慕軍鵬 陳紅利
摘 要: 葉性狀分化在自然界中較為普遍,不同的葉性狀特征與植物對(duì)資源獲得及利用效率密切關(guān)聯(lián),反映了植物適應(yīng)特定環(huán)境所形成的生存對(duì)策。葉性狀分化的生態(tài)功能一直以來(lái)備受生態(tài)學(xué)家和進(jìn)化生物學(xué)家的廣泛關(guān)注。自然界構(gòu)樹(shù)(Broussonetia papyifera)在個(gè)體發(fā)育過(guò)程中出現(xiàn)全緣葉和裂缺葉的分化,但其生態(tài)功能尚不清楚,推測(cè)兩者的葉型分化是構(gòu)樹(shù)對(duì)蟲(chóng)害規(guī)避的結(jié)果。為了探討構(gòu)樹(shù)葉性狀分化對(duì)應(yīng)的可能生態(tài)功能,該研究采用野外監(jiān)測(cè)和室內(nèi)分析的方法,對(duì)構(gòu)樹(shù)全緣葉和裂缺葉的蟲(chóng)害發(fā)生率、葉面積、與抗蟲(chóng)有關(guān)的酚類物質(zhì)(總酚、縮合單寧、黃酮)含量進(jìn)行了比較。結(jié)果表明:(1)相對(duì)于裂缺葉,全緣葉蟲(chóng)害發(fā)生率顯著增加,全緣葉蟲(chóng)害發(fā)生率是裂缺葉的兩倍。(2)自然條件下,全緣葉葉面積顯著高于裂缺葉,增加了約44個(gè)百分點(diǎn)。(3)自然條件下,裂缺葉中總酚、縮合單寧、黃酮含量均顯著高于全緣葉,分別提高了6.0%、4.2%和16.2%。(4)除黃酮外,蟲(chóng)害處理下裂缺葉中總酚、縮合單寧含量顯著高于全緣葉,均提高了約5.0%。(5)人為移除部分葉片,裂缺葉中總酚、縮合單寧、黃酮含量均顯著高于全緣葉,分別提高8.0%、1.6%和25.4%。這說(shuō)明構(gòu)樹(shù)全緣葉和裂缺葉中酚類物質(zhì)含量對(duì)外來(lái)?yè)p傷響應(yīng)不一致,裂缺葉蟲(chóng)害發(fā)生率較全緣葉低可能由于兩種類型葉片中酚類物質(zhì)含量存在差異所引起。
關(guān)鍵詞: ???, 構(gòu)屬, 次級(jí)代謝物, 葉性狀分化, 功能生態(tài)學(xué)
中圖分類號(hào): Q948 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1000-3142(2018)08-1088-08
Abstract: Leaf trait differentiation is common in the nature. Different leaf traits have close relationship with resources access and utilization efficiency of plants, and reflect the survival strategies of plants to certain environments. Their ecological function have been focused by ecologists and evolutionists. Dozens of studies have shown that the diversity of leaf traits reflected to the differential adaptive strategy of plant. There are two types of leaf traits (entire leaf and cleft leaf) of Broussonetia papyifera. However, we are still unknown about the ecological function of these two types of leaves. We hypothesized that the entire leaf and the cleft leaf had differential function for adaptting to herbivory disturbance. We conducted to the field and laboratory experiment for examining the incidence of pest, leaf area, total phenol, condensed tannins and flavonoid contents between the entire leaves and the crack leaves. The results were as follows: (1) Incidence of pest in the entire leaves was higher than that in the crack leaves, and it was increased averagely by 100%. (2) The entire leaf area was dramatically higher than that the crack leaves under natural conditions, and it was increased averagely by 44%. (3) There were the significant differences in total phenol, condensed tannins and flavonoid contents between the entire leaves and the cleft leaves under natural conditions. On average, total phenol, condensed tannins and flavonoid contents were increased by 6.0%, 4.2% and 16.2% in the crack leaves than those in the entire leaves, respectively. (4) Similarly, total phenol and condensed tannins content were increased averagely by 5.0% in the cleft leaves than those in the entire leaves under the pest damage leaf treatments. (5) In addition, there were significant differences in total phenol, condensed tannins and flavonoids content between the entire leaves and the cleft leaves under artificial remove leaf treatments. On average, total phenol, condensed tannins and flavonoids content were increased by 8.0%, 1.6% and 25.4% in the crack leaves than those in the entire leaves, respectively. The results suggested that the phenol content of the entire leaves and the cleft leaves divergently respond to the pest damage leaf and artificial remove leaf treatment. We speculate that the variation in peat damage rate between the entire leaves and the cleft leaves may result from the divergence of the phenol contents in leaves. The result offer the case study of leaf function to respond to herbi-vory disturbance.
Key words: Moraceae, Broussonetia, secondary metabolites, leaf traits differentiation, functional ecology
葉片功能性狀是植物與其所處環(huán)境聯(lián)系的橋梁,能夠反映植物對(duì)環(huán)境適應(yīng)的功能特征(Yang et al, 2008),備受生態(tài)學(xué)家和進(jìn)化生物學(xué)家的廣泛關(guān)注。葉片功能性狀包括葉片的形態(tài)、結(jié)構(gòu)和生理等可測(cè)量的特征,在不同環(huán)境條件下表現(xiàn)出較大的可塑性,反映植物適應(yīng)環(huán)境變化所形成的生存對(duì)策(黃文娟等,2010)。例如,在不同的光照、溫度和水分條件下,葉片在形態(tài)、結(jié)構(gòu)和生理上表現(xiàn)出很大的差異(吳沿友等,2011;Peppe et al, 2011; Guo et al, 2013)。甚至同一植株在不同環(huán)境下或同一植物的不同部位, 葉性狀也會(huì)發(fā)生分化(易福華,1989)。生長(zhǎng)在沙漠地區(qū)的胡楊葉片有披針形葉和圓形葉的分化(黃文娟等,2010)。研究表明,胡楊葉性狀分化與其所處的生境水分條件密切有關(guān)(程春龍等,2008),是長(zhǎng)期適應(yīng)沙漠地區(qū)干旱生境的結(jié)果(王艷,2009)。此外,葉片功能性狀與一些生物因素密切相關(guān),如取食或者蟲(chóng)害均能引起葉片功能性狀發(fā)生變化。邵旭平等(2011)研究表明,胡楊異形葉中由于抗氧化反應(yīng)物質(zhì)含量不同對(duì)蟲(chóng)害的反應(yīng)存在差異。
植物體內(nèi)次生代謝物酚類物質(zhì)對(duì)植食動(dòng)物及有害生物具有重要的生態(tài)防御作用(Apple, 1993)。主要通過(guò)與某些特異蛋白結(jié)合(Haslam et al, 1989)改變食物適口性(Hoven, 1984)、降低食物營(yíng)養(yǎng)價(jià)值(Butler, 1989)、降低動(dòng)物對(duì)植物消化能力(Panda et al, 1983)、產(chǎn)生有毒物質(zhì)(Hoven, 1984)以及抑制動(dòng)物生長(zhǎng)發(fā)育(Barry & Forss, 1983)來(lái)減少動(dòng)物對(duì)植物器官的取食,從而保證植物能夠存活并正常繁殖。研究發(fā)現(xiàn),胡楊葉片一旦受到土壤水分匱缺和蟲(chóng)害壓力,酚類次生代謝物質(zhì)含量在葉片中顯著增加(程春龍等,2008;王艷, 2009)。但是,關(guān)于同一物種不同葉性狀之間酚類物質(zhì)變化以及可能對(duì)應(yīng)的生態(tài)功能研究目前報(bào)道相對(duì)較少(邵旭平等,2011)。
??浦参飿?gòu)樹(shù)(Broussonetia papyifera)由于經(jīng)濟(jì)價(jià)值高、適應(yīng)性廣等特點(diǎn)在我國(guó)南北方大部分地區(qū)都有分布和種植(楊小建等,2007;葉波等,2014)。自然條件下,其葉性狀分化比較明顯,有裂缺葉和全緣葉兩種類型,但對(duì)于構(gòu)樹(shù)葉性狀分化的生態(tài)功能尚不清楚。初步推測(cè),構(gòu)樹(shù)葉性狀分化主要與抗蟲(chóng)性能有關(guān)。本研究通過(guò)對(duì)構(gòu)樹(shù)全緣葉和裂缺葉蟲(chóng)害發(fā)生率、與抗蟲(chóng)有關(guān)的酚類物質(zhì)(總酚、縮合單寧、黃酮)含量進(jìn)行比較,旨在揭示構(gòu)樹(shù)葉性狀分化對(duì)應(yīng)的可能生態(tài)功能。
1 材料與方法
1.1 研究點(diǎn)概況
研究點(diǎn)設(shè)在綿陽(yáng)師范學(xué)院高新校區(qū),行政區(qū)域?qū)儆诰d陽(yáng)市高新區(qū)磨家鎮(zhèn)。研究點(diǎn)地處四川盆地西北部,涪江中上游地區(qū),103°45′E、30°42 N,海拔500 m。屬盆地亞熱帶濕潤(rùn)季風(fēng)氣候,年均溫14.9~16.8 ℃,1月為最冷月,平均氣溫為5.3 ℃,最熱月為7月,平均氣溫為25.7 ℃。年均降水量為760~1 230 mm(李再純等,1997)??紤]到人為干擾等因素對(duì)構(gòu)樹(shù)生長(zhǎng)的影響,實(shí)驗(yàn)在磨家校區(qū)隨機(jī)選取3個(gè)樣點(diǎn)進(jìn)行取樣和監(jiān)測(cè)。樣點(diǎn)1地理位置為103°35′22″ E,31°27′14″ N,海拔490 m;樣點(diǎn)2地理位置為104°35′34″ E,31°27′37″ N,海拔489 m;樣點(diǎn)3地理位置為103°35′40″ E,31°27′19″ N,海拔493 m。
1.2 物種介紹
構(gòu)樹(shù)(Broussonetia papyifera)屬于??茦?gòu)屬物種,株高為10~20 m。主要有裂缺葉和全緣葉(圖1)兩種不同的葉型,葉長(zhǎng)為6~18 cm,葉寬為5~9 cm;葉柄長(zhǎng)為2.5~8 cm不等,密被糙毛;雌雄異株;雄花序?yàn)槿彳杌ㄐ?,長(zhǎng)為3~8 cm,苞片披針形,被毛,花被4裂,裂片三角狀卵形,被毛,雄蕊4,花藥近球形,退化雌蕊??;雌花序球形頭狀,苞片棍棒狀,頂端被毛,花被管狀,頂端與花柱緊貼,子房卵圓形,柱頭線形,被毛。聚花果直徑為1.5~3 cm,成熟時(shí)橙紅色,肉質(zhì);瘦果具與等長(zhǎng)的柄,表面有小瘤?;ㄆ?—5月,果期6—7月。構(gòu)樹(shù)分布廣泛,我國(guó)南北各地均有分布,適應(yīng)性強(qiáng)(鄭漢民等,2004)。
1.3 葉片蟲(chóng)害發(fā)生率調(diào)查
分別于2014年7月和2015年7月在3個(gè)樣地隨機(jī)選取不同樹(shù)齡構(gòu)樹(shù)為研究對(duì)象。分別統(tǒng)計(jì)每棵構(gòu)樹(shù)上全緣葉和裂缺葉的數(shù)目、全緣葉和裂缺葉被蟲(chóng)子取食葉片的數(shù)目。每個(gè)樣地隨機(jī)取樣15株構(gòu)樹(shù),試驗(yàn)總共統(tǒng)計(jì)了90棵構(gòu)樹(shù)。蟲(chóng)害發(fā)生率統(tǒng)計(jì)以每棵樹(shù)上的葉片數(shù)為單位,即每棵構(gòu)樹(shù)上全緣葉或者裂缺葉有多少未被取食的葉子和已被取食的葉子。
葉片蟲(chóng)害發(fā)生率計(jì)算公式:葉片蟲(chóng)害發(fā)生率=(被取食葉片數(shù)量/總?cè)~片數(shù)量)×100%。
1.4 葉面積測(cè)定
于2015年7月在樣地1中隨機(jī)選取25株構(gòu)樹(shù),每株構(gòu)樹(shù)隨機(jī)選取沒(méi)有發(fā)生蟲(chóng)害和機(jī)械損傷的全緣葉和裂缺葉各4片,共計(jì)200個(gè)葉片。采用掃描儀掃描葉面積,用Maplnfo 軟件處理圖片,獲取葉片面積。詳見(jiàn)Yang et al(2008)。
1.5 酚類物質(zhì)測(cè)定
于2014年8月在樣地1中隨機(jī)選取6棵成年構(gòu)樹(shù),分別在每棵樹(shù)上東、南、西、北4個(gè)方位隨機(jī)選擇1個(gè)一年生枝條,每個(gè)枝條上選取1個(gè)葉片作為供試對(duì)象。同時(shí),在選取的枝條上,對(duì)全緣葉和裂缺葉人工去除部分葉片,移除面積約占總?cè)~面積的20%。每個(gè)枝條上分別選擇3個(gè)全緣葉和裂缺葉,移除部分葉片48 h后采集。以上樣品立即帶回實(shí)驗(yàn)室,放置在65 ℃烘箱中持續(xù)烘干48 h至恒重,樣品放入真空干燥器中進(jìn)行冷卻。然后以每個(gè)葉片為單位在粉碎機(jī)上粉碎,過(guò)40目篩,裝入自封袋中,并置于5 ℃冰箱中保存。
本研究共設(shè)置3個(gè)處理,即自然條件下全緣葉和裂缺葉酚類物質(zhì)含量比較、發(fā)生蟲(chóng)害后全緣葉和裂缺葉酚類物質(zhì)含量比較、人為剔除部分葉片的全緣葉和裂缺葉酚類物質(zhì)含量比較。以植株為單位,將每個(gè)處理中4個(gè)枝條上的全緣葉或者裂缺葉的葉片合并為1個(gè)樣品,用來(lái)測(cè)定酚類物質(zhì)含量變化。每個(gè)處理在個(gè)體水平上重復(fù)6次。
總酚測(cè)定采用福林酚試劑法(F-C法)、縮合單寧含量采用香草醛鹽酸法、黃酮采用硝酸鋁-亞硝酸鈉-氫氧化鈉絡(luò)合法測(cè)定。具體測(cè)定方法見(jiàn)王艷(2009)、程春龍等(2008)和Covelo & Gallardo(2001)。
1.6 數(shù)據(jù)分析
采用Shapiro-Wilk檢驗(yàn)對(duì)蟲(chóng)害發(fā)生率、葉片面積、酚類物質(zhì)含量等數(shù)據(jù)進(jìn)行正態(tài)檢驗(yàn),對(duì)不符合正態(tài)分布的數(shù)據(jù)進(jìn)行了數(shù)據(jù)轉(zhuǎn)換。用Levenes 法檢驗(yàn)方差齊性。用單因素方差分析檢驗(yàn)裂缺葉和全緣葉葉面積是否存在差異顯著性。用線性混合模型分析葉型和測(cè)定年份對(duì)蟲(chóng)害發(fā)生率、處理和取樣個(gè)體對(duì)總酚、縮合單寧和黃酮含量的影響。構(gòu)建4個(gè)模型,其中模型1(Fixed=incidence of pest- leaf traits+year, random=-1|site)葉性狀和取樣年份對(duì)蟲(chóng)害發(fā)生率的影響;模型2(Fixed = total phenol-treatment+individual, random=-1|site)不同處理和取樣個(gè)體對(duì)總酚含量的影響;模型3(Fixed=condensed tannins-treatment+individual, random=-1|site)不同處理和取樣個(gè)體對(duì)縮合單寧含量的影響;模型4(Fixed=flavonoids-treatment+individual, random=-1|site)不同處理和取樣個(gè)體對(duì)黃酮含量的影響。用R分析軟件nlme程序包中的lme進(jìn)行分析。具體分析步驟參見(jiàn)Mu et al(2017)。以上均在R Core Team(2015)中進(jìn)行(URL http://www.R-project.org/)。
2 結(jié)果與分析
2.1 裂缺葉、全緣葉蟲(chóng)害發(fā)生率比較
由表1和圖2可知,葉型顯著影響蟲(chóng)害發(fā)生率,但年際間變化不顯著。全緣葉蟲(chóng)害發(fā)生率顯著高于裂缺葉。自然條件下,全緣葉蟲(chóng)害發(fā)生率約為20%,裂缺葉中蟲(chóng)害發(fā)生率約為10%。
2.2 裂缺葉、全緣葉葉面積比較
由圖3可知,不同葉型間葉面積存在顯著差異(F=5.83,P<0.05)。自然條件下,全緣葉葉面積顯著高于裂缺葉。
2.3 總酚含量比較
處理間總酚含量存在顯著差異(表2)。在自然條件下,裂缺葉總酚含量顯著高于全緣葉(圖4:A),增加了約6.0%。發(fā)生蟲(chóng)害后,無(wú)論全緣葉還是裂缺葉,總酚含量顯著增加,全緣葉和裂缺葉分別增加了7.0%和6.8%,并且裂缺葉中總酚含量顯著高于全緣葉 (圖4:A),增加了5.3%。人為移除部分葉片,無(wú)論全緣葉還是裂缺葉,總酚含量均顯著增加,全緣葉和裂缺葉分別增加了8.3%和10.9%,并且裂缺葉中總酚含量顯著高于全緣葉 (圖4:A),增加了8.0%。這說(shuō)明無(wú)論在自然條件、蟲(chóng)害誘導(dǎo)還是人為移除部分葉片處理,裂缺葉中總酚含量均顯著高于全緣葉。同時(shí),取樣個(gè)體間總酚含量達(dá)到了差異顯著性(表2)。
2.4 縮合單寧含量比較
處理間縮合單寧含量存在顯著差異(表2)。在自然條件下,裂缺葉縮合單寧含量顯著高于全緣葉(圖4:B),增加了約4.2%。發(fā)生蟲(chóng)害后,無(wú)論全緣葉還是裂缺葉,縮合單寧含量顯著增加,全緣葉和裂缺葉分別增加了11.5%和12.6%,并且裂缺葉中縮合單寧含量顯著高于全緣葉 (圖4:B),增加了5.2%。人為移除部分葉片,無(wú)論全緣葉還是裂缺葉,縮合單寧含量均顯著增加,全緣葉和裂缺葉分別增加了15.3% 和12.4%,并且裂缺葉中縮合單寧含量顯著高于全緣葉 (圖4:B),增加了1.6%。這說(shuō)明無(wú)論在自然條件、蟲(chóng)害誘導(dǎo)還是人為移除部分葉片處理,裂缺葉中縮合單寧含量均顯著高于全緣葉。
2.5 黃酮含量比較
除蟲(chóng)害誘導(dǎo)外,處理間黃酮含量存在顯著差異(表2)。在自然條件下,裂缺葉黃酮含量顯著高于全緣葉(圖4:C),增加了約16.2%。發(fā)生蟲(chóng)害后,無(wú)論全緣葉還是裂缺葉,黃酮含量均顯著增加,全緣葉和裂缺葉分別增加了28.2%和14.9%,但是全緣葉和裂缺葉之間差異不顯著 (圖4:C)。人為移除部分葉片,無(wú)論全緣葉還是裂缺葉,黃酮含量均顯著增加,全緣葉和裂缺葉分別增加了22.6%和32.4%, 并且裂缺葉中黃酮含量顯著高于全緣葉 (圖4:C),增加了25.4%。這說(shuō)明無(wú)論在自然條件還是人為移除部分葉片處理,裂缺葉中黃酮含量均顯著高于全緣葉。同時(shí),取樣個(gè)體間黃酮含量達(dá)到了差異顯著性(表2)。
3 討論與結(jié)論
在長(zhǎng)期的自然選擇過(guò)程中,葉片進(jìn)化出了與其功能相適應(yīng)的結(jié)構(gòu)特征及其相應(yīng)的性狀分化(Wright et al, 2004),反映植物適應(yīng)環(huán)境變化所形成的生存對(duì)策(Yang et al, 2008)。本研究結(jié)果表明,植物葉片功能性狀與生長(zhǎng)發(fā)育過(guò)程中經(jīng)歷的光照、溫度和水分狀況密切關(guān)聯(lián)(Peppe et al, 2011; Guo et al, 2013)。但也有研究表明,一些生物因素也影響葉片功能性狀。胡楊異形葉中由于抗氧化反應(yīng)物質(zhì)含量不同對(duì)蟲(chóng)害的反應(yīng)存在差異(邵旭平等,2011)。本研究結(jié)果表明,構(gòu)樹(shù)全緣葉和裂缺葉間蟲(chóng)害發(fā)生率存在顯著差異,并且這種差異與構(gòu)樹(shù)胸徑大小無(wú)直接關(guān)聯(lián),說(shuō)明構(gòu)樹(shù)的葉性狀分化是長(zhǎng)期適應(yīng)蟲(chóng)害脅迫的結(jié)果。
植物葉片在環(huán)境脅迫或者其他生物因素干擾下(例如受土壤水分脅迫和蟲(chóng)害壓力),酚類等次生代謝物含量顯著增加(王艷,2009),例如剪葉損傷和蟲(chóng)害均能誘導(dǎo)興安落葉松次級(jí)代謝物含量變化(袁紅娥等,2009)。本研究結(jié)果表明,裂缺葉中酚類物質(zhì)含量顯著高于全緣葉,并且在蟲(chóng)害或者人為引起葉片損傷處理下,無(wú)論全緣葉和裂缺葉酚類物質(zhì)含量均顯著增加,尤其是黃酮和縮合單寧含量增加幅度極為顯著。葉片中酚類物質(zhì)含量的高低常常與其抗蟲(chóng)性能密切相關(guān)(袁紅娥等,2009)。構(gòu)樹(shù)裂缺葉蟲(chóng)害發(fā)生率顯著低于全緣葉可能與其含有較高的酚類物質(zhì)有關(guān),并且發(fā)現(xiàn)一旦受到蟲(chóng)害脅迫或者人為引起葉片損傷,均可導(dǎo)致構(gòu)樹(shù)裂缺葉和全緣葉葉片中酚類物質(zhì)含量的顯著增加,同時(shí)裂缺葉中酚類物質(zhì)含量顯著高于全緣葉。類似的研究報(bào)道發(fā)現(xiàn)蟲(chóng)害可以誘導(dǎo)植物產(chǎn)生一些抵御害蟲(chóng)的化學(xué)物質(zhì)(穆丹等,2010)。
植物一生中可利用資源總量是有限的,投入到某一功能性狀上的資源增加,勢(shì)必導(dǎo)致在其他性狀上資源投入總量下降,植物在不同生活史性狀之間存在著一個(gè)“此消彼長(zhǎng)”的權(quán)衡關(guān)系(Zhang & Jiang,2000)。例如植物一旦投資在花報(bào)酬上的資源增加,投入到胚株生產(chǎn)上資源的相應(yīng)減少(Mu et al, 2014)。相對(duì)于全緣葉,裂缺葉葉面積顯著減少,構(gòu)樹(shù)通過(guò)降低投入到葉片面積上的資源用于酚類物質(zhì)生產(chǎn),從而使得裂缺葉抗蟲(chóng)性能明顯高于全緣葉。
水分脅迫對(duì)植物葉片性狀分化和結(jié)構(gòu)特征均產(chǎn)生影響,例如干旱生境中植物葉片面積下降、厚度增加、葉脈密度減少,氣孔密度下降等(Guo et al, 2013)。在自然條件下,構(gòu)樹(shù)在濕潤(rùn)和干旱的生境均有分布(鄭漢民等,2004),暗示構(gòu)樹(shù)葉性狀分化可能與適應(yīng)不同水分生境有關(guān)。但是,本研究并未涉及土壤水分對(duì)全緣葉和裂缺葉分布格局及其與干旱有關(guān)的物質(zhì)含量(脯氨酸含量等)變化的比較。
本研究結(jié)果表明,構(gòu)樹(shù)葉型分化與抵御蟲(chóng)害有關(guān),但裂缺葉和全緣葉分化是否與其分布的生境條件存在一定的關(guān)聯(lián)(例如土壤水分含量等),需要進(jìn)一步驗(yàn)證。本研究結(jié)果對(duì)于理解構(gòu)樹(shù)葉性狀分化的生態(tài)功能提供案例和數(shù)據(jù)支撐。
參考文獻(xiàn):
APPLE HM, 1993. Phenolics in ecological interaction: The importance of oxidation [J]. J Chem Ecol, 19(7): 1521-1551.
BARRY TN, FORSS DA, 1983. The condensed tannin content of vegetative Lotus pedunculatus, its regulation by fertiliser application, and effect upon protein solubility [J]. J Sci Food Agric, 34(10): 1047-1056.
BUTLER LG, 1989. Effects of condensed tannins on animal nutrition [M] // HEMINGWAY RW, KARCHESY JJ. Che-mistry and significance of condense tannins. New York: Plenum Press: 391-402.
CHENG CL, LIU S, LIAO RS, et al, 2008. Concentration and distribution of phenolic compounds in Populus euphratica in Ejina oasis and their correlation with soil water contents [J]. Acta Ecol Sin, 28(1): 69 -74. [程春龍, 劉松, 廖容蘇, 等, 2008. 額濟(jì)納綠洲胡楊(Populus euphratica) 酚類物質(zhì)含量和分布及其與土壤水分的關(guān)系 [J]. 生態(tài)學(xué)報(bào), 28(1): 69 -74.]
COVELO F, GALLARDO A, 2001. Temporal variation in total leaf phenolics concentration of Quercus robur in forested and harvested stands in northwestern Spain [J]. Can J Bot, 79(11): 1262-1269.
GUO X, GUO W, LUO Y, et al, 2013. Morphological and biomass characteristic acclimation of trident maple(Acer buergerianum Miq.) in response to light and water stress [J]. Acta Physiol Plant, 35(4): 1149-1159.
HASLAM E, LILLEY E, CAI Y, et al, 1989. Traditional herbal medicines-the role of polyphenols [J]. Plant Med, 55(1): 1-3.
HOVEN WV, 1984. Tannins and digestibility in Greater Kudu [J]. Can JAnim Sci, 64(5): 177-198.
HUANG WJ, LI ZJ, YANG ZP, et al, 2010. The structural traits of populus euphratica heteromorphic leaves and their correlations [J]. Acta Ecol Sin, 30(17): 4636-4642. [黃文娟, 李志軍, 楊趙平, 等, 2010. 胡楊異形葉結(jié)構(gòu)型性狀及其相互關(guān)系 [J]. 生態(tài)學(xué)報(bào), 30(17): 4636-4642.]
LI ZC, WANG WH, JIAN RJ, et al, 1997. Natural geography of Mianyang City [M]. Chengdu: Sichuan Lexicographical Press: 1-8. [李再純, 王文鵠, 江瑞炯, 等, 1997. 綿陽(yáng)市自然地理志 [M]. 成都: 四川辭書(shū)出版社: 1-8.]
MU D, FU JY, LIU SA, et al, 2010. Advances in metabolic regulation mechanism of herbivore-induced plant volatiles [J]. Acta Ecol Sin, 30(15): 4221-4233. [穆丹, 付建玉, 劉守安, 等, 2010. 蟲(chóng)害誘導(dǎo)的植物揮發(fā)物代謝調(diào)控機(jī)制研究進(jìn)展 [J]. 生態(tài)學(xué)報(bào), 30(15): 4221-4233.]
MU JP, PENG YH, SUN SC, et al, 2014. Domesticated honeybees evolutionarily reduce flower nectar volume in a Tibetan Asteraceae [J]. Ecology, 95(11): 3161-3172.
MU JP, YANG YL, LUO YL, et al, 2017. Pollinator preference and pollen viability mediated by flower color synergistically determine seed set in an alpine annual herb [J]. Ecol Evol, 7: 2947-2955.
PANDA SK, PANDA NC, SAHUE BK, 1983. Effect of tree leaf tannin on dry matter intake by goats [J]. Ind Vet J, 60(8): 660- 664.
PEPPE DJ, ROYER DL, CARIGLINO B, et al, 2011. Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications [J]. New Phytol, 190(3): 724-739.
SHAO XP, WAN JH, WAN DS, 2011. The anti-xidation responses of two ecotype leaves of diversifolious popular(Populus euphratica) to pest [J]. Acta Pratac Sin, 28(7): 1396-1399. [邵旭平, 萬(wàn)建宏, 萬(wàn)東石, 2011. 不同生態(tài)型胡楊異形葉對(duì)蟲(chóng)害的抗氧化反應(yīng) [J]. 草業(yè)學(xué)報(bào), 28(7): 1396-1399.]
WANG Y, 2009. Variation of foliar phenolic compounds in Populus Euphratica with environmental damage in Ejina Oasis [D]. Beijing: Beijing Forestry University: 32-39. [王艷, 2009. 額濟(jì)納綠洲胡楊葉片酚類物質(zhì)含量變化對(duì)外來(lái)?yè)p傷的響應(yīng)研究 [D]. 北京: 北京林業(yè)大學(xué): 32-39.]
WRIGHT IJ, REICH PB, WESTOBY M, et al, 2004. The worldwide leaf economics spectrum [J]. Nature, 428: 821-827.
WU YY, LINAG Z, XING DK, 2011. Comparison of the physiological characteristics of paper mulberry(Broussonetia papyifera) and mulberry(Morus alba) under simulated drought stress [J]. Guihaia, 31(1): 92-96. [吳沿友, 梁錚, 邢德科, 2011. 模擬干旱脅迫下構(gòu)樹(shù)和桑樹(shù)的生理特征比較 [J]. 廣西植物, 31(1): 92-96.]
YANG DM, LI GY, SUN SC, 2008. The generality of leaf size versus number trade-off in temperate woody species [J]. Ann Bot-London, 102(4): 623-629.
YANG XJ, WANG XJ, HU TX, 2007. Comprehensive utilization of Chinese Broussonetia papyifera [J]. J Sichuan For Sci Technol, 28(1): 39-42. [楊小建, 王金錫, 胡庭興, 2007. 中國(guó)構(gòu)樹(shù)資源的綜合利用 [J]. 四川林業(yè)科技, 28(1): 39-42.]
YE B, WU YB, SHAO W, et al, 2014. Effects of combined stress of elevated temperature and drought and of re-watering on the photosynthetic characteristics and chlorophyll fluorescence parameters of Broussonetia papyrifera seedlings [J]. Chin J Ecol, 33(9): 2343-2349. [葉波, 吳永波, 邵緯, 等, 2014. 高溫干旱脅迫及復(fù)水對(duì)構(gòu)樹(shù)幼苗光合特性和葉綠素?zé)晒鈪?shù)的影響 [J]. 生態(tài)學(xué)雜志, 33(9): 2343-2349. ]
YI FH, 1989. The mystery and utilization of heterophylly [J]. J Bot, (2): 32-33. [易福華, 1989. 異形葉性的秘密及其利用 [J]. 植物雜志, (2): 32-33.]
YUAN HE,YAN SC, TONG LL, et al, 2009. Content differences of condensed tannin in needles of Larix gmelinii by cutting needles and insect feeding [J]. Chin J Ecol, 29(3): 1415-1420. [袁紅娥,嚴(yán)善春,佟麗麗,等, 2009. 剪葉損傷與昆蟲(chóng)取食對(duì)興安落葉松針葉中縮合單寧誘導(dǎo)作用的差異 [J]. 生態(tài)學(xué)報(bào), 29(3):1415-1420.]
ZHANG DY, JIANG XH, 2000. Costly solicitation, timing of offspring conflict, and resource allocation in plants [J]. Ann Bot-London, 86(1): 123-131.
ZHENG HM, HUANG BK, QIN LB, et al, 2004. Biological character and resources distribution of Broussonetia [J]. Chin Wild Plant Res, 21(6): 11-13. [鄭漢民, 黃寶康, 秦路平, 等, 2004. 構(gòu)樹(shù)屬植物的分布及其生物學(xué)特性 [J]. 中國(guó)野生植物源, 21(6):11-13.]