• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Predictable and Unpredictable Components of the Summer East Asia–Pacific Teleconnection Pattern

    2018-09-12 09:50:04XiaozhenLINChaofanLIRiyuLUandAdamSCAIFE
    Advances in Atmospheric Sciences 2018年11期

    Xiaozhen LIN,Chaofan LI,Riyu LU,and Adam A.SCAIFE

    1State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    2University of Chinese Academy of Sciences,Beijing 100029,China

    3Center for Monsoon System Research,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

    4Met Office Hadley Centre,Fitz Roy Road,Exeter EX1 3PB,UK

    5College of Engineering,Mathematics and Physical Sciences,University of Exeter,Exeter,Devon EX4 4QF UK

    ABSTRACT The East Asia–Pacific(EAP)teleconnection pattern is the dominant mode of circulation variability during boreal summer over the western North Pacific and East Asia,extending from the tropics to high latitudes.However,much of this pattern is absent in multi-model ensemble mean forecasts,characterized by very weak circulation anomalies in the mid and high latitudes.This study focuses on the absence of the EAP pattern in the extratropics,using state-of-the-art coupled seasonal forecast systems.The results indicate that the extratropical circulation is much less predictable,and lies in the large spread among different ensemble members,implying a large contribution from atmospheric internal variability.However,the tropical–mid-latitude teleconnections are also relatively weaker in models than observations,which also contributes to the failure of prediction of the extratropical circulation.Further results indicate that the extratropical EAP pattern varies closely with the anomalous surface temperatures in eastern Russia,which also show low predictability.This unpredictable circulation–surface temperature connection associated with the EAP pattern can also modulate the East Asian rainband.

    Key words:EAP pattern,circulation,seasonal forecast,surface temperature,eastern Russia

    1.Introduction

    The East Asia–Pacific(EAP)teleconnection pattern(Huang and Sun,1992),which is also referred to as the Pacific–Japan pattern(Nitta,1987),dominates the interannual variability of summer climate over the western North Pacific and East Asia(WNP-EA).It features anomalous zonally elongated centers that appear alternately between the equator and high latitudes in the meridional direction over the WNP-EA(Kosaka and Nakamura,2006;Lu and Lin,2009).The circulation anomalies associated with the EAP pattern exhibit a meridional wave-like distribution with alternate cyclonic and anticyclonic anomalies(e.g.,Kosaka and Nakamura,2006,Fig.4;Lu and Lin,2009,Fig.2).The EAP pattern links closely with variation of the circulation not only over the subtropical WNP,manifesting as a change in the WNP subtropical high(Lu and Dong,2001;Lu,2004),but also over the midlatitude WNP-EA.This teleconnection pattern modifies water vapor transport and significantly influences summer rainfall over East Asia.

    Anomalous convection around the Philippine Sea is generally recognized as one of the wave sources for the EAP pattern,which propagates northward in the lower troposphere(Kawamura et al.,1996;Lu,2001;Kosaka and Nakamura,2006).Nevertheless,the wave activity excited by the anomalous convection around the Philippine Sea appears mainly in the low-latitude regions to the south of 35°N(Kosaka and Nakamura,2006).In view of the remarkable circulation anomalies over midlatitude regions of the WNP-EA associated with the EAP teleconnection pattern,it suggests that the underlying physical mechanisms may be related to Ross by wave propagation into the midlatitude regions(e.g.,Scaife et al.,2017),but the mechanisms behind the EAP pattern are not fully understood.

    As for the prediction of the EAP teleconnection pattern,forecast models generally capture the component associated with the tropical air–sea interactions(Kosaka et al.,2012,2013;Li et al.,2012,2014a).These good forecasts manifest mainly over the subtropical WNP as variation of the WNP subtropical high(Wang et al.,2009;Li et al.,2012).In the lower troposphere,high prediction skill shown by current coupled forecast systems is found over the WNP south of Japan for the zonal wind(Li et al.,2012).However,the prediction skill decreases rapidly northward to the midlatitude regions,particularly north of 35°N.In particular,the lower tropospheric circulation related to the WNP subtropical high shows significant correlation with an anomalous cyclone or anticyclone over the midlatitude regions in observations,but no notable anomalies in the ensemble mean model output,as illustrated in Li et al.(2012).This implies either that this high-latitude component is simply unpredictable or that current coupled models may not capture the observed midlatitude components of the EAP pattern.It further suggests that different(unpredictable)mechanisms are responsible for the midlatitude circulation associated with the EAP pattern,in addition to the tropical forcing.It is crucial to gain a better understanding of the underlying mechanism for the variation of the midlatitude circulation associated with the EAP teleconnection pattern,since this midlatitude circulation significantly affects the summer climate over East Asia.

    The summer of 1998 is special for several aspects.First,the EAP teleconnection pattern is clear in this summer(Fig.1a).Second,associated with this EAP pattern,there is a strong anticyclonic anomaly over the WNP,which is typical for the El Ni?no decaying summer and leads to floods in East Asia(e.g.,Wang et al.,2000;Xie et al.,2016;Li et al.,2017).Finally,and most importantly,associated with strong tropical signals,the climate anomalies of this summer,at least in the tropics and subtropics,show high prediction skill(Li et al.,2012;MacLachlan et al.,2015).Therefore,this summer provides a good opportunity for us to investigate tropical–extratropical interaction.For this purpose,in this study we analyze the outputs of state-of-the-art coupled seasonal forecast systems,and compare the model results with observations.

    The organization of this paper is as follows:Section 2 introduces the data used.Section 3 analyzes the prediction of the EAP teleconnection pattern in 1998 and the related responses of summer prediction for surface temperature and precipitation.Section 4 provides a summary and discussion.

    2.Observed datasets and retrospective forecasts

    We use the monthly mean National Centers for Environmental Prediction–National Centers for Atmospheric Research reanalysis data(Kalnay et al.,1996)from 1979 to 2015 in summer(June–July–August).We also use precipitation data from the Global Precipitation Climatology Project dataset(Adleretal.,2003),from1979to2015.Here,weonly focus on the interannual variation and exclude the decadal or long-term component by removing a nine-year running average.

    Two sets of retrospective forecast(hindcast)data are examined in this study.The first is from the Ensembles-Based Predictions of Climate Change and their Impacts(ENSEMBLES)seasonal forecast project(Van Der Linden and Mitchell,2009),which was an EU-funded integrated prediction project based on five coupled atmosphere–ocean–land global models.It comprises hindcasts for the 46-year period of 1960–2005.For each year,seasonal forecasts were initialized on 1 May and run for seven months with nine members for each model.Therefore,there are 45 members for each year.

    We also use output from the Met Office Global Seasonal forecast system 5(GloSea5)(MacLachlan et al.,2015).Hindcasts from GloSea5 increase the ensemble size in our study;plus,GloSea5 exhibits good prediction skill for East Asian precipitation and the WNP subtropical high(Mac Lachlan et al.,2015;Li et al.,2016).The model used in this forecast system is the Hadley Center Global Environmental Model version 3,with a horizontal resolution of 0.83°×0.56°for the atmosphere and 0.25°for the ocean and sea-ice model.The retrospective forecasts in GloSea5 were performed for each summer from 1992 to 2011,with 24 members each year.

    The two hindcasts show similarity in the simulation of the EAP teleconnection pattern.The temporal correlation coeffi-cient for the EAP index[defined by Huang(2004)]between the ENSEMBLES(GloSea5)system and observations during 1960–2005(1992–2011)is 0.57(0.50).Therefore,we combine all the ensemble members for 1998 in these two forecast systems together to investigate the predictability,with suffi-cient ensemble members(69)and using the over lapping hind cast period(1992–2005)as climatology,and the anomalies are calculated by removing the climatology of the ensemble mean.

    3.Results

    3.1. Prediction of the EAP teleconnection pattern in 1998

    Figure 1 shows the 850-hPa horizontal wind anomalies in observations and model predictions in 1998.In observations,the wind anomalies over the WNP-EA present a clear meridional teleconnection pattern with three centers along East Asia(Fig.1a).There are two anomalous anticyclones over the Philippine Sea and Northeast Asia,and one anomalous cyclone over East Asia.The multi-model ensemble(MME)mean result,by contrast,shows horizontal wind anomalies in the midlatitude regions that are small compared with the anticyclonic anomalies over the subtropical WNP(Fig.1b).The MME mean result only predicts the anticyclonic anomalies over the subtropical WNP.The extratropical part of the EAP teleconnection pattern is not well predicted in the ensemble mean,despite the strong tropical forcing in the year of 1998.There are two possible causes of this difference:the extratropical EAP nodes could simply be unpredictable,or there could be model errors preventing its simulation in response to tropical forcing.To assess this further we examine the model integration members to determine if they can simulate the extratropical part of the EAP pattern via internal unpredictable variability in the model.

    Fig.1.850-hPa horizontal wind anomalies in the(a)observation and(b)MME mean in 1998.Composite 850-hPa horizontal wind anomalies for(c)negative integration members and(d)positive integration members in 1998(units:m s?1).The “A”and “C”represent anticyclonic and cyclonic circulation anomalies,respectively.The green box indicates the domain of the midlatitude component of the EAP teleconnection pattern(40°–50°N,90°–150°E).

    According to the distinct difference of 850-hPa horizontal wind anomalies between observations and the MME mean prediction,the zonal wind anomalies over(40°–50°N,110°–150°E)is defined as the midlatitude zonal wind index.To avoid the influence of the anticyclonic anomalies over the subtropical WNP,only the north part of cyclonic anomalies is adopted to define the index,for further investigation of the teleconnection between midlatitude zonal wind and the tropical part of the EAP pattern.A positive(negative)zonal wind index represents westerly(easterly)wind anomalies in the midlatitudes.In total,11/69(14/69)integration members have zonal wind indexes that are smaller(larger)than a standard deviation of?0.8(0.8).Figures 1c and d show the composite spatial distribution of 850-hPa horizontal wind anomalies for these negative and positive integration members.The wind anomalies for negative integration members(Fig.1c)show a tripolar pattern of anomalous centers,resembling well the observed wind anomalies(Fig.1a).It indicates that the negative index integration members can capture the EAP pattern over the WNP-EA.In contrast,the anticyclonic anomaly over the subtropical WNP in positive integration members(Fig.1d)extends northward to the midlatitudes,associated with a cyclonic anomalous center to the north of 50°N,which is opposite to that in negative index integrations and observations in the midlatitude regions.The opposite anomalous circulation patterns between negative and positive integration members therefore lead to the weak circulation anomalies in midlatitude regions for MME mean prediction(Fig.1b),suggesting that large spread exists among model integration members and that the extratropical part of the EAP pattern is reproduced but may not be predictable.

    Fig.2.Scatterplot for the anomalies of the midlatitude zonal wind index(y-axis,as shown by the green box in Fig.1)and WNPMI(x-axis)from 69 integrations in 1998.Black and grey dots represent the indexes in the MME mean and observations,respectively.Units:m s?1.

    A scatterplot of zonal wind indexes from the 69 integration members in 1998 is shown in Fig.2(y-axis).It can be seen that zonal wind indexes are quite dispersed,with about half of the indexes being negative and the other half positive.The zonal wind index in the MME mean prediction is small(0.003 m s?1),while the zonal wind index in observations is ?1.40 m s?1.The spread of the ensemble members does include the observed value.In comparison,the subtropical component of the EAP pattern in 1998,represented by the WNP monsoon index(WNPMI)following Wang and Fan(1999)[the 850-hPa zonal wind anomalies between(5°–15°N,100°–130°E)and(20°–30°N,110°–140°E)],is well predicted by the ensemble members,as shown in Fig.2(x-axis).Almost all members are negative,indicating that the models are able to simulate and predict the anomalous anticyclonic circulation over the subtropical WNP in 1998.The WNPMI is negative both in the observations and MME mean prediction,and the intensity of circulation anomalies in the MME mean prediction(?5.10 m s?1)is close to that in observations(?5.87 m s?1).This is in accordance with the high prediction skill of the anticyclonic circulation anomaly in the subtropical WNP(Kosaka et al.,2012;Li et al.,2012),which to a large extent contributes to the prediction skill of the EAP index shown previously.However,the correlation coefficient of these ensemble members between the zonal wind index and WNPMI is quite low(0.12),implying a largely independent variation of these two components of the EAP pattern in model predictions in 1998,regardless of strong tropical forcing.

    Further evidence of a lack of predictability in the midlatitude component of the EAP pattern can be found from hindcast years besides 1998.The correlation coefficient between the predicted and observed zonal wind indices is only 0.21(0.23)for all hind cast years of ENSEMBLES(GloSea5).Similarly,the interannual variance of the ensemble mean prediction in ENSEMBLES(GloSea5)is 0.01(0.03)m2s?2,which is much lower than that in observations(0.56 m2s?2for 1960–2005 and 0.43 m2s?2for 1992–2011),while in all ensemble members,concatenated after subtracting the climatology of individual models from 1992 to 2005,it is 0.42 m2s?2,which is similar to that in observation.These results confirm that little prediction skill exists in the midlatitude circulations of the EAP pattern,even though the pattern is realistically simulated by the model.However,there is also some evidence for model error in the teleconnection between the midlatitude zonal wind and the WNP subtropical high:the correlation coefficient between the zonal wind index and the WNPMI in all ensemble members from all hindcast years(1992 to 2005)is 0.07,which is lower than that in observations(0.52 for 1979–2015),but still exceeds the 95%confidence level according to the Student’s t-test because of the large sample size.This implies that while the models can reproduce an EAP pattern through internal variability,they are not able to reproduce well the tropical–mid-latitude teleconnection,and an improvement in prediction skill may be expected if a better teleconnection to the variation in midlatitude circulation associated with the EAP pattern can be reproduced.

    Similar situations exist in the five individual models of ENSEMBLES,and all models show significant inter-member variability(uncertainty of the prediction)for the midaltitude circulation related to the variations in the WNP subtropical high(Li et al.,2012,Fig.11).In addition,none of these models shows good prediction skill of the zonal wind index;correlations range between ?0.11 and 0.21.Differences in model performance might lie in the different parameterizations or residual internal variability among different models and are not discussed further in this study.

    3.2.Response of surface temperature in eastern Russia

    Consistent with the atmospheric circulation,the surface temperature anomalies also show a meridional wave-like pattern with negative anomalies along the mei-yu rainband and positive anomalies over eastern Russia and the subtropical WNP(Fig.3a).The positive surface temperature anomalies averaged over the land area of eastern Russia(50°–70°N,120°–160°E)reach 1.16°C.For the MME prediction,the anomalies are quite weak and even have the opposite sign in the midlatitude regions.The averaged temperature anomaly in eastern Russia is only ?0.33°C,suggesting a poor prediction of the observed temperature variation.

    Furthermore,the surface temperature anomalies over the midlatitude WNP-EA also demonstrate large contrast among different groups of ensemble members,as shown in Fig.3.For negative index cases(Fig.3c),the surface temperature anomalies show a relatively similar meridional wave-like pattern to observations(Fig 3a).In contrast,for positive integration members(Fig.3d),the surface temperature anomalies to the north of 30°N are opposite to those for negative integration members and observations,with negative anomalies in eastern Russia and positive anomalies along 40°N of the WNP-EA.The surface temperature anomalies around the Philippine Sea are positive for both integration groups,corresponding to a good capability of models in predicting tropical temperatures.In general,the integration members that reproduce easterly(westerly)anomalies over the midlatitude regions,tend to predict the EAP teleconnection pattern well(badly),and predict positive(negative)surface temperature anomalies in eastern Russia and negative(positive)anomalies along the mei-yu rainband.Large spread in surface temperature among the integrations is found over the midlatitude regions.

    Fig.3.As Fig.1 but for surface temperature anomalies(units:°C).The green box indicates the domain of eastern Russia(50°–70°N,120°–160°E).

    An intimate relationship between the midlatitude circulation and surface temperature is further revealed via a scatterplot of surface temperature in eastern Russia and zonal wind index among all model integrations(Fig.4a).Here,the surface temperature in eastern Russia is defined by the temperature anomalies averaged over the land area in the region(50°–70°N,120°–160°E).This temperature index and the zonal wind index exhibit a negative relationship,with a correlation coefficient of?0.54,which exceeds the 99%confidence level according to the Student’s t-test.A positive(negative)surface temperature anomaly in eastern Russia corresponds to an easterly(westerly)anomaly in the midlatitude WNP.Furthermore,the 850-hPa wind anomalies regressed onto the temperature index(Fig.4b)mainly appear over the midlatitude regions north of 30°N,with an anomalous anticyclone in eastern Russia and a relatively weaker cyclonic anomaly over the WNP-EA.The wind anomalies in the tropics are weak,suggesting that the surface temperatures in eastern Russia are roughly independent of the tropical anomalies in the model integrations.

    The relationship between the midlatitude zonal wind anomalies and surface temperature anomalies in eastern Russia not only exists among models integrations,but also in observations,as shown in Fig.5.The correlation coefficient between the temperature index and zonal wind index for observations during 1979–2015(Fig.5a)is?0.60,also exceeding the 99%confidence level according to the Student’s t-test.This is close to that in the model integrations,suggesting a realistic relationship in the model.Moreover,the 850-hPa wind anomalies related to the surface temperature in eastern Russia(Fig.5b)resemble well those for models integrations in the extratropical regions(Fig.4b).In the tropical/subtropical WNP,on the other hand,there is an anticyclonic anomaly in observations,which is absent in model integrations.This difference between the observations and integrations is consistent with the idea that the extratropical part of the EAP is relatively independent of the tropical part in model predictions at least.Given the close relationship between surface temperature in eastern Russia and midlatitude circulation,the limitation of prediction for the extratropical component of the EAP potentially leads to the poor prediction of surface temperature in eastern Russia,and the surface temperature in this region in turn may enhance the spread of midlatitude zonal winds through modulating the meridional gradient of temperatures.

    3.3.Influence on the prediction of East Asian summer rainfall

    Interannual variation of East Asian summer rainfall is significantly affected by the circulation anomalies associated with the EAP teleconnection pattern,particularly the subtropical components(Lu and Dong,2001;Zhou and Yu,2005;Yang et al.,2010;Kosaka et al.,2012;Li et al.,2012).This section further explores the contribution from midlatitude circulation anomalies described in the preceding section to the East Asian summer rainfall.

    Fig.4.(a)Scatterplot for the anomalies of temperature index(yaxis)and zonal wind index(x-axis)from 69 integrations.The temperature index is defined by surface temperature anomalies averaged over the land area in the region(50°–70°N,120°–160°E),as shown by the green box in Fig.3.The value in the top-right corner of the diagram is the correlation coefficient between them.(b)850-hPa horizontal wind anomalies regressed onto the temperature index.Shading indicates regions exceeding the 95%significance level.Units:m s?1.

    Figure 6 shows the distribution of precipitation anomalies in 1998.Corresponding to the atmospheric circulation(Fig.1),the precipitation also demonstrates a meridional wavelike pattern in observations(Fig.6a),with positive anomalies along the East Asian mei-yu rainband and negative anomalies around the South China Sea,Philippine Sea and south of eastern Russia.The negative anomalies around the South China Sea and Philippine Sea result in an intensified WNP subtropical high(Fig.1a),which would further transfer more water vapor to East Asia and induce more rainfall along the East Asian mei-yu rainband.In addition,because of excessive water vapor transported by the midlatitude easterly wind(Fig.1a),more rainfall also appears around Northeast China,which resulted in serious flooding in the Songhuajiang and Nenjiang basin in that year(Li et al.,2014b).

    Fig.5.As in Fig.4 but for the observations from 1979 to 2015.

    As the models generally predict the WNP subtropical high(Figs.1 and 2),they predict well the associated rainfall in the subtropical WNP-EA regions,for both the MME mean and the ensemble members(Figs.6b–d).However,the MME mean result produces quite weak precipitation anomalies in the midlatitude WNP-EA,including the negative anomalies around the south of eastern Russia and positive anomalies around Northeast China(Fig.6b).Furthermore,although the models generally reproduce the positive rainfall anomalies along the East Asian mei-yu rainband,the large rainfall over the upper reaches of the Yangtze River basin,Korean Peninsula and the Sea of Japan are also quite weak.The inability of the MME predictions in predicting the above precipitation anomalies connects closely to the lack of skill for the extratropical part of the EAP(Figs.6c and d).The precipitation anomalies in the negative integrations resemble well those in observations,especially in the midlatitude regions.The positive rainfall anomalies around the upper reaches of the Yangtze River basin,Korean Peninsula and the Sea of Japan are also successfully predicted in these integrations(Fig.6c).In contrast,in the positive integrations with westerly anomalies in the midlatitude regions,these positive precipitation anomalies together with the midlatitude anomalies do not ap-pear(Fig.6d),but show an opposite response to the observations and the negative integrations.

    Fig.6.As in Fig.3 but for the precipitation anomalies(units:mm d?1).

    The difference between different categories of integrations demonstrate the impact from the midlatitude circulation(Fig.7).Corresponding to an easterly(westerly)anomaly,less(more)rainfall appears around the south of eastern Russia and more(less)rainfall appears along the East Asian meiyu rainband.These intimate relationships are detected not just in model integrations from 1998,but also in all ensemble members concatenated after subtracting the climatology of individual models from all overlapping hindcast years and observations for all years from 1979 to 2015.While the precipitation anomalies in 1998 are largely modulated by the WNP subtropical high with strong tropical forcing,these significant relationships further suggest that larger differences in precipitation among integrations could still be anticipated along the East Asian mei-yu rainband,in other years with weak tropical forcing.In summary,the lack of skill in predicting the midlatitude components of the EAP teleconnection pattern suggests a considerable limitation in the seasonal prediction of East Asian summer rainfall,albeit with some potential improvement if modeled tropical teleconnections could be improved.

    4.Conclusion

    This study focuses on the variation of midlatitude circulation associated with the EAP teleconnection pattern,based on seasonal forecasts from state-of-the-art coupled forecast systems.In association with strong tropical forcing,the EAP teleconnection pattern in 1998,which is typically organized over the WNP-EA in observations,is not well predicted and instead shows quite weak anomalies in the extratropics.The predictions among different model integrations are further investigated to reveal the decoupled tropical–extratropical predictable patterns in models.

    A close relationship is detected between the variation of surface temperatures in eastern Russia and midlatitude circulation associated with the EAP pattern,not just among different model integrations,but also among all years in observations.The integrations that predict positive(negative)surface temperature anomalies in eastern Russia tend to reproduce easterly(westerly)anomalies over the midlatitude regions.Similarly,anomalous easterly(westerly)winds tend to appear over the midlatitude WNP/EA in the summer when the surface temperature is warm(cold)in eastern Russia.This coupled relationship increases the uncertainty and difficulty of the prediction of the extratropical component of the EAP pattern and the surface temperature in eastern Russia.

    Despite this,the midlatitude circulation anomalies associated with the EAP pattern do significantly modulate East Asian summer rainfall.The integrations predicted with easterly(westerly)anomalies in the midlatitude WNP-EA tend to predict more(less)rainfall along the East Asian mei-yu rainband.As a result,the lack of skill for northern parts of the EAP suggest an important limit to seasonal prediction of East Asian summer rainfall,which may be irreducible unless improved teleconnections to the tropics can be simulated in future forecast systems.

    Fig.7.Precipitation anomalies regressed onto the zonal wind index for model integrations(a)in 1998,(b)from all hindcast years(1992 to 2005)with all ensemble members concatenated after subtracting the climatology of individual models,and(c)in observations for all years from 1979 to 2015.The contour interval is 0.2 mm d?1and shading indicates regions exceeding the 95%significance level.

    Acknowledgements.This study was supported by the National Natural Science Foundation of China(Grant Nos.41320104007,41775083 and U1502233).This work and its contributors were also supported by the UK–China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.

    日日爽夜夜爽网站| 日日干狠狠操夜夜爽| 精品人妻1区二区| 咕卡用的链子| 欧美在线一区亚洲| 在线观看免费视频网站a站| 长腿黑丝高跟| 中亚洲国语对白在线视频| 淫秽高清视频在线观看| av欧美777| 欧美日韩av久久| 欧美另类亚洲清纯唯美| 欧美成人性av电影在线观看| 国产精品二区激情视频| av视频免费观看在线观看| 国产欧美日韩精品亚洲av| 亚洲成人久久性| 亚洲avbb在线观看| 超色免费av| 欧美日本中文国产一区发布| 在线观看免费视频网站a站| 在线观看66精品国产| 精品电影一区二区在线| 岛国在线观看网站| 制服人妻中文乱码| 国产精品成人在线| 99精品欧美一区二区三区四区| 欧美av亚洲av综合av国产av| 成年版毛片免费区| 成年版毛片免费区| 亚洲激情在线av| 亚洲精品一区av在线观看| 欧美日韩国产mv在线观看视频| 一进一出抽搐动态| 亚洲黑人精品在线| videosex国产| 亚洲 国产 在线| 天堂俺去俺来也www色官网| 日韩精品中文字幕看吧| 国产精品电影一区二区三区| 亚洲精品美女久久av网站| 一a级毛片在线观看| 女人被躁到高潮嗷嗷叫费观| 侵犯人妻中文字幕一二三四区| 久久久国产成人精品二区 | 亚洲精华国产精华精| 久久中文字幕一级| 真人一进一出gif抽搐免费| 国产精品久久久久久人妻精品电影| 亚洲第一av免费看| 日本黄色视频三级网站网址| 成人三级做爰电影| 国产av又大| 国产有黄有色有爽视频| 亚洲九九香蕉| 在线观看免费午夜福利视频| 国产欧美日韩一区二区精品| 嫩草影院精品99| 精品国产一区二区三区四区第35| 久久久久国产精品人妻aⅴ院| 亚洲精品av麻豆狂野| 国产激情久久老熟女| 色综合欧美亚洲国产小说| 亚洲情色 制服丝袜| 亚洲色图 男人天堂 中文字幕| 在线视频色国产色| 欧美亚洲日本最大视频资源| 欧美国产精品va在线观看不卡| 黑人欧美特级aaaaaa片| 欧美另类亚洲清纯唯美| 国内久久婷婷六月综合欲色啪| 久久精品亚洲精品国产色婷小说| 欧美激情久久久久久爽电影 | 十八禁人妻一区二区| av欧美777| 精品久久久久久,| 国产亚洲精品久久久久久毛片| 欧美精品亚洲一区二区| 丝袜在线中文字幕| 麻豆成人av在线观看| 色综合婷婷激情| 首页视频小说图片口味搜索| 69av精品久久久久久| 视频区欧美日本亚洲| 国产一区在线观看成人免费| 亚洲第一av免费看| 成在线人永久免费视频| 亚洲av成人av| 亚洲成人免费av在线播放| 亚洲av五月六月丁香网| 久久 成人 亚洲| 亚洲国产中文字幕在线视频| 精品无人区乱码1区二区| 热99re8久久精品国产| 99久久99久久久精品蜜桃| 中文字幕av电影在线播放| 中文字幕色久视频| 男人的好看免费观看在线视频 | 亚洲国产精品999在线| ponron亚洲| 日本免费一区二区三区高清不卡 | 看免费av毛片| 国产成人av教育| 中文字幕另类日韩欧美亚洲嫩草| 亚洲熟妇熟女久久| 一二三四社区在线视频社区8| 亚洲精品一二三| 精品一品国产午夜福利视频| 成人特级黄色片久久久久久久| 欧美 亚洲 国产 日韩一| 欧美大码av| 成人亚洲精品av一区二区 | a级毛片黄视频| 757午夜福利合集在线观看| 9色porny在线观看| 亚洲avbb在线观看| 夜夜夜夜夜久久久久| 国产黄色免费在线视频| 母亲3免费完整高清在线观看| 一个人免费在线观看的高清视频| 成人手机av| 成人18禁在线播放| 操美女的视频在线观看| 夜夜爽天天搞| 90打野战视频偷拍视频| 人人妻人人爽人人添夜夜欢视频| 国产高清激情床上av| 男人舔女人下体高潮全视频| 神马国产精品三级电影在线观看 | 动漫黄色视频在线观看| 亚洲久久久国产精品| 51午夜福利影视在线观看| 90打野战视频偷拍视频| 久热这里只有精品99| 国产欧美日韩一区二区三区在线| 大型黄色视频在线免费观看| 激情在线观看视频在线高清| 女性被躁到高潮视频| 国产精品99久久99久久久不卡| 在线观看免费视频网站a站| 18美女黄网站色大片免费观看| www.精华液| 色尼玛亚洲综合影院| 看免费av毛片| 怎么达到女性高潮| 中文字幕色久视频| 老司机午夜福利在线观看视频| 午夜老司机福利片| 久99久视频精品免费| √禁漫天堂资源中文www| 人人妻人人添人人爽欧美一区卜| 热re99久久国产66热| 一区在线观看完整版| 麻豆av在线久日| 一进一出好大好爽视频| 18禁观看日本| 亚洲av成人不卡在线观看播放网| 99久久久亚洲精品蜜臀av| 久久国产乱子伦精品免费另类| 在线观看一区二区三区激情| 日韩 欧美 亚洲 中文字幕| 久久久久亚洲av毛片大全| 欧美成人午夜精品| 超碰97精品在线观看| 日韩精品中文字幕看吧| 色婷婷久久久亚洲欧美| 亚洲成人免费电影在线观看| 美女大奶头视频| 啪啪无遮挡十八禁网站| 老熟妇仑乱视频hdxx| 国产精品爽爽va在线观看网站 | 美女午夜性视频免费| 国产在线观看jvid| 国产一区在线观看成人免费| 在线天堂中文资源库| 热99re8久久精品国产| 亚洲国产精品合色在线| 亚洲成人久久性| 亚洲专区中文字幕在线| 久久久久久免费高清国产稀缺| 麻豆一二三区av精品| 91在线观看av| 麻豆一二三区av精品| 中文字幕av电影在线播放| 曰老女人黄片| av中文乱码字幕在线| 香蕉丝袜av| 欧美日韩乱码在线| 90打野战视频偷拍视频| 亚洲精品国产精品久久久不卡| 成人三级黄色视频| 在线免费观看的www视频| 亚洲七黄色美女视频| 国产亚洲欧美98| 成人永久免费在线观看视频| 99国产极品粉嫩在线观看| 琪琪午夜伦伦电影理论片6080| 久9热在线精品视频| 窝窝影院91人妻| 老汉色∧v一级毛片| 国产精品国产av在线观看| 美女高潮到喷水免费观看| 露出奶头的视频| 18禁美女被吸乳视频| 精品熟女少妇八av免费久了| 真人一进一出gif抽搐免费| 久久久国产成人精品二区 | 九色亚洲精品在线播放| 日本免费一区二区三区高清不卡 | 日韩欧美国产一区二区入口| 在线观看66精品国产| 午夜两性在线视频| 成年版毛片免费区| 国产一区二区三区视频了| 又黄又爽又免费观看的视频| 12—13女人毛片做爰片一| 91av网站免费观看| 制服人妻中文乱码| 欧美+亚洲+日韩+国产| 精品国产美女av久久久久小说| 成年人免费黄色播放视频| 十八禁网站免费在线| 成年人免费黄色播放视频| 一级片免费观看大全| 大香蕉久久成人网| 电影成人av| 国产av又大| netflix在线观看网站| 男女做爰动态图高潮gif福利片 | 99国产综合亚洲精品| 麻豆av在线久日| 视频在线观看一区二区三区| www.www免费av| bbb黄色大片| 狂野欧美激情性xxxx| 人妻丰满熟妇av一区二区三区| 在线观看免费高清a一片| 超碰97精品在线观看| 国内毛片毛片毛片毛片毛片| 国产精品一区二区在线不卡| 亚洲午夜精品一区,二区,三区| 一进一出抽搐gif免费好疼 | av超薄肉色丝袜交足视频| 国产精品成人在线| 亚洲精品国产一区二区精华液| 欧洲精品卡2卡3卡4卡5卡区| 最新美女视频免费是黄的| 国产免费男女视频| 自线自在国产av| 一级片免费观看大全| 亚洲欧美一区二区三区久久| 欧美激情极品国产一区二区三区| 99riav亚洲国产免费| 精品久久久久久电影网| 欧美中文日本在线观看视频| 午夜精品在线福利| 日韩有码中文字幕| 女人精品久久久久毛片| 最新美女视频免费是黄的| 亚洲一区二区三区不卡视频| 精品电影一区二区在线| 国产精品偷伦视频观看了| 91在线观看av| 国产三级在线视频| 精品乱码久久久久久99久播| 久久久水蜜桃国产精品网| 久久精品国产亚洲av高清一级| 18禁国产床啪视频网站| 一区二区三区精品91| 国产精品一区二区在线不卡| 成人特级黄色片久久久久久久| 18禁国产床啪视频网站| 90打野战视频偷拍视频| av福利片在线| 欧美中文综合在线视频| 丝袜美足系列| 97碰自拍视频| 亚洲av美国av| 一个人观看的视频www高清免费观看 | 国产又爽黄色视频| 欧美激情极品国产一区二区三区| 99riav亚洲国产免费| 成熟少妇高潮喷水视频| 91精品国产国语对白视频| 不卡av一区二区三区| 嫩草影视91久久| 久久中文字幕一级| 欧美成人性av电影在线观看| 成年人黄色毛片网站| 国产高清videossex| 日韩免费高清中文字幕av| 免费高清视频大片| 首页视频小说图片口味搜索| 亚洲专区字幕在线| 99久久人妻综合| 亚洲第一青青草原| 国产一区二区激情短视频| 18美女黄网站色大片免费观看| 老司机午夜福利在线观看视频| 国产1区2区3区精品| 日韩精品中文字幕看吧| 国产视频一区二区在线看| 久久精品人人爽人人爽视色| av福利片在线| 欧美中文日本在线观看视频| 中文字幕精品免费在线观看视频| 欧美日韩亚洲高清精品| 日韩欧美一区二区三区在线观看| 亚洲av电影在线进入| 桃红色精品国产亚洲av| 91麻豆av在线| 91在线观看av| 99re在线观看精品视频| 精品午夜福利视频在线观看一区| 麻豆成人av在线观看| 国产一区二区三区综合在线观看| 99精品久久久久人妻精品| 正在播放国产对白刺激| 免费在线观看视频国产中文字幕亚洲| 老司机靠b影院| 亚洲国产精品sss在线观看 | 极品教师在线免费播放| 久久久久国产一级毛片高清牌| 一二三四在线观看免费中文在| 亚洲av美国av| 一区二区三区精品91| 高潮久久久久久久久久久不卡| 亚洲精品在线美女| 丰满的人妻完整版| 一级片免费观看大全| 欧洲精品卡2卡3卡4卡5卡区| 老司机亚洲免费影院| 搡老岳熟女国产| 国产av精品麻豆| 精品午夜福利视频在线观看一区| 国产人伦9x9x在线观看| 久久香蕉精品热| 日韩欧美一区二区三区在线观看| 99国产精品一区二区蜜桃av| 欧美成人免费av一区二区三区| 国产精品98久久久久久宅男小说| 国产深夜福利视频在线观看| 亚洲中文av在线| 精品久久久久久电影网| 热re99久久国产66热| 亚洲精品一区av在线观看| 欧美日韩亚洲综合一区二区三区_| 国产区一区二久久| 亚洲 欧美一区二区三区| 大型黄色视频在线免费观看| 日韩三级视频一区二区三区| 久久久久久亚洲精品国产蜜桃av| 人妻丰满熟妇av一区二区三区| 中文亚洲av片在线观看爽| 欧美日本亚洲视频在线播放| 久久久国产精品麻豆| 欧美成狂野欧美在线观看| 欧美一级毛片孕妇| 亚洲一区二区三区不卡视频| 好男人电影高清在线观看| 亚洲熟妇中文字幕五十中出 | 色播在线永久视频| 国产av在哪里看| 满18在线观看网站| 两人在一起打扑克的视频| 女人爽到高潮嗷嗷叫在线视频| 久久婷婷成人综合色麻豆| 欧美日韩亚洲综合一区二区三区_| 亚洲人成电影免费在线| 成人18禁高潮啪啪吃奶动态图| 男人舔女人的私密视频| 欧美在线一区亚洲| 亚洲精品久久午夜乱码| avwww免费| 国产av又大| 欧美激情久久久久久爽电影 | 久久婷婷成人综合色麻豆| 成人国产一区最新在线观看| 久久香蕉国产精品| 久久精品亚洲av国产电影网| 黄色a级毛片大全视频| 亚洲成人免费电影在线观看| 黄色视频不卡| 久久草成人影院| 亚洲成人免费av在线播放| 女人被狂操c到高潮| 色哟哟哟哟哟哟| av有码第一页| 97超级碰碰碰精品色视频在线观看| 免费一级毛片在线播放高清视频 | av免费在线观看网站| 另类亚洲欧美激情| 丝袜人妻中文字幕| 高潮久久久久久久久久久不卡| www.自偷自拍.com| 日本一区二区免费在线视频| 国产三级在线视频| 制服诱惑二区| 国产精品乱码一区二三区的特点 | 80岁老熟妇乱子伦牲交| 在线观看日韩欧美| 午夜日韩欧美国产| av天堂在线播放| 久久精品国产亚洲av高清一级| 女人被狂操c到高潮| 又黄又粗又硬又大视频| 日本免费一区二区三区高清不卡 | 久久精品国产清高在天天线| 欧美日韩福利视频一区二区| 日本黄色视频三级网站网址| 麻豆国产av国片精品| 国产一区二区三区视频了| 亚洲av熟女| 人人澡人人妻人| 757午夜福利合集在线观看| 国产成人精品在线电影| 一级片'在线观看视频| 悠悠久久av| 51午夜福利影视在线观看| 窝窝影院91人妻| 久久精品国产清高在天天线| 成人黄色视频免费在线看| 热re99久久国产66热| 国产xxxxx性猛交| 国产精品久久视频播放| 亚洲午夜理论影院| 国产xxxxx性猛交| av超薄肉色丝袜交足视频| 中文字幕最新亚洲高清| 99久久久亚洲精品蜜臀av| 亚洲久久久国产精品| 在线av久久热| 精品一区二区三区视频在线观看免费 | 午夜视频精品福利| 国内毛片毛片毛片毛片毛片| 黑人猛操日本美女一级片| 韩国av一区二区三区四区| 精品一品国产午夜福利视频| 99在线视频只有这里精品首页| 丰满人妻熟妇乱又伦精品不卡| 一区二区三区激情视频| 国产精品爽爽va在线观看网站 | 午夜福利一区二区在线看| 国产麻豆69| 757午夜福利合集在线观看| 亚洲片人在线观看| 国产精品成人在线| 亚洲国产欧美网| 国产亚洲精品第一综合不卡| 免费观看人在逋| 午夜成年电影在线免费观看| 欧美日韩av久久| 欧美日韩中文字幕国产精品一区二区三区 | 欧美最黄视频在线播放免费 | 国产精品香港三级国产av潘金莲| 中文字幕另类日韩欧美亚洲嫩草| 三级毛片av免费| 男女午夜视频在线观看| 多毛熟女@视频| 国产精品一区二区三区四区久久 | 五月开心婷婷网| 久久国产精品人妻蜜桃| 波多野结衣av一区二区av| 99精品久久久久人妻精品| 变态另类成人亚洲欧美熟女 | 在线天堂中文资源库| 一级片'在线观看视频| 日韩欧美国产一区二区入口| 在线观看免费日韩欧美大片| 久久香蕉精品热| 亚洲色图 男人天堂 中文字幕| 久久欧美精品欧美久久欧美| 午夜久久久在线观看| 午夜免费观看网址| 天堂影院成人在线观看| 国产又爽黄色视频| 国产单亲对白刺激| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产精品影院| а√天堂www在线а√下载| 一区二区三区国产精品乱码| 91成人精品电影| 日本vs欧美在线观看视频| 丰满饥渴人妻一区二区三| 少妇裸体淫交视频免费看高清 | 麻豆国产av国片精品| 欧美性长视频在线观看| 日韩三级视频一区二区三区| 老司机福利观看| 午夜精品国产一区二区电影| 一边摸一边抽搐一进一小说| 91在线观看av| 99在线人妻在线中文字幕| 黄色丝袜av网址大全| 国产在线观看jvid| 两人在一起打扑克的视频| 亚洲人成网站在线播放欧美日韩| 五月开心婷婷网| 国产高清videossex| 神马国产精品三级电影在线观看 | 99热国产这里只有精品6| 999精品在线视频| 国产精品偷伦视频观看了| 一边摸一边抽搐一进一出视频| 18禁国产床啪视频网站| 夜夜夜夜夜久久久久| 亚洲全国av大片| 丝袜人妻中文字幕| 亚洲一区中文字幕在线| 91成年电影在线观看| 人妻丰满熟妇av一区二区三区| 日韩欧美一区二区三区在线观看| 亚洲第一欧美日韩一区二区三区| 久久久久亚洲av毛片大全| 后天国语完整版免费观看| av天堂在线播放| 高清在线国产一区| 精品久久久久久久毛片微露脸| 又黄又粗又硬又大视频| 性色av乱码一区二区三区2| 国产亚洲精品综合一区在线观看 | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一卡2卡3卡4卡5卡精品中文| 曰老女人黄片| 18禁美女被吸乳视频| 757午夜福利合集在线观看| 91av网站免费观看| 怎么达到女性高潮| 久久精品影院6| 高潮久久久久久久久久久不卡| 国产午夜精品久久久久久| 久久影院123| 男人舔女人下体高潮全视频| 久久久国产一区二区| 日韩成人在线观看一区二区三区| 女人精品久久久久毛片| 亚洲美女黄片视频| 欧美成人免费av一区二区三区| 悠悠久久av| 亚洲人成电影免费在线| 久久精品国产综合久久久| 天堂动漫精品| 最新美女视频免费是黄的| 丰满的人妻完整版| 成人影院久久| 男女午夜视频在线观看| 桃色一区二区三区在线观看| 亚洲成人精品中文字幕电影 | 夫妻午夜视频| 两个人免费观看高清视频| 高清在线国产一区| 亚洲国产看品久久| 狂野欧美激情性xxxx| 每晚都被弄得嗷嗷叫到高潮| 久9热在线精品视频| 伦理电影免费视频| www.999成人在线观看| 国产成人免费无遮挡视频| 日本黄色日本黄色录像| 亚洲精品国产色婷婷电影| 欧美午夜高清在线| 国产精品永久免费网站| 久久亚洲精品不卡| 成人三级做爰电影| 国产主播在线观看一区二区| 久久久国产一区二区| 国产在线观看jvid| 欧美中文综合在线视频| 日韩欧美一区二区三区在线观看| 欧美日韩一级在线毛片| 国产野战对白在线观看| 中文字幕人妻熟女乱码| 黄网站色视频无遮挡免费观看| 免费在线观看日本一区| 国产三级黄色录像| 91在线观看av| 亚洲一码二码三码区别大吗| 久久国产精品影院| 欧美成狂野欧美在线观看| 天天躁夜夜躁狠狠躁躁| 两人在一起打扑克的视频| 日韩精品免费视频一区二区三区| 少妇的丰满在线观看| 久久国产精品男人的天堂亚洲| 可以免费在线观看a视频的电影网站| 欧美日韩黄片免| 制服诱惑二区| 亚洲精品在线美女| 在线观看日韩欧美| 亚洲精品在线美女| 精品熟女少妇八av免费久了| 99国产极品粉嫩在线观看| 69精品国产乱码久久久| 自线自在国产av| 夜夜夜夜夜久久久久| 国产男靠女视频免费网站| 老司机午夜十八禁免费视频| 丁香欧美五月| 黑人猛操日本美女一级片| 免费在线观看完整版高清| 日日夜夜操网爽| 香蕉丝袜av| 侵犯人妻中文字幕一二三四区| 中文字幕人妻熟女乱码| 一进一出好大好爽视频| 国产成人精品久久二区二区免费| 亚洲国产精品一区二区三区在线| 一边摸一边做爽爽视频免费| 国产精品成人在线| 亚洲专区中文字幕在线| 香蕉国产在线看| 91字幕亚洲| 在线av久久热| 80岁老熟妇乱子伦牲交| 我的亚洲天堂|