• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A CORRECTOR-PREDICTOR ARC SEARCH INTERIOR-POINT ALGORITHM FOR SYMMETRIC OPTIMIZATION?

    2018-09-08 07:50:10PIRHAJIMZANGIABADIHMANSOURI

    M.PIRHAJIM.ZANGIABADIH.MANSOURI

    Department of Applied Mathematics,Faculty of Mathematical Sciences,Shahrekord University,Shahrekord,Iran

    E-mail:mojtabapirhaji@yahoo.com;Zangiabadi-m@sci.sku.ac.ir;mansouri@sci.sku.ac.ir

    Abstract In this paper,a corrector-predictor interior-point algorithm is proposed for symmetric optimization.The algorithm approximates the central path by an ellipse,follows the ellipsoidal approximation of the central-path step by step and generates a sequence of iterates in a wide neighborhood of the central-path.Using the machinery of Euclidean Jordan algebra and the commutative class of search directions,the convergence analysis of the algorithm is shown and it is proved that the algorithm has the complexity bound O(√rL)for the well-known Nesterov-Todd search direction and O(rL)for the xs and sx search directions.

    Key words symmetric optimization;ellipsoidal approximation;wide neighborhood;interiorpoint methods;polynomial complexity

    1 Introduction

    Symmetric optimization(SO)problem is a special class of convex optimization problems in which a linear function is minimized over the intersection of an affine subspace and a closed convex cone.The SO problem includes the well-known and well-studied optimization problems such as linear optimization(LO)problems,semidefinite optimization(SDO)problems and second order cone optimization(SOCO)problems.Thus,the considerable attention has been devoted by the researchers to solve this class of mathematical programming.

    The first attempts for solving SO problems,using interior-point methods(IPMs),was laid by Nesterov and Nemirovskii[1].Using the Euclidean Jordan algebras(EJAs),Faybusovich[2]generalized IPMs for SDO problems to SO problems.Monteiro and Zhang[3],based on the so-called Nesterov-Todd(NT),XS and SX search directions,designed the primal-dual IPMs for SDO problems.After that,Schmieta and Alizadeh[4]proved the convergence analysis and the polynomial complexity bound of short-,semi-long-and long-step IPMs for SO problems using the NT,xs and sx search directions.

    Among various types of primal-dual IPMs,predictor-corrector interior-point algorithms are the most applicable and efficient methods theoretically and computationally.The first predictorcorrector interior-point algorithm was proposed by Mehrotra[5].Salahi and Mahdavi-Amiri[6]proposed a new variant of Mehrotra-type algorithm for LO and proved that their algorithm will terminate after at most O?nlogε?1?iterations using a strictly feasible starting point.Liu et al.[7]generalized the proposed algorithm by Salahi and Mahdavi-Amiri[6]for LO to SO problems and proved,using the NT-search direction,the complexity bound O?rlogε?1?for their algorithm,where r is the rank of the associated EJA.

    The Mizuno-Todd-Ye(MTY)predictor-corrector interior-point algorithm[8]has done well in both theoretical and computational aspects.Ye et al.[9]proved the superlinear convergence of MTY algorithm.A wide-neighborhood MTY-type predictor-corrector interior-point algorithm suggested by Yang et al.[10]for SO problems.They proved the convergence analysis of their algorithm and obtained the complexity boundsand for the so-called NT and xs and sx search directions.

    The most of above mentioned interior-point algorithms follow the central path to reach an ε-optimal solution of the underlying problems in a sufficiently small neighborhood of the central-path.However,following the central path is the main difficulty of IPMs.Therefore,it is worth to investigate the analysis of some interior-point algorithms that approximate the central-path by some arcs.The idea of approximating the central-path by an ellipse was first introduced by Yang[11,12]for convex quadratic optimization(CQO)and LO problems.

    Searching along the ellipse is more efficient than searching along any straight line due to generating a larger step size.Indeed,Yang[11]showed that the arc-search algorithm has the best polynomial bound and it may be very efficient in practical computation.Moreover,this result was extended to prove a similar result for CQO problems and the numerical test result was very promising[12].

    Yang[13]proposed an arc search infeasible interior-point algorithm for LO and established that under some conditions the computational performance of his algorithm is more efficient than the well-known Mehrotra predictor-corrector(MPC)interior-point algorithm[5].Yang et al.[14,15]proposed two arc search infeasible interior-point algorithms for LO and SO problems,established their convergence analysis and proved that these algorithms respectively will terminate after at mostiterations anditerations using the NT-search direction.

    An O(nL)-predictor-corrector arc search interior point algorithm has been proposed by Yang and Yamashita[16]for LO.Using an ?2-neighborhood and the arc search strategy,Pirhaji et al.[17]suggested an infeasible interior-point algorithm for linear complementarity problems.

    In this paper,motivated by these works,we propose a corrector-predictorarc-searchinteriorpoint algorithm for SO problems.The algorithm uses a wide neighborhood of the central path and involves two kind of steps:a corrector step and a predictor step.In the corrector step,using the corrector directions,the algorithm follows the ellipsoidal approximation of the central path for moving to a smaller neighborhood of the central path and improving the centrality and optimality.Then,in order to further improvement of optimality,the algorithm takes a predictor step by using the affine search directions and moves back toward the slightly larger neighborhood of the central path from the corrector point.

    We prove the convergence analysis of the algorithm and show that the proposed algorithm will terminate after at mostiterations using the NT search direction while it needs to perform at most O(rL)iterations by the xs and sx search directions.These iteration bounds match the currently best-known ones for solving SO problems.

    The paper is organized as follows.In Section 2,we provide some basic concepts on Euclidean Jordan algebras which are required in our analysis.Section 3 provides some preliminaries on SO problems,the central path and its ellipsoidal approximation.An algorithmic framework of arc search corrector-predictor interior-point algorithm is presented in Section 4.Some technical lemmas which play an important role in proof of convergence analysis of the algorithm will be presented in Section 5.The convergence analysis and the polynomial complexity of the proposed algorithm will be investigated in Section 6.Finally,the paper ends with some concluding remarks in Section 7.

    2 Euclidean Jordan Algebras

    In this section,we briefly review the necessary background of EJAs and symmetric cones.The background material and the notations in this section are taken from Faraut and Koranyi[18].A Jordan algebra J is a finite dimensional vector space over the field of real or complex numbers endowed with a bilinear map?:J×J→J satisfying the following properties for all x,y∈J:

    (i)x?y=y?x,

    (ii)x?(x2?y)=x2?(x?y),

    where x2:=x? x.Moreover,(J,?)is called a Euclidean Jordan algebra(EJA)if there exists an inner product denoted by h·,·i such that hx ? y,zi=hx,y ? zi for all x,y,z ∈ J.

    A Jordan algebra has an identity element,if there exists a unique element e∈J such that x?e=e?x=x for all x∈J.The set K:=K(J)={x2:x∈J}is called the cone of squares of EJA(J,?,h·,·i)and int(K)denotes the interior of K.A cone is symmetric if and only if it is the cone of squares of a EJA.

    An element c∈J is said to be idempotent if c2=c.An idempotent c is primitive if it is nonzero and can not be expressed by sum of two other nonzero idempotents.A set of idempotents{c1,c2,···,ck}is called a Jordan frame if ci?cj=0 for any i 6=j,and

    For any x ∈ J,let l be the smallest positive integer such that{e,x,x2,···,xl}is linearly dependent,l is called the degree of x and is denoted by deg(x).The rank of J,denoted by rank(J),is defined as the maximum of deg(x)over all x∈J.

    Due to Theorem III.1.2 in[18],for any x∈J there exist the unique and distinct real numbers λ1(x),λ2(x),···,λn(x)and Jordan frame{c1,c2,···,cn}such thatEvery λi(x)is called an eigenvalue of x.We denote λmin(x)(λmax(x))as the minimal(maximal)eigenvalue of x.For any x∈J,we define the merit projectionwherefor i=1,2,···,k.

    Since“?”is a bilinear map,for every x ∈ J,a linear operator L(x)can be defined such that L(x)y=x?y for all y∈J.In particular,L(x)e=x and L(x)x=x2.For each x∈J,we define

    where L(x)2:=L(x)L(x).The map Qxis called the quadratic representation of x.The quadratic representation is an essential concept in theory of Jordan algebras and plays an important role in convergence analysis of IPMs in SO.

    For any x,y∈J,x and y are said to be operator commute if L(x)and L(y)commute,i.e.,L(x)L(y)=L(y)L(x).We define the inner product of x,y∈J as hx,yi=tr(x?y).The norm induced by this inner product is named as the Frobenius norm,which is given by

    3 Preliminaries

    Let J be an EJA of dimension n and rank r,and K be its associated cone of squares.Let the standard primal-dual pair of SO problems

    and

    where c∈J,b∈Rm,A is a linear operator that maps J into Rmand A?is its adjoint operator such that hx,A?yi=hAx,yi for all x∈ J.

    Throughout this paper,we assume rank(A)=m and the SO problem satisfies the interiorpoint condition(IPC).That is,F06=?,where

    Under the IPC, finding an optimal solution of(3.1)and(3.2)is equivalent to solving the following system:

    where the third equation is called the complementarity condition.Replacing x?s=0 by the perturbed complementarity condition x?s=μe withusing Lemma 28 in[4]for a scaling point p∈C(x,s),where

    and defining

    system(3.3)can be rewritten as follows:

    This system,for eachμ>0,has the unique solutionThe set of these solutions constructs a parameterized curve in R2n+m,namely,the feasible central path.It is well-known ifμ → 0,then the limit of the central path exists and yields an ε-optimal solution of SO(see Faybusovich[2]).

    Different choices of the scaling point p led to the different search directions.For instance,the choices p:=and p:=,respectively led to the well-known xs and sx search directions while for the choice of

    we get the NT search direction.

    An important ingredient of this paper is to use the following neighborhood of the central path:

    Although,the most of IPMs follow the central path approximately to get close enough to an ε-optimal solution of the problem but following the central path is the main difficulty of interior-point algorithms in practical applications.To this end,motivated by Yang[11,12],we estimate the central path of the SO problem by the ellipse ξ(θ) ∈ R2n+mdefined by Carmo[19]:

    Mathematically,an ellipse can be determined by a point on the ellipse and the first and second derivatives at that point.On the other hand,the main idea of arc search IPMs is to estimate the central path of the underling problem by an ellipse.Therefore,to estimate the central path of SO problem by the ellipse ξ(θ),assumingwe proceed to determine the vectorsthe anglesuch that the first and second derivativesofhavethe form as if they wereon the central path.

    However,usingthe approach of Yang[11,12],we defineas the first and second derivatives of(x,y,s)to satisfy

    Lemma 3.1(Lemma 3.1 in[11]) Let ξ(θ)be the defined ellipse in(3.7)which passes a pointMoreover,assume that the first and second derivativessatisfy(3.8)and(3.9).Then,after searching along the ellipse ξ(θ),the new generated pointis given by

    Due to the above lemma,the ellipsoidal approximation of the central path is defined as follows

    4 Arc Search Corrector-Predictor Algorithm

    In this section,we explain our algorithm for SO.Let the initial starting pointwith the duality gapis available.The algorithm first performs a corrector step to obtain a new iterate that improves both optimality and centrality.

    Motivating by[15,22],we modify system(3.8)and define the first and second derivatives at(x,y,s)in the corrector step to satisfy

    Now,in order to further improvement of the optimality,starting from the corrector pointchoosing the scaling point p related to( x, y, s)and defining

    the algorithm computes the predictor directions

    Finally,the algorithm calculates the maximum step size sin()and obtains the predictor point∈NF(τ,β)withThis procedure will be repeated until an ε-optimal solution of the problem is found.

    The generic framework of our algorithm is presented bellow.

    Algorithm 1(Corrector-predictor arc search interior-point algorithm for SO)

    ? Input parameters An accuracy parameter ε>0,a neighborhood parameter β ∈ (0,],a centering parameter τ∈(0,],an initial point(x0,y0,s0)∈NF(τ,β)withμ0=tr??s0?.

    ? Step 0 Set k=0,1,2,···.

    ?Step 1Ifμk≤εμ0,stop.Otherwise go to the next step.

    ?Step 2(Corrector-step)Compute the corrector directionsrespectively by systems(4.1)and(4.2)and obtain the largest step size sin(?θk)such that

    for any step size sin(φ)∈[0,sin(k)].?Step 5Computeand go to Step 1.

    5 Technical Lemmas

    In this section,some required technical lemmas in order to demonstrate the convergence analysis of Algorithm 1 are presented.

    Lemma 5.1(Lemma 6.1 in[20])Letthen

    Lemma 5.2(Lemma 33 in[4]) Let u,v∈J and G be a positive definite matrix which is symmetric with respect to the scalar product.Then

    Lemma 5.3(Lemma 2.15 in[21]) If x?s∈intK,then det(x)6=0.

    Lemma 5.4(Lemma 5.7 in[22])Let x,s∈J.Then

    Lemma 5.5(Lemma 30 in[4])Let x,s∈intK,and w:=s.Then

    where τ∈ (0,1)and μ >0.If x and s operator commute,then equality holds.

    Lemma 5.6(Lemma 2.9 in[23]) Let x,s∈J,then

    Lemma 5.7(Lemma 5.3 in[22])Let(x,s)∈NF(τ,β)andThen

    ProofMultiplying the last equation of system(4.1)bytaking squared norm on both sides and using the fact trand Lemmas 5.6,5.2 and 5.7,we derive

    The proof is completed.

    On the other hand,multiplying the last equation of system(4.2)bytaking squared norm on both sides and using Lemmas 5.1 and 5.8,it radially follows

    Substituting(5.5)into(5.4),the result is followed. ?

    Proof Using Lemmas 5.6 and 5.2,we have

    where the last inequality follows from Lemma 5.9.This follows the desired result. ?

    Proof Due to Lemmas 5.6,5.2,5.8 and 5.10,we obtain

    which implies(5.7).In the same way,inequality(5.8)is followed.This ends the proof. ?

    ProofMultiplying the last equation of system(4.3)bytaking squared norm on both sides and using the fact trand Lemmas 5.6 and 5.2,we have

    This gives the result.

    In the same way as the proof of Lemmas 5.9 and 5.10,we derive the following result.

    The following lemma is a direct result of Lemmas 5.12 and 5.13.

    Proof The proof is similar to the proof of Lemma 5.11,and is therefore omitted. ?

    6 Convergence Analysis

    In this section,we present the convergence and complexity proof of Algorithm 1.First,we analyze the corrector step and show that,after a corrector step,the corrector point(x(?θ),y(?θ),Then,by analyzing the predictor step,we demonstrate the well-definition and convergency of the proposed algorithm.

    6.1 Analysis of the Corrector-Step

    Clearly,due to systems(4.1)and(4.2),tr(d(θ))=0 and therefore

    where the last inequality is due toMoreover,we derive

    which implies(6.5)and completes the proof.

    ProofDue to Lemma 6.1,we haveTherefore

    where the first equality is due to the definition,the second inequality follows from Lemma 5.4 and the last inequality is due to the factsThe result is derived.?

    The following lemma plays an important role in convergence analysis of the algorithm.

    Lemma 6.3Let d(θ)be defined as(6.2)and sinThen

    Proof Using Lemmas 5.8,5.10 and 5.11 and the fact 1 ? cos(θ) ≤ sin2(θ)for θ∈ [0,],we derive

    where the last inequality follows from τ≤,r≥ 4,β ≤and cond(G)≥ 1.This concludes the desired result. ?

    In the next lemma,we proceed to obtain an upper bound for the quantity β and show that after a corrector step the new generated point((θ),y(θ),(θ))belongs to the slightly smaller neighborhood NF(τ,).

    Using Lemmas 6.2,6.3 and 6.1,we obtain

    which implies inequality(6.9)and therefore

    On the other hand,using(6.10)and(6.5),we have

    Finally,using Lemma 5.5 and(6.10),we conclude

    The proof is completed.

    6.2 Analysis of the Predictor-Step

    After a corrector step,in order to further improvement of the optimality,the algorithm performs a predictor step.It considers the corrector pointas the starting point,calculates the predictor directionsby(4.3)and predictor2 and according to Lemma 3.1 computes the predictor pointas follows:

    Thus,after a predictor step,we have

    where

    Clearly,using(4.3)and(4.4),tr(t(φ))=0 and therefore

    In following,we analyze the predictor step in order to the predictor point( x(φ), y(φ), s(φ))∈NF(τ,β).Using Lemmas 5.12,5.13 and 5.14 and following the same proof as Lemma 6.3,we derive the following lemma.

    Lemma 6.5Let t(φ)be defined as(6.12)and

    Then

    The following lemma is the main result of this subsection.

    ProofFrom the definition NF(τ,β)in(3.6),we need to proveand the inequalityUsing(6.13)and(6.11),the inequality

    or equivalently,using Lemma 5.4,

    where the second last inequality is due toThis implies(6.15)and therefore

    The later inequality,using(6.13),concludes

    Finally,using Lemma 5.5 and(6.16),we conclude

    This proves the lemma.

    6.3 Polynomial Complexity

    In this subsection,we prove the complexity bound of Algorithm 1.Due to the previous discussion,Algorithm 1 is well-defined and moreover after a predictor step we have

    Now,we obtain some upper bounds for the quantity cond(·)for some specific search directions.

    Lemma 6.7(Lemma 36 in[4])For the NT direction,cond(G)=1 while for the xs and sx directions,cond(G)≤where σ ∈(0,1)and r is the rank of J.

    Using(6.17)and Lemma 6.7,we have the following result.

    Corollary 6.8 If the NT search direction is used,the iteration complexity of Algorithm 1 is O(L)and if the xs and sx search directions are used,the iteration complexities of Algorithm 1 are O(rL).

    7 Concluding Remarks

    This paper proposed a corrector-predictor arc search interior-point algorithm for SO problems.Starting from an initial feasible solution and estimating the central path by an ellipse,the algorithm first performs a corrector step to improve both optimality and centrality.Then,in order to further improvement of optimality,the algorithm takes a predictor step and generates a new point in a slightly larger neighborhood of the central path.We proved that the proposed algorithm is well-defined and converges to an ε-optimal solution of the SO problem in polynomial time complexity.

    AcknowledgementsThe authors also wish to thank Shahrekord University for financial support.The authors were also partially supported by the Center of Excellence for Mathematics,University of Shahrekord,Shahrekord,Iran.

    国产精品麻豆人妻色哟哟久久| 久久这里有精品视频免费| 中文字幕免费在线视频6| 成年av动漫网址| 国产精品国产三级国产专区5o| 亚洲成人一二三区av| 亚洲av不卡在线观看| 欧美日韩亚洲高清精品| 成年av动漫网址| 中文字幕久久专区| 日韩一区二区视频免费看| 99re6热这里在线精品视频| 交换朋友夫妻互换小说| 多毛熟女@视频| 一区二区三区乱码不卡18| 纯流量卡能插随身wifi吗| 午夜免费观看性视频| 精品熟女少妇av免费看| 我的女老师完整版在线观看| av卡一久久| 建设人人有责人人尽责人人享有的| 97在线人人人人妻| 国产高清不卡午夜福利| 我的女老师完整版在线观看| 欧美 亚洲 国产 日韩一| 老熟女久久久| 最近中文字幕2019免费版| 最黄视频免费看| 国产精品女同一区二区软件| 中文字幕亚洲精品专区| 亚洲经典国产精华液单| 少妇人妻久久综合中文| 卡戴珊不雅视频在线播放| 另类精品久久| 国产成人精品福利久久| 国产精品秋霞免费鲁丝片| 亚洲精品久久午夜乱码| 蜜桃久久精品国产亚洲av| 国产探花极品一区二区| 中文欧美无线码| 搡老乐熟女国产| 国产精品一区www在线观看| 一级爰片在线观看| 美女脱内裤让男人舔精品视频| 人人妻人人澡人人看| 日本爱情动作片www.在线观看| 能在线免费看毛片的网站| 国产av国产精品国产| 99久久精品一区二区三区| 国产深夜福利视频在线观看| 丁香六月天网| 精品视频人人做人人爽| 亚洲性久久影院| 国产精品99久久久久久久久| 免费av不卡在线播放| av天堂中文字幕网| 成人毛片60女人毛片免费| 国产一区二区三区av在线| 久久久久久伊人网av| 国产视频首页在线观看| 天美传媒精品一区二区| 国模一区二区三区四区视频| 久久久久网色| 一级av片app| 日本欧美视频一区| 国产欧美亚洲国产| 91午夜精品亚洲一区二区三区| 久久久久精品久久久久真实原创| 97在线视频观看| 中文精品一卡2卡3卡4更新| 欧美最新免费一区二区三区| 夫妻性生交免费视频一级片| 久久99一区二区三区| 国产精品成人在线| 国内少妇人妻偷人精品xxx网站| 国产 一区精品| 欧美精品国产亚洲| av又黄又爽大尺度在线免费看| 久久久久人妻精品一区果冻| 一二三四中文在线观看免费高清| 婷婷色综合www| 国产精品一区www在线观看| 国产精品蜜桃在线观看| 精品视频人人做人人爽| 欧美老熟妇乱子伦牲交| 老司机影院毛片| av网站免费在线观看视频| 日本色播在线视频| 亚洲精品色激情综合| 色哟哟·www| 日日摸夜夜添夜夜爱| 曰老女人黄片| 国产乱来视频区| 精品亚洲成国产av| av天堂中文字幕网| 国国产精品蜜臀av免费| 妹子高潮喷水视频| 美女脱内裤让男人舔精品视频| 久久久久视频综合| 国产视频内射| 国产精品.久久久| 亚洲欧美成人综合另类久久久| 亚洲婷婷狠狠爱综合网| 国产色婷婷99| 亚洲美女黄色视频免费看| 日本爱情动作片www.在线观看| 亚洲人成网站在线播| 国产黄片美女视频| av免费在线看不卡| 精品一区二区三区视频在线| 亚洲无线观看免费| 中文欧美无线码| 啦啦啦视频在线资源免费观看| 久久精品国产a三级三级三级| 日韩,欧美,国产一区二区三区| 日韩熟女老妇一区二区性免费视频| 看非洲黑人一级黄片| 男男h啪啪无遮挡| 久久精品国产鲁丝片午夜精品| 国产av精品麻豆| 爱豆传媒免费全集在线观看| 久久精品国产亚洲网站| 久久久久国产网址| 国产黄频视频在线观看| 精品一区在线观看国产| 一本久久精品| 99久久精品国产国产毛片| 99热这里只有是精品在线观看| tube8黄色片| 欧美人与善性xxx| 亚洲av欧美aⅴ国产| 精品国产一区二区久久| 99九九线精品视频在线观看视频| 99久国产av精品国产电影| 亚洲精品中文字幕在线视频 | 欧美+日韩+精品| 日韩欧美 国产精品| www.色视频.com| 狂野欧美激情性xxxx在线观看| 午夜91福利影院| 国产欧美日韩一区二区三区在线 | 黄色日韩在线| 日韩伦理黄色片| 久久午夜福利片| 国产成人精品一,二区| 成人毛片a级毛片在线播放| 国产亚洲最大av| 91精品国产九色| 最近中文字幕2019免费版| 2018国产大陆天天弄谢| 国产乱来视频区| 五月开心婷婷网| 99久久中文字幕三级久久日本| 国产老妇伦熟女老妇高清| 18+在线观看网站| 免费观看a级毛片全部| 亚洲国产最新在线播放| 国产又色又爽无遮挡免| 少妇丰满av| 中文字幕精品免费在线观看视频 | 99久久人妻综合| 三级国产精品欧美在线观看| 久久久久久久精品精品| 免费少妇av软件| 亚洲精品视频女| 久久久久久久精品精品| 乱码一卡2卡4卡精品| 久久久亚洲精品成人影院| 视频中文字幕在线观看| 久久久久久久久久久丰满| 国产精品一区二区性色av| 18禁在线播放成人免费| 91成人精品电影| 亚洲精品视频女| 一级毛片久久久久久久久女| 国产精品一二三区在线看| 一级毛片aaaaaa免费看小| 精品久久久噜噜| 极品少妇高潮喷水抽搐| 黄色欧美视频在线观看| 国产成人精品福利久久| 欧美日韩精品成人综合77777| av一本久久久久| 日韩亚洲欧美综合| av在线app专区| 黄色日韩在线| 3wmmmm亚洲av在线观看| 中国国产av一级| 最近2019中文字幕mv第一页| 日本91视频免费播放| 少妇高潮的动态图| 国产一区二区三区av在线| 综合色丁香网| 免费黄色在线免费观看| 国产日韩欧美在线精品| 国产成人精品久久久久久| 亚洲伊人久久精品综合| 国产免费视频播放在线视频| 亚洲国产欧美日韩在线播放 | 午夜福利在线观看免费完整高清在| 日韩制服骚丝袜av| 久久6这里有精品| 国产 精品1| 成年女人在线观看亚洲视频| 亚洲第一区二区三区不卡| 午夜久久久在线观看| 日韩 亚洲 欧美在线| 国产在线男女| 久久99精品国语久久久| 精品少妇久久久久久888优播| 中文字幕免费在线视频6| 免费av不卡在线播放| 七月丁香在线播放| 亚洲va在线va天堂va国产| 亚洲精品一区蜜桃| 99精国产麻豆久久婷婷| 一本—道久久a久久精品蜜桃钙片| 最近手机中文字幕大全| 美女中出高潮动态图| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产成人久久av| 久久精品夜色国产| 伦精品一区二区三区| 国产欧美日韩综合在线一区二区 | 特大巨黑吊av在线直播| h日本视频在线播放| 一本—道久久a久久精品蜜桃钙片| 一本一本综合久久| 老女人水多毛片| 国产av精品麻豆| 亚洲精品色激情综合| 丝袜脚勾引网站| 亚洲人成网站在线观看播放| 只有这里有精品99| 日本爱情动作片www.在线观看| 亚洲国产成人一精品久久久| av有码第一页| 少妇人妻久久综合中文| 99久国产av精品国产电影| 国产淫语在线视频| 91午夜精品亚洲一区二区三区| 青春草亚洲视频在线观看| 午夜91福利影院| 免费在线观看成人毛片| av专区在线播放| .国产精品久久| 成人国产av品久久久| 曰老女人黄片| 亚洲成人一二三区av| 国产精品99久久久久久久久| 观看av在线不卡| 啦啦啦中文免费视频观看日本| 乱系列少妇在线播放| 不卡视频在线观看欧美| 国产一区二区在线观看日韩| 一区二区三区四区激情视频| 国产色爽女视频免费观看| 亚洲精品自拍成人| 国产黄频视频在线观看| 天堂8中文在线网| 晚上一个人看的免费电影| 黄色配什么色好看| 男女边摸边吃奶| 久久午夜综合久久蜜桃| 婷婷色av中文字幕| 日韩,欧美,国产一区二区三区| 亚洲怡红院男人天堂| 午夜91福利影院| 又黄又爽又刺激的免费视频.| 免费观看av网站的网址| 99久久中文字幕三级久久日本| 久久久久网色| 中文资源天堂在线| 婷婷色综合大香蕉| 国产免费视频播放在线视频| 中文字幕人妻熟人妻熟丝袜美| 国产免费福利视频在线观看| 国产精品三级大全| 国产视频内射| 欧美日本中文国产一区发布| 久久国产乱子免费精品| 久久青草综合色| 在线亚洲精品国产二区图片欧美 | 一级毛片黄色毛片免费观看视频| 国产精品国产三级国产av玫瑰| 我要看日韩黄色一级片| 性色av一级| 欧美激情极品国产一区二区三区 | 人妻一区二区av| 国产熟女午夜一区二区三区 | 亚洲婷婷狠狠爱综合网| 精品亚洲乱码少妇综合久久| av天堂中文字幕网| 国产精品人妻久久久影院| 久久久久精品性色| 日韩欧美一区视频在线观看 | 一级av片app| 九九在线视频观看精品| 黑人高潮一二区| 国产亚洲精品久久久com| 欧美97在线视频| 国产永久视频网站| 91久久精品国产一区二区三区| 国产美女午夜福利| 人妻一区二区av| 精品久久久久久电影网| 久久午夜福利片| 国产欧美日韩精品一区二区| 亚洲精品,欧美精品| 偷拍熟女少妇极品色| 熟妇人妻不卡中文字幕| 亚洲成人av在线免费| 18禁裸乳无遮挡动漫免费视频| 日韩亚洲欧美综合| 国产欧美日韩精品一区二区| 如日韩欧美国产精品一区二区三区 | 国产无遮挡羞羞视频在线观看| 免费看光身美女| 日韩精品有码人妻一区| 亚洲精品国产色婷婷电影| 亚洲精品国产av蜜桃| 日本免费在线观看一区| 亚洲av电影在线观看一区二区三区| 成人二区视频| 九九在线视频观看精品| 97在线视频观看| 国产无遮挡羞羞视频在线观看| 在线精品无人区一区二区三| 国产伦精品一区二区三区视频9| 能在线免费看毛片的网站| 午夜免费观看性视频| 亚洲熟女精品中文字幕| 99九九在线精品视频 | 日韩av免费高清视频| 秋霞在线观看毛片| 久久国产精品大桥未久av | 久久久精品免费免费高清| 国产精品无大码| 午夜老司机福利剧场| 亚洲人成网站在线观看播放| 亚洲欧美成人综合另类久久久| 亚洲欧美日韩另类电影网站| 国产成人精品福利久久| 日本猛色少妇xxxxx猛交久久| 国产欧美日韩一区二区三区在线 | av播播在线观看一区| 国产精品熟女久久久久浪| 亚洲在久久综合| 亚州av有码| 特大巨黑吊av在线直播| 久久精品久久久久久噜噜老黄| 亚洲国产欧美日韩在线播放 | 天堂俺去俺来也www色官网| 日韩欧美 国产精品| 久久久久网色| 久久免费观看电影| 日韩一区二区三区影片| 亚洲美女黄色视频免费看| 性色av一级| 黄片无遮挡物在线观看| 丰满饥渴人妻一区二区三| a级毛片在线看网站| av女优亚洲男人天堂| 日本免费在线观看一区| 亚洲精品日本国产第一区| 在线看a的网站| 欧美 亚洲 国产 日韩一| 亚洲电影在线观看av| 人妻人人澡人人爽人人| 成人亚洲欧美一区二区av| 精品少妇内射三级| 国产熟女欧美一区二区| 老司机影院成人| 国产极品粉嫩免费观看在线 | 乱人伦中国视频| 亚洲欧美精品专区久久| 如何舔出高潮| 亚洲美女视频黄频| 精品亚洲乱码少妇综合久久| 亚洲综合色惰| 欧美一级a爱片免费观看看| 国内揄拍国产精品人妻在线| 精品人妻熟女av久视频| 黄色日韩在线| 成人18禁高潮啪啪吃奶动态图 | 日产精品乱码卡一卡2卡三| 人人妻人人爽人人添夜夜欢视频 | 欧美日韩精品成人综合77777| 春色校园在线视频观看| 午夜免费男女啪啪视频观看| 极品人妻少妇av视频| 色视频www国产| 国产成人精品无人区| 国产成人a∨麻豆精品| 人妻一区二区av| 亚洲欧洲日产国产| 久久精品国产a三级三级三级| av在线观看视频网站免费| 一本大道久久a久久精品| 国产一区二区三区综合在线观看 | 高清午夜精品一区二区三区| 最近中文字幕高清免费大全6| 成年女人在线观看亚洲视频| 九九久久精品国产亚洲av麻豆| 美女视频免费永久观看网站| 天天操日日干夜夜撸| 卡戴珊不雅视频在线播放| 国产精品不卡视频一区二区| 爱豆传媒免费全集在线观看| 亚洲精品国产av蜜桃| 日本与韩国留学比较| 精品人妻熟女av久视频| 制服丝袜香蕉在线| 国产免费一区二区三区四区乱码| 99国产精品免费福利视频| 亚洲精品乱久久久久久| 少妇 在线观看| 欧美日韩一区二区视频在线观看视频在线| 久久综合国产亚洲精品| 国产高清三级在线| 五月伊人婷婷丁香| 亚洲国产精品成人久久小说| av有码第一页| 亚洲内射少妇av| 91成人精品电影| 69精品国产乱码久久久| 欧美精品亚洲一区二区| 免费观看av网站的网址| 国产免费视频播放在线视频| 国产成人一区二区在线| 亚洲自偷自拍三级| 国产爽快片一区二区三区| 国产精品福利在线免费观看| 简卡轻食公司| 你懂的网址亚洲精品在线观看| 国产精品久久久久久av不卡| 岛国毛片在线播放| 春色校园在线视频观看| 亚洲激情五月婷婷啪啪| 欧美 日韩 精品 国产| 国产精品无大码| 青春草国产在线视频| 欧美最新免费一区二区三区| 国产白丝娇喘喷水9色精品| 国产亚洲欧美精品永久| 三级国产精品片| 国产黄片美女视频| 亚洲欧洲日产国产| 国产亚洲av片在线观看秒播厂| 日韩精品有码人妻一区| 性色av一级| 久久99精品国语久久久| 亚洲精品国产av成人精品| 大陆偷拍与自拍| 亚洲,一卡二卡三卡| 少妇的逼水好多| 色哟哟·www| 国产乱来视频区| 黑丝袜美女国产一区| 成人18禁高潮啪啪吃奶动态图 | 高清av免费在线| 精品亚洲成国产av| 亚洲真实伦在线观看| 老司机影院成人| 国产黄片美女视频| 欧美性感艳星| 国产不卡av网站在线观看| 欧美一级毛片孕妇| 男女午夜视频在线观看| 最黄视频免费看| 婷婷色av中文字幕| 在线观看免费日韩欧美大片| 欧美精品亚洲一区二区| 日韩欧美免费精品| 久久精品国产综合久久久| 国产精品九九99| 9色porny在线观看| 欧美变态另类bdsm刘玥| 大片电影免费在线观看免费| 女人被躁到高潮嗷嗷叫费观| 精品熟女少妇八av免费久了| 丁香六月天网| 黑人猛操日本美女一级片| 亚洲精品美女久久av网站| 人妻人人澡人人爽人人| 最近最新免费中文字幕在线| 黄色 视频免费看| 日本vs欧美在线观看视频| 在线观看免费视频网站a站| 搡老乐熟女国产| videosex国产| 不卡av一区二区三区| 亚洲精品自拍成人| 伊人久久大香线蕉亚洲五| 久久这里只有精品19| 日韩电影二区| 两个人看的免费小视频| 美女脱内裤让男人舔精品视频| 国产精品久久久久久精品电影小说| 久久精品成人免费网站| 日韩免费高清中文字幕av| 欧美老熟妇乱子伦牲交| 久久99一区二区三区| 一级毛片精品| www.999成人在线观看| 国产日韩一区二区三区精品不卡| 精品人妻在线不人妻| 欧美一级毛片孕妇| 免费黄频网站在线观看国产| 首页视频小说图片口味搜索| 黑人巨大精品欧美一区二区蜜桃| 视频区图区小说| 好男人电影高清在线观看| 日韩有码中文字幕| 国产成人欧美| 18在线观看网站| 亚洲五月色婷婷综合| 中国美女看黄片| 欧美成人午夜精品| 国产成人影院久久av| 久久久久久免费高清国产稀缺| 免费人妻精品一区二区三区视频| 亚洲精品在线美女| 青草久久国产| 999久久久精品免费观看国产| 免费看十八禁软件| 超碰成人久久| 成年人免费黄色播放视频| 中文欧美无线码| 又紧又爽又黄一区二区| 男女边摸边吃奶| 午夜两性在线视频| 亚洲激情五月婷婷啪啪| 亚洲一区中文字幕在线| 在线看a的网站| a级毛片黄视频| 欧美精品一区二区大全| 国产老妇伦熟女老妇高清| 这个男人来自地球电影免费观看| 午夜两性在线视频| 亚洲美女黄色视频免费看| 亚洲成人免费电影在线观看| 国产精品成人在线| 亚洲专区国产一区二区| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩另类电影网站| 大香蕉久久成人网| 久久久精品区二区三区| 亚洲人成电影观看| 啦啦啦啦在线视频资源| 日韩有码中文字幕| 97在线人人人人妻| 亚洲欧洲日产国产| 亚洲国产精品999| 啦啦啦中文免费视频观看日本| 久久国产精品大桥未久av| 欧美激情久久久久久爽电影 | 欧美 日韩 精品 国产| 男人操女人黄网站| 亚洲 国产 在线| 亚洲av男天堂| 日韩精品免费视频一区二区三区| 欧美中文综合在线视频| 亚洲精品久久成人aⅴ小说| 国产片内射在线| av视频免费观看在线观看| 成人影院久久| 亚洲成av片中文字幕在线观看| 久久99热这里只频精品6学生| 久久久水蜜桃国产精品网| 青青草视频在线视频观看| 国产精品九九99| 国精品久久久久久国模美| 国产欧美亚洲国产| 国产av国产精品国产| www.999成人在线观看| 黄色毛片三级朝国网站| 欧美日韩中文字幕国产精品一区二区三区 | 女性被躁到高潮视频| 亚洲一区二区三区欧美精品| 少妇粗大呻吟视频| 久久久精品国产亚洲av高清涩受| av在线老鸭窝| www.精华液| 亚洲成av片中文字幕在线观看| 国产免费视频播放在线视频| 91av网站免费观看| 97人妻天天添夜夜摸| 欧美精品一区二区免费开放| 美女视频免费永久观看网站| 日本vs欧美在线观看视频| 国产在线观看jvid| 亚洲欧洲精品一区二区精品久久久| 亚洲久久久国产精品| 黑人操中国人逼视频| 最近最新中文字幕大全免费视频| 亚洲中文字幕日韩| 在线观看免费午夜福利视频| 丁香六月天网| 国产人伦9x9x在线观看| 老汉色av国产亚洲站长工具| 精品少妇内射三级| 最近最新免费中文字幕在线| 精品亚洲乱码少妇综合久久| 午夜免费鲁丝| 大陆偷拍与自拍| 美女视频免费永久观看网站| 亚洲国产中文字幕在线视频| 久久女婷五月综合色啪小说| 热re99久久精品国产66热6| 婷婷丁香在线五月| 五月开心婷婷网| 韩国高清视频一区二区三区| 亚洲成国产人片在线观看| 五月开心婷婷网|