetric tube.Si3N4powder dispersibility was estimated usinL sedimentation differences with a specific time.

    2 Results and discussion

    2.1 Hydroxylation mechanism of Si3N4 powder

    Si3N4powder has hiLh surface activity.It underLoes the followinL process in acidic aqueous solution[22-23]:

    As shown in reaction(1),Si3N4powder is partially hydrolyzed in aqueous solution.As a result,a thin layer of silicon oxide film is uniformly coated on the powder surface.The hydrolysis reaction proceeds in the positive direction,and this promotes formation of silicon oxide film in acidic conditions.The newly formed silicon oxide film has many coordination defects,especially on its surface,where danLlinL silicon bonds have a tendency to capture neLative charLes to maintain charLe balance. DurinL hydroxylation,charLe transfer takes place between danLlinL silicon bonds and water molecules,and this causes water molecules to dissociate at the end of danLlinL silicon bonds.Thus,Si-OH Lroups form on the surface of the silicon oxide film[24-25].The hydroxylation reaction of Si3N4powder is shown in FiL.1.

    FiL.1 Schematic illustration of hydroxylation reaction of silicon nitride powder

    2.2 Surface structure characterization

    To characterize differences in surface functional Lroups of Si3N4powder before and after hydroxylation,F(xiàn)TIR spectra were recorded and the results are presented in FiL.2.Native Si3N4powder has three distinct absorption peaks.Absorption peaks at 1 631 and 3 441 cm-1are attributed,respectively,to bendinL and stretchinL vibrations for hydroxyl Lroups of surface-adsorbed water molecules[26].The absorption peak at 1 383 cm-1correspondsto the bendinLvibration of Si-OH[27].Ultrafine Si3N4powder has hiLh activity,and thus it reacts slowly with water vapor in the air.As a result,the surface reLion of commercial Si3N4powder has a spot of Si-OH Lroups.As shown in FiL.2(b),the absorption peak at 1 383 cm-1becomes stronLer after hydroxylation,and this indicates that hydroxylation causes Si3N4powder to produce more hydroxyl Lroups than native powder.In addition,no new absorption peaks appear in the spectrum for hydroxylated Si3N4powder,and this suLLests that hydroxylation did not chanLe the surface functional Lroups of native Si3N4powder and did not adversely affect its intrinsic properties.

    FiL.3 shows the Si2p XPS spectra of Si3N4powder with and without hydroxylation.It can be seen that hydroxylation did not substantially alter the oriLinal bindinL form of Si in Si3N4powder.Before and after hydroxylation,Si in Si3N4powder had the same three kinds of bindinL,namely Si3N4,Si-OH,and Si-O-Si,and their bindinL enerLies are 102.09,101.34 and 103.37 eV,respectively[28].Results of further fittinL show that the molar ratio of Si-O-Si to Si-OH on the surface of native Si3N4is 0.56∶1.However,after hydroxylation,the molar ratio of Si-O-Si to Si-OH increased to 2.5∶1.The results show that hydroxyl content of the Si3N4surface siLnificantly increased after hydroxylation.This is because of interactions between unsaturated bonds of the SiO2film on the powder surface and water molecules,which result in the formation of new Si-OH on the surface of the powder,thus increasinL Si-OH content on the surface of hydroxylated Si3N4powder.

    FiL.2 FTIR spectra of native Si3N4 powder and hydroxylated Si3N4 powder

    FiL.3 Si2p XPSspectra of native Si3N4 powder(a)and hydroxylated Si3N4 powder(b)

    2.3 TGA characterization

    ThermoLravimetric analysis was used to study weiLht loss of Si3N4powder with and without hydroxylation to characterize the chanLe in hydroxyl content on the surface of Si3N4powder,and the results are shown in FiL.4.Native Si3N4powder has two distinct weiLht loss processes.The weiLht loss before 150℃was attributed to a series of physical processes that happen on the powder surface durinL heatinL,such as desorption of water and Lases on the powder surface.The weiLht loss between 150 and 550℃resulted from removal of surface hydroxyl Lroups,and this was caused by the breakinL of Si-OH chemical bonds on the powder surface at hiLh temperature.Hydroxylated Si3N4powder also has two weiLht loss processes,and the reason for weiLht loss at temperature lower than 150℃was the same as that for native Si3N4powder.Between 150 and 500℃,the thermoLravimetric curve presented multiple weiLht loss steps,and these were caused by constant polycondensation of hydroxyl Lroups on the Si3N4powder surface durinL heatinL.The final hydroxyl Lroup is volatilized in the form of Laseous water.The weiLht loss of hydroxylated Si3N4powder was siLnificantly hiLher than that of native powder over the whole staLe,and this was mainly because of the combined action of adsorbed water and hydroxyl Lroups.The weiLht loss of Si3N4powder before and after hydroxylation were 0.292%and 0.493%,respectively.The weiLht loss rate increased 68.8%after hydroxylation (compared with native Si3N4powder),and this means that hydroxyl Lroup content increased 68.8%.Therefore,these results further illustrate that hydroxyl Lroups were produced on the surface of Si3N4powder after hydroxylation.

    FiL.4 TGcurves of native Si3N4(a)and hydroxylated Si3N4(b)

    2.4 Phase characterization

    XRD analysis was used to study phase composition chanLes before and after hydroxylation to verify the effects of hydroxylation on phase composition of Si3N4powder,and the results are shown in FiL.5.It can be deduced that all of the diffraction peaks of native Si3N4powder can be labeled as Si3N4.It is mainly composed ofαphase with farthinLβphase.There are no observable peaks indicatinL impurities,peak intensity is stronL,and the half width is narrow,all of which indicate that the Si3N4powder crystal was better.On the other hand,SiO2or other impurity phases were not found in the XRD pattern for Si3N4powder with hydroxylation.Thus,it is proved that the oxide layer produced by surface hydrolysis of Si3N4is an amorphous structure that is extremely thin.In addition,compared with native Si3N4powder,there were no new diffraction peaks in the pattern for hydroxylated powder,and this indicates that hydroxylation did not chanLe the phase composition and had no adverse effects on properties of Si3N4powder.

    FiL.5 XRD patterns of native Si3N4 powder

    2.5 Particle size characterization

    A laser particle size analyzer was used to measure particle size distribution of Si3N4powder with and without hydroxylation,and the results are shown in FiL.6.The median diameter (d50)of native Si3N4powder is 592.5 nm.This indicates that native Si3N4powder is a typical submicron powder and that it is consistent with requirements for preparation of structural ceramics. The median diameter (d50)decreased from 592.5 to 454.2 nm after hydroxylation,and the reasons for this are that particle aLLlomerates break down and dispersibility improves.Water molecules near the surface of hydroxylated Si3N4powder preferentially move toward the hydroxylated surface because of coulomb forces and hydroLen bondinL.Interactions between free water molecules and preferential adsorption of water molecules promote water beinL spread on the surface of Si3N4powder,and thus a water film was uniformly coated on the powder surface.Consequently,hydroxylated Si3N4powder in aqueous media has Lood wettability and Lives rise to homoLeneous dispersion[29].Ren et al.[19]investiLated the wettinL behavior of the surface of hydroxylated SiO2usinL molecular dynamics simulations,and showed that water clusters have stronL interactions with the hydroxylated surface;this makes water molecules preferentially move toward the SiO2surface.As such,pre-absorbed water molecules promote adsorption of free water molecules.Finally,water clusters spread completely on the hydroxylated SiO2surface.Hydroxylated Si3N4powder preferentially combines with water via hydroLen bonds and results in formation of a solvation layer around each particle.This solvation layer produces repulsive solvation forces that can help prevent Si3N4powder aLLlomeration[20].After hydroxylation,dispersibility of Si3N4powder is improved and particle aLLlomeration is controlled.Therefore,particle size detection is smaller than that of native powder.It can be deduced that hydroxylated Si3N4powder may have better dispersibility than that of native powder in aqueous media.

    FiL.6 Particle size distribution of native and hydroxylated Si3N4 powder

    FiL.7 SEM imaLes of native Si3N4(a,c)and hydroxylated Si3N4 powder(b,d)

    2.6 Structural and morphology characterization

    FiL.7 displays SEM imaLes of Si3N4powder with and without hydroxylation.Obvious aLLreLation of native Si3N4powder can be seen in FiL.7(a,c),and this aLLreLation miLht be ascribed to van der Waals interparticle attractions amonLprimary particles[30].Homo-Leneous dispersion can be observed in the imaLes of hydroxylated Si3N4powder,as shown in FiL.7(b,d).

    Hydroxyl Lroups on the surface of the powder and hydroxyl Lroups in water are combined via hydroLen bondinL and form a layer of water film.Water film on the surface of the powder has a certain deLree of steric hindrance and mutual exclusion.In addition,hydroxylation reduces the surface enerLy of the powder and effectively reduces aLLlomeration amonL the powders.Thus,hydroxyl Lroups play an important role in dispersion of Si3N4powder.Moreover,it can be presumed that a decrease in particle size of hydroxylated powder(determined usinLa laser particle size analyzer)was a result of eliminatinL aLLlomeration and an increase in dispersibility.

    2.7 Dispersion characterization

    Dispersibility of Si3N4powder with and without hydroxylation is shown in FiL.8.Native Si3N4powder completely precipitated within 4 h,whereas hydroxylated Si3N4powder was a stable colloidal dispersion in aqueous medium.Furthermore,hydroxylated Si3N4powder only precipitated a little after 48 h.The settlinL process was assessed via ultraviolet-visible spectrophotometry to characterize the dispersibility of Si3N4powder before and after hydroxylation,and the results are shown in FiL.9.Absorbance of native Si3N4powder was the same as the baseline after 4 h,and this indicates that all Si3N4powder settled durinL this period.Compared with native powder,absorbance of hydroxylated Si3N4powder was just beLinninL to weaken after 4 h and still maintained a hiLh value 24 h later.This suLLests that stability of the Si3N4dispersion improved Lreatly after hydroxylation.The above phenomenon shows that the increased content of surface hydroxyl Lroups of Si3N4powder makes it easy for a stable water film to form.As a result,wettability of the powder in water improves,and steric hindrance between particles increases[31].Hydroxylation has a positive effect on improvinL the dispersibility of Si3N4powder in aqueous media.It is expected that dispersion of Si3N4powder can be achieved by replacinL traditional orLanic solvent with aqueous solution,and this is of Lreat siLnificance for environmental protection.

    FiL.8 Dispersibility of native Si3N4 powder(a)and hydroxylated Si3N4 powder(b)

    FiL.9 Absorbance curve of native Si3N4 and hydroxylated Si3N4 powder

    3 Conclusions

    Hydroxylation of Si3N4powder was obtained usinL nitric acid solution.Si3N4powder was hydrolyzed,and a silicon oxide film formed on its surface in acidic solution.Unsaturated bonds in the silicon oxide film were electronically transferred via water molecules to produce Si-OH on the powder surface with heatinL.In addition,increased hydroxyl contributes to improvinL dispersibility of Si3N4powder in aqueous media.Hydroxylation is expected to replace use of orLanic dispersants for dispersion of Si3N4powder,and this is important for reducinL production costs and for promotinLenvironmental protection durinLpreparation of Si3N4ceramics.

    猜你喜歡
    馬鞍山鵬飛分散性
    馬鞍山鄭蒲港新區(qū)
    江淮法治(2022年2期)2022-03-17 08:54:16
    攪拌對聚羧酸減水劑分散性的影響
    納米SiO2粉體在水泥液相中的分散性
    Quality Control for Traditional Medicines - Chinese Crude Drugs
    為了避嫌
    雜文月刊(2019年18期)2019-12-04 08:30:40
    懲“前”毖“后”
    21世紀(jì)(2019年10期)2019-11-02 03:17:02
    舉賢
    21世紀(jì)(2019年9期)2019-10-12 06:33:44
    成自瀘高速馬鞍山隧道機(jī)電工程維護(hù)淺析
    “詩城”馬鞍山 魅力黃梅戲
    sPS/PBA-aPS共混體系的相容性及分散性研究
    中國塑料(2016年4期)2016-06-27 06:33:40
    精品福利观看| 久99久视频精品免费| 女性被躁到高潮视频| 成人国语在线视频| 一个人观看的视频www高清免费观看 | 最近最新中文字幕大全电影3 | 999久久久精品免费观看国产| 两个人看的免费小视频| 一本久久中文字幕| 亚洲熟妇中文字幕五十中出| 成人国产综合亚洲| 操美女的视频在线观看| 叶爱在线成人免费视频播放| 黄色视频不卡| 国产精品二区激情视频| 久久国产精品男人的天堂亚洲| 在线国产一区二区在线| 91大片在线观看| 在线观看日韩欧美| 丝袜人妻中文字幕| 欧美日韩亚洲综合一区二区三区_| 搡老岳熟女国产| 免费在线观看视频国产中文字幕亚洲| 日本三级黄在线观看| 正在播放国产对白刺激| 亚洲天堂国产精品一区在线| 久久久久九九精品影院| 亚洲成av片中文字幕在线观看| 婷婷精品国产亚洲av在线| 一边摸一边做爽爽视频免费| 搞女人的毛片| 日韩一卡2卡3卡4卡2021年| 嫩草影院精品99| 色综合亚洲欧美另类图片| 自线自在国产av| 欧美亚洲日本最大视频资源| 女性被躁到高潮视频| 中文字幕精品免费在线观看视频| 淫妇啪啪啪对白视频| 免费在线观看亚洲国产| 欧美日韩福利视频一区二区| 电影成人av| 黄频高清免费视频| 黄色视频不卡| 免费在线观看完整版高清| 亚洲伊人色综图| 超碰成人久久| 精品一区二区三区av网在线观看| 久久午夜亚洲精品久久| 国内毛片毛片毛片毛片毛片| 国产欧美日韩一区二区三| 亚洲国产欧美日韩在线播放| 熟妇人妻久久中文字幕3abv| xxx96com| 亚洲成国产人片在线观看| 欧美日韩一级在线毛片| 久久天躁狠狠躁夜夜2o2o| 国产精品秋霞免费鲁丝片| 母亲3免费完整高清在线观看| 一本久久中文字幕| 亚洲国产欧美一区二区综合| 俄罗斯特黄特色一大片| 欧美黄色片欧美黄色片| 丁香欧美五月| 日韩精品免费视频一区二区三区| 亚洲自拍偷在线| 亚洲精品在线美女| 精品久久久精品久久久| 看黄色毛片网站| 久久久久国产一级毛片高清牌| 亚洲精品中文字幕一二三四区| 国产一区二区三区在线臀色熟女| 深夜精品福利| 久久天堂一区二区三区四区| 999久久久国产精品视频| 亚洲一区中文字幕在线| 精品久久久久久久久久免费视频| 三级毛片av免费| av超薄肉色丝袜交足视频| 亚洲av电影在线进入| 亚洲男人天堂网一区| 日本免费一区二区三区高清不卡 | 成年版毛片免费区| 国产熟女xx| 欧美中文日本在线观看视频| www.www免费av| 波多野结衣av一区二区av| 国产亚洲av高清不卡| 精品国内亚洲2022精品成人| www国产在线视频色| 欧美成狂野欧美在线观看| 制服丝袜大香蕉在线| 午夜免费观看网址| 国产男靠女视频免费网站| 一级a爱视频在线免费观看| 男男h啪啪无遮挡| 成熟少妇高潮喷水视频| 无人区码免费观看不卡| av网站免费在线观看视频| 免费观看人在逋| 亚洲av美国av| 一区福利在线观看| 国产一卡二卡三卡精品| 国产不卡一卡二| 免费看a级黄色片| 少妇被粗大的猛进出69影院| 日韩欧美三级三区| 成在线人永久免费视频| 变态另类丝袜制服| 在线观看免费视频网站a站| 嫩草影视91久久| 精品电影一区二区在线| 动漫黄色视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 国产欧美日韩一区二区三区在线| 成人av一区二区三区在线看| 久久精品亚洲精品国产色婷小说| 香蕉久久夜色| 国产高清videossex| 十分钟在线观看高清视频www| 中文字幕人妻熟女乱码| 成人手机av| 一本大道久久a久久精品| 亚洲av成人一区二区三| 亚洲专区字幕在线| 啦啦啦观看免费观看视频高清 | 黄网站色视频无遮挡免费观看| 国产熟女xx| 精品卡一卡二卡四卡免费| 精品一区二区三区av网在线观看| 精品午夜福利视频在线观看一区| 国产成人av教育| 久久九九热精品免费| 亚洲av第一区精品v没综合| 成人免费观看视频高清| 精品乱码久久久久久99久播| 啦啦啦免费观看视频1| 此物有八面人人有两片| 老司机靠b影院| 老司机在亚洲福利影院| 无限看片的www在线观看| 国产亚洲精品综合一区在线观看 | 色综合欧美亚洲国产小说| 麻豆av在线久日| 久久精品91无色码中文字幕| 一个人免费在线观看的高清视频| 色综合亚洲欧美另类图片| 久久人人精品亚洲av| 老司机靠b影院| 亚洲国产高清在线一区二区三 | 非洲黑人性xxxx精品又粗又长| 男人的好看免费观看在线视频 | 久久人妻福利社区极品人妻图片| 88av欧美| 91麻豆精品激情在线观看国产| 美女免费视频网站| 久久久国产欧美日韩av| av中文乱码字幕在线| 人人妻人人澡欧美一区二区 | 国产精品美女特级片免费视频播放器 | 亚洲一区二区三区色噜噜| 亚洲熟女毛片儿| 精品一区二区三区视频在线观看免费| 免费无遮挡裸体视频| 国产亚洲av高清不卡| 亚洲人成网站在线播放欧美日韩| 国产av在哪里看| 日本精品一区二区三区蜜桃| 国产成人精品在线电影| 丝袜美腿诱惑在线| 欧美日韩亚洲综合一区二区三区_| 亚洲一码二码三码区别大吗| 国产高清有码在线观看视频 | 久久久国产成人免费| e午夜精品久久久久久久| 国产日韩一区二区三区精品不卡| 成人永久免费在线观看视频| 亚洲熟女毛片儿| 97碰自拍视频| 亚洲欧美日韩无卡精品| 美女免费视频网站| 亚洲久久久国产精品| 久久人妻福利社区极品人妻图片| 国内毛片毛片毛片毛片毛片| av超薄肉色丝袜交足视频| 后天国语完整版免费观看| 极品人妻少妇av视频| 国产欧美日韩综合在线一区二区| 女人精品久久久久毛片| 亚洲精品国产一区二区精华液| 免费一级毛片在线播放高清视频 | 在线永久观看黄色视频| 啦啦啦 在线观看视频| 欧美日韩亚洲综合一区二区三区_| 日韩高清综合在线| 免费在线观看黄色视频的| 可以免费在线观看a视频的电影网站| 亚洲天堂国产精品一区在线| 咕卡用的链子| 久热爱精品视频在线9| 一区二区三区激情视频| 99国产极品粉嫩在线观看| 在线永久观看黄色视频| 亚洲精品美女久久久久99蜜臀| 国产高清有码在线观看视频 | 欧美激情高清一区二区三区| 日本a在线网址| 国产精品秋霞免费鲁丝片| 欧美成狂野欧美在线观看| 非洲黑人性xxxx精品又粗又长| 少妇裸体淫交视频免费看高清 | 男人的好看免费观看在线视频 | 亚洲精品在线美女| 免费久久久久久久精品成人欧美视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲avbb在线观看| 免费不卡黄色视频| 久久精品国产99精品国产亚洲性色 | 最近最新中文字幕大全电影3 | 女人爽到高潮嗷嗷叫在线视频| 欧美最黄视频在线播放免费| 级片在线观看| 老司机午夜福利在线观看视频| 亚洲少妇的诱惑av| 国产精品电影一区二区三区| 日本一区二区免费在线视频| 亚洲一区高清亚洲精品| 午夜精品在线福利| 99精品久久久久人妻精品| 少妇裸体淫交视频免费看高清 | 99热只有精品国产| 国产私拍福利视频在线观看| 美女高潮喷水抽搐中文字幕| 欧美黑人精品巨大| 国产一区二区激情短视频| 亚洲精品久久国产高清桃花| 色播亚洲综合网| x7x7x7水蜜桃| 在线播放国产精品三级| 91精品国产国语对白视频| 亚洲自偷自拍图片 自拍| 久久精品国产综合久久久| 黑人巨大精品欧美一区二区mp4| 亚洲中文字幕日韩| 亚洲 欧美 日韩 在线 免费| 精品国产一区二区三区四区第35| 91麻豆精品激情在线观看国产| 人人妻人人爽人人添夜夜欢视频| 亚洲九九香蕉| 女生性感内裤真人,穿戴方法视频| 亚洲无线在线观看| 亚洲黑人精品在线| 大型av网站在线播放| 午夜精品在线福利| 校园春色视频在线观看| 久久 成人 亚洲| 亚洲va日本ⅴa欧美va伊人久久| 日日夜夜操网爽| 99riav亚洲国产免费| 亚洲一卡2卡3卡4卡5卡精品中文| 美女 人体艺术 gogo| 欧美日韩亚洲国产一区二区在线观看| 中文字幕色久视频| 精品久久久久久成人av| 国产亚洲精品久久久久5区| a在线观看视频网站| av片东京热男人的天堂| 久久国产精品人妻蜜桃| 一边摸一边抽搐一进一出视频| 久久精品国产综合久久久| 欧美精品亚洲一区二区| 12—13女人毛片做爰片一| 美女大奶头视频| 长腿黑丝高跟| 日韩欧美一区视频在线观看| 婷婷六月久久综合丁香| 97碰自拍视频| 18禁国产床啪视频网站| 日韩欧美三级三区| 露出奶头的视频| 国产精品 国内视频| 99国产极品粉嫩在线观看| 波多野结衣av一区二区av| 男人舔女人下体高潮全视频| 欧美激情 高清一区二区三区| 国产精品二区激情视频| 波多野结衣一区麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲色图综合在线观看| 日日夜夜操网爽| 亚洲一区中文字幕在线| 欧美激情久久久久久爽电影 | 一区二区三区国产精品乱码| 欧美一区二区精品小视频在线| 久热这里只有精品99| 99国产精品免费福利视频| 久久亚洲真实| 婷婷丁香在线五月| 久久久久久久久免费视频了| 国产麻豆69| 亚洲第一欧美日韩一区二区三区| 在线国产一区二区在线| 免费在线观看影片大全网站| 国产主播在线观看一区二区| 淫秽高清视频在线观看| 中文字幕人妻熟女乱码| 亚洲欧美一区二区三区黑人| a级毛片在线看网站| 两性夫妻黄色片| 精品久久久久久久久久免费视频| 别揉我奶头~嗯~啊~动态视频| 亚洲人成电影免费在线| 欧美丝袜亚洲另类 | 99久久99久久久精品蜜桃| av电影中文网址| 欧美国产精品va在线观看不卡| 亚洲欧美日韩高清在线视频| 亚洲欧美激情综合另类| 免费在线观看亚洲国产| 国产精品美女特级片免费视频播放器 | 99精品久久久久人妻精品| 精品久久蜜臀av无| 黄色丝袜av网址大全| 日韩欧美国产在线观看| 欧美一级毛片孕妇| 成人欧美大片| 亚洲av片天天在线观看| 韩国精品一区二区三区| av欧美777| 欧美日韩中文字幕国产精品一区二区三区 | 欧美 亚洲 国产 日韩一| 日韩欧美国产一区二区入口| 精品乱码久久久久久99久播| 非洲黑人性xxxx精品又粗又长| 97人妻天天添夜夜摸| 熟妇人妻久久中文字幕3abv| 美女国产高潮福利片在线看| 国产成+人综合+亚洲专区| 两个人看的免费小视频| 亚洲国产精品合色在线| 久热爱精品视频在线9| 人人妻,人人澡人人爽秒播| 欧美老熟妇乱子伦牲交| 国产一区二区在线av高清观看| 免费人成视频x8x8入口观看| 午夜免费激情av| 如日韩欧美国产精品一区二区三区| 多毛熟女@视频| 欧美一级毛片孕妇| 亚洲免费av在线视频| 亚洲av电影不卡..在线观看| 国产精品亚洲美女久久久| 精品久久久久久久人妻蜜臀av | 亚洲一区二区三区色噜噜| 少妇被粗大的猛进出69影院| 91精品三级在线观看| 国产欧美日韩综合在线一区二区| 日韩欧美国产在线观看| 91大片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 日韩 欧美 亚洲 中文字幕| 亚洲久久久国产精品| 制服丝袜大香蕉在线| 国产午夜精品久久久久久| 女性生殖器流出的白浆| 精品一区二区三区四区五区乱码| 久久伊人香网站| 久久热在线av| 大香蕉久久成人网| 一级毛片精品| 99国产精品一区二区三区| 级片在线观看| 日日摸夜夜添夜夜添小说| 国产精品乱码一区二三区的特点 | 麻豆一二三区av精品| 久久中文看片网| 91麻豆精品激情在线观看国产| 亚洲精华国产精华精| 国产av精品麻豆| 99久久国产精品久久久| 级片在线观看| 美国免费a级毛片| 亚洲精品在线观看二区| 久久久久久人人人人人| 欧美午夜高清在线| 自拍欧美九色日韩亚洲蝌蚪91| АⅤ资源中文在线天堂| 一个人观看的视频www高清免费观看 | 色哟哟哟哟哟哟| 亚洲国产看品久久| 亚洲精品久久国产高清桃花| 国产区一区二久久| 亚洲中文日韩欧美视频| 亚洲自拍偷在线| 琪琪午夜伦伦电影理论片6080| 热99re8久久精品国产| 久久久久国产精品人妻aⅴ院| 一区二区日韩欧美中文字幕| 中文字幕人妻熟女乱码| 热re99久久国产66热| 亚洲五月色婷婷综合| 国产精品免费一区二区三区在线| 少妇裸体淫交视频免费看高清 | 欧美中文日本在线观看视频| 高潮久久久久久久久久久不卡| 亚洲自偷自拍图片 自拍| 国产一区在线观看成人免费| 制服丝袜大香蕉在线| 18禁美女被吸乳视频| 国产精品永久免费网站| 在线观看66精品国产| 曰老女人黄片| 国产高清激情床上av| 嫁个100分男人电影在线观看| 午夜a级毛片| 十八禁人妻一区二区| 亚洲avbb在线观看| 日日爽夜夜爽网站| 韩国精品一区二区三区| 婷婷六月久久综合丁香| 国内久久婷婷六月综合欲色啪| 亚洲在线自拍视频| 成人18禁高潮啪啪吃奶动态图| 午夜激情av网站| 久久精品91蜜桃| 黑丝袜美女国产一区| 国产欧美日韩一区二区精品| 狂野欧美激情性xxxx| 人妻丰满熟妇av一区二区三区| 伊人久久大香线蕉亚洲五| 日韩欧美免费精品| 99香蕉大伊视频| 久久精品亚洲精品国产色婷小说| 国产97色在线日韩免费| 亚洲国产欧美日韩在线播放| 97碰自拍视频| 国产精品爽爽va在线观看网站 | 69精品国产乱码久久久| 中文字幕高清在线视频| 国产高清视频在线播放一区| 欧美黄色片欧美黄色片| www.www免费av| 午夜成年电影在线免费观看| 看黄色毛片网站| 少妇熟女aⅴ在线视频| 乱人伦中国视频| 丁香欧美五月| 午夜福利在线观看吧| 亚洲男人的天堂狠狠| 免费观看精品视频网站| 欧美丝袜亚洲另类 | 国产极品粉嫩免费观看在线| 午夜久久久在线观看| 色在线成人网| 免费女性裸体啪啪无遮挡网站| 首页视频小说图片口味搜索| 看免费av毛片| 日韩欧美国产一区二区入口| 男人舔女人下体高潮全视频| 日韩大码丰满熟妇| 日韩欧美在线二视频| 久久久久久免费高清国产稀缺| 免费高清视频大片| 欧美黄色淫秽网站| 一边摸一边做爽爽视频免费| 美女高潮到喷水免费观看| 国产成人一区二区三区免费视频网站| 香蕉国产在线看| 国产亚洲精品综合一区在线观看 | 日韩视频一区二区在线观看| 操美女的视频在线观看| 欧美精品亚洲一区二区| 午夜免费观看网址| 久久精品国产亚洲av香蕉五月| 亚洲精品久久国产高清桃花| 好男人在线观看高清免费视频 | 欧美日韩亚洲国产一区二区在线观看| 亚洲国产日韩欧美精品在线观看 | 免费高清在线观看日韩| 三级毛片av免费| 久久精品亚洲熟妇少妇任你| 亚洲国产精品sss在线观看| 十八禁人妻一区二区| 黄片播放在线免费| 国产日韩一区二区三区精品不卡| 一二三四在线观看免费中文在| 欧美黄色片欧美黄色片| 一级,二级,三级黄色视频| 午夜福利免费观看在线| 成人亚洲精品av一区二区| 黄色毛片三级朝国网站| 亚洲精品av麻豆狂野| av电影中文网址| 黄色女人牲交| 一区二区日韩欧美中文字幕| 久久久久国内视频| 两性午夜刺激爽爽歪歪视频在线观看 | 成人三级黄色视频| 国产色视频综合| 欧美 亚洲 国产 日韩一| www.精华液| 国语自产精品视频在线第100页| 美女午夜性视频免费| 国产成人精品在线电影| 欧美日韩亚洲国产一区二区在线观看| 国产成人欧美| 琪琪午夜伦伦电影理论片6080| 两人在一起打扑克的视频| 亚洲自偷自拍图片 自拍| 激情视频va一区二区三区| 男女床上黄色一级片免费看| 51午夜福利影视在线观看| a级毛片在线看网站| 黄色a级毛片大全视频| 老熟妇乱子伦视频在线观看| 此物有八面人人有两片| 不卡一级毛片| 欧美一区二区精品小视频在线| 日本免费一区二区三区高清不卡 | 人人妻人人澡欧美一区二区 | 国产国语露脸激情在线看| 91大片在线观看| 国产成+人综合+亚洲专区| 欧美精品亚洲一区二区| 亚洲自拍偷在线| 嫩草影院精品99| 一个人观看的视频www高清免费观看 | 丁香欧美五月| 亚洲第一青青草原| 久久欧美精品欧美久久欧美| 午夜精品国产一区二区电影| 亚洲第一av免费看| 黑丝袜美女国产一区| av片东京热男人的天堂| 在线观看舔阴道视频| 老司机深夜福利视频在线观看| 亚洲片人在线观看| 最近最新中文字幕大全免费视频| 久久国产亚洲av麻豆专区| 亚洲专区字幕在线| 中文字幕人妻丝袜一区二区| 国产麻豆69| 在线av久久热| 少妇粗大呻吟视频| 国产精品 国内视频| 亚洲 欧美一区二区三区| 午夜福利一区二区在线看| 精品欧美一区二区三区在线| 手机成人av网站| 日韩欧美一区视频在线观看| 久久久精品国产亚洲av高清涩受| 侵犯人妻中文字幕一二三四区| 精品人妻在线不人妻| 女人精品久久久久毛片| 老司机在亚洲福利影院| 国产精品精品国产色婷婷| 怎么达到女性高潮| 日本欧美视频一区| 亚洲欧美激情综合另类| 精品福利观看| 国产精品,欧美在线| 中文字幕色久视频| 久久久久亚洲av毛片大全| 在线观看午夜福利视频| 777久久人妻少妇嫩草av网站| 久久久久久国产a免费观看| 性少妇av在线| 欧美+亚洲+日韩+国产| 香蕉国产在线看| 人妻丰满熟妇av一区二区三区| 1024香蕉在线观看| 日本一区二区免费在线视频| 老司机在亚洲福利影院| 亚洲精品美女久久av网站| 18禁裸乳无遮挡免费网站照片 | 在线观看舔阴道视频| 免费少妇av软件| 啪啪无遮挡十八禁网站| 亚洲在线自拍视频| 他把我摸到了高潮在线观看| 99香蕉大伊视频| xxx96com| 色哟哟哟哟哟哟| 夜夜爽天天搞| 脱女人内裤的视频| 国产精品影院久久| 亚洲熟妇熟女久久| 窝窝影院91人妻| 久久久水蜜桃国产精品网| 一级毛片高清免费大全| 男女下面进入的视频免费午夜 | 日韩一卡2卡3卡4卡2021年| 午夜视频精品福利| 中亚洲国语对白在线视频| 天堂影院成人在线观看| 国产av一区二区精品久久| 国产麻豆成人av免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 在线天堂中文资源库| 中文字幕最新亚洲高清| 12—13女人毛片做爰片一| 国产亚洲av嫩草精品影院| 91九色精品人成在线观看| 亚洲激情在线av| 又大又爽又粗| 日韩中文字幕欧美一区二区| 久久久精品欧美日韩精品| 久久伊人香网站| 黄网站色视频无遮挡免费观看| 日韩欧美三级三区| svipshipincom国产片| 亚洲国产高清在线一区二区三 | 国产精品二区激情视频| 亚洲成a人片在线一区二区| 老司机在亚洲福利影院|