• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Certain Results for the 2-Variable Peters Mixed Type and Related Polynomials

    2018-09-05 09:10:18GhazalaYasmin
    Analysis in Theory and Applications 2018年2期

    Ghazala Yasmin

    Department of Applied Mathematics,Faculty of Engineering,Aligarh Muslim University,Aligarh,India

    Abstract.In this article,the 2-variable general polynomials are taken as base with Peters polynomials to introduce a family of 2-variable Peters mixed type polynomials.These polynomials are framed within the context of monomiality principle and their properties are established.Certain summation formulae for these polynomials are also derived.Examples of some members belonging to this family are considered and numbers related to some mixed special polynomials are also explored.

    KeyWords:2-Variablegeneralpolynomials,Peterspolynomials,2-variabletruncatedexponential polynomials,Sheffer sequences,monomiality principle.

    1 Introduction and preliminaries

    Special functions(or special polynomials)because of their remarkable properties known as ”useful functions” and have been used for centuries.In the past years,the development of new special functions and of applications of special functions to new areas of mathematics have initiated a revival of interest in the p-adic analysis,q-analysis,analytic number theory,combinatorics and so on.Moreover,in recent years,the generalized and multi-variable forms of the special functions of mathematical physics have witnessed a significant evolution.In particular,the special polynomials of two variables provided new means of analysis for the solution of large classes of partial differential equations often encountered in physical problems see for example[3,4,6,7,11].Most of the special functions of mathematical physics and their generalizations have been suggested by physical problems.Also these polynomials are helpful in introducing new families of special polynomials.

    Motivated by the importance of the special functions of two variables in applications,a general class of the 2-variable polynomials,namely the 2-variable general polynomials(2VGP)pn(x,y)is considered in[11].These polynomials are defined by the generating function[11,p.4(14)]

    Table 1:List of special cases of 2VGP pn(x,y).

    where φ(y,t)has(at least the formal)series expansion

    The 2VGP family contains very important polynomials such as the Gould-Hopper polynomials(GHP)(x,y),2-variable Hermite Kampé de Feriet polynomials(2VHKdFP)Hn(x,y),2-variable generalized Laguerre polynomials(2VGLP)mLn(y,x),2-variable Laguerre polynomials(2VLP)Ln(y,x),2-variable truncated exponential polynomials(of order r)(2VTEP)(x,y)and 2-variable truncated exponential polynomials(2VTEP)[2]en(x,y).We present the list of some known 2VGP family in Table 1.

    It is shown in[11],that the polynomials pn(x,y)are quasi-monomial[4,19]with respect to the following multiplicative and derivative operators:

    and

    respectively.

    According to the monomiality principle and in view of Eqs.(1.3)and(1.4),we have

    and

    respectively.

    Now,since the 2VGP pn(x,y)are quasi-monomial,the properties of these polynomials can be derived from those of the multiplicative and derivative operatorsandrespectively.In fact,we have

    which yields the following differential equation satisfied by pn(x,y):

    Again,since p0(x,y)=1,the 2VGP pn(x,y)can be explicitly constructed as:

    Identity(1.9)implies that the exponential generating function of the 2VGP pn(x,y)can be cast in the form

    which yields generating function(1.1).Again,expanding the exponential function extand using series expansion(1.2)in the l.h.s.of generating function(1.1),we get the following series definition of the 2VGP pn(x,y):

    It can easily be verified that theandsatisfy the following commutation relation:

    Sequences of polynomials play an important role in various branches of sciences.One of the important classes of polynomial sequences is the class of Sheffer sequences.It is a polynomial sequence in which the index of each polynomial equal its degree,satisfying some conditions related to the umbral calculus in combinatorics.There are several ways to define the Sheffer sequences[18],among which by a generating function and by a differential recurrence relation are most common.Sheffer polynomials are classified and many important properties are derived by Rainville[16].Roman[17]studied these Sheffer polynomials and handled its properties naturally within the framework of modern and classical umbral calculus.In view of this approach many wonderful results are derived for combinatorics theory,see for example[9,15].

    The Peters polynomials(PP)Sn(x)and their related polynomials Boole polynomials(BlP)Bln(x)and the Changhee polynomials(ChP)Chn(x),belong to the class of Sheffer sequences.The Peters polynomials Sn(x)plays an important role in the area of number theory,algebra and umbral calculus and are defined by means of the generating function[12]

    The first few Peters polynomials are given by[12]

    In particular,we note that

    where Bln(x;λ)denotes the Boole polynomials(BlP)[13]and Chn(x)denotes the Changhee polynomials(ChP)[14]defined by

    and

    Taking x=0 in generating functions(1.13),(1.16)and(1.17),we find

    and

    where

    are the corresponding numbers.

    The Stirling number of the first kind is given by

    Thus,by(1.21),we get

    It is easy to show that

    Motivated by the work done on mixed type polynomials and due to the importance of the 2-variable forms of the special polynomials in this paper,a family of the 2-variable Peters mixed type polynomials is introduced by means of generating function and series definition.Certain properties and summation formulae for these polynomials are derived.Examples of some members belonging to this family are considered.The numbers corresponding to certain mixed special polynomials are also explored.

    2 2-variable Peters mixed type polynomials

    In this section,we introduce the 2-variable Peters mixed type polynomials(2VPmTP)by means of generating function and series definition.Further,we also derive certain properties and summation formulae for these polynomials.In order to derive the generating function for the 2VPmTP,we prove the following result:

    Theorem 2.1.The generating function for the 2-variable Peters mixed type polynomials 2VPmTPpSn(x,y;λ;μ)is given as:

    Proof.Replacing x in the l.h.s.and r.h.s.of generating function(1.13)by the multiplicative operatorof the 2VGP pn(x,y),we have

    Using Eq.(1.10)in the l.h.s.and Eq.(1.3)in the r.h.s.of Eq.(2.2),we find

    Now,using Eq.(1.1)in the l.h.s.and denoting the resultant 2-variable Peters mixed type polynomials(2VPmTP)in the r.h.s.bypSn(x,y;λ;μ),that is

    we get assertion(2.1).

    The 2-variable Peters mixed type polynomials(2VPmTP),denoted bypSn(x,y;λ;μ)will be defined as the discrete Peters convolution of the 2-variable general polynomials pn(x,y).

    Remark 2.1.We remark that Eq.(2.4)gives the operational representation between the Peters polynomials Sn(x;λ;μ)and 2VPmTPpSn(x,y;λ;μ).

    Next,we obtain the series definition of the 2VPmTPpSn(x,y;λ;μ)by proving the following result:

    Theorem 2.2.The 2-variable Peters mixed type polynomials 2VPmTPpSn(x,y;λ;μ)are defined by the series:

    Proof.Using expansion(1.18a)and Eq.(1.22)in the l.h.s.of Eq.(2.3)and Eq.(2.4)in the r.h.s.of Eq.(2.3),we find

    Replacing n by n?q in the l.h.s.of Eq.(2.6)and then equating the coefficients of like powers of t in both sides of the resultant equation,we get assertion(2.5).

    Note that from definition(2.5),we conclude that the 2VPmTPpSn(x,y;λ;μ)are defined as the discrete Peters convolution of the 2-variable general polynomials pn(x,y).

    Further,to frame the 2VPmTPpSn(x,y;λ;μ)within the context of monomiality principle,we prove the following result:

    Theorem 2.3.The 2VPmTPpSn(x,y;λ;μ)are quasi-monomial with respect to the following multiplicative and derivative operators:

    and

    respectively.

    Proof.Consider the identity

    Differentiating Eq.(2.1)partially with respect to t,we find

    Since φ(y,t)is an invertible series of t,thereforep ossess power series expansion of t.Thus,in view of the identity(2.9),the above equation becomes

    Now,using generating relation(2.1)in the l.h.s.of Eq.(2.11),rearranging the summation and equating the coefficients of the same powers of t in both sides of the resultant equation,we find

    which in view of monomiality principle equation(1.5)(forpSn(x,y;λ;μ))yields assertion(2.7).

    Now,to prove assertion(2.8),we note that in view of generating function(2.1)and identity(2.9),we have

    Table 2:Special cases of the 2VPmTPpSn(x,y;λ;μ).

    Rearrang ing the summa tioninthel.h.s.ofEq.(2.13)and then equatingthecoe fficients of the same powers of t in both sides of the resultant equation,we find

    which in view of monomiality principle equation(1.6)(forpSn(x,y;λ;μ))yields assertion(2.8).

    We know that the properties of quasi-monomial can be derived by using the expressions of the multiplicative and derivative operators.To derive the differential equation for the 2VPmTPpSn(x,y;λ;μ)we prove the following result:

    Theorem 2.4.The 2VPmTPpSn(x,y;λ,μ)satisfy the following differential equation:

    Proof.Using expressions(2.7)and(2.8)and in view of monomiality principle equation(1.7),we get assertion(2.15).

    Remark 2.2.We remark that Eqs.(2.12)and(2.14)are the differential recurrence relations satisfied by the 2VPmTPpSn(x,y;λ;μ).

    By taking suitable values of the parameters in Eqs.(2.1),(2.4),(2.5),(2.7),(2.8),(2.15)and in view of relations(1.15a)and(1.15b),we can find the generating functions and other results for the mixed special polynomials related topSn(x,y;λ;μ).We present the generating functions and series definitions for these polynomials in Table 2.

    It happens very often that the solution of a given problem in physics or applied mathematics requires the evaluation of in finite sums involving special functions.The summation formulae of special functions of more than one variable often appear in applications ranging from electromagnetic processes to combinatorics,see for example[5].The importance of summation formulae of special functions provides motivation to find the summation formulae for the 2VPmTPpSn(x,y;λ;μ).

    We derive the summation formulae for the 2VPmTPpS(x,y;λ;μ)in the form of following theorems:

    Theorem 2.5.The following implicit summation formula for the 2VPmTPpSn(x,y;λ;μ)holds true:

    Proof.Replacing x→x+w in generating function(2.1),we have

    Again,using Eq.(2.1)and series expansion of ewtin the l.h.s.of Eq.(2.17),we find

    which on replacing n by n?k in the l.h.s.and then equating the coefficients of the same powers of t in both sides of the resultant equation yields assertion(2.16).

    Remark2.3.Weremarkthat,usingEqs.(1.1),(1.13)and(1.22)inthel.h.s.ofEq.(2.17)and then applying the Cauchy-product rule in the resultant equation,we obtain the following explicit summation formula for the Peters polynomials Sn(x;λ;μ)in terms of the 2VPmTPpSn(x,y;λ;μ):

    Theorem 2.6.The following implicit summation formula for the 2VPmTPpSn(x,y;λ;μ)holds true:

    Proof.Replacing t→t+u in generating function(2.1)and using the following rule:

    in the r.h.s.of the resultant equation,we find

    Replacing x by z in the above equation and then equating the resultant equation to the above equation,we find

    which on expanding the exponential in the r.h.s.gives

    Now,using Eq.(2.21)in the r.h.s.of Eq.(2.24)and replacing n→n?l and k→k?m in the r.h.s.of the resultant equation,we find

    Finally,on equating the coefficients of the same powers of t and u in Eq.(2.25),we are led to assertion(2.20).In the next section,examples of some members belonging to the 2VPmTPpSn(x,y;λ;μ)are considered.

    3 Examples

    The 2VGP family pn(x,y)which are classified as an important general class of special functions due to wide range of applications contains a number of important special polynomials of two variables.Certain members belonging to the 2VGP family pn(x,y)are considered in Section 1.We note that corresponding to each member belonging to the 2VGP pn(x,y),there exists a new special polynomial belonging to the 2VPmTPpSn(x,y;λ;μ)family.Thus,by making suitable choice for the function φ(y,t)in Eq.(2.1),we get the generating function for the corresponding member belonging to the 2VPmTPpSn(x,y;λ;μ)family.The other properties of these special polynomials can be obtained from the results derived in the previous section.

    We consider the following examples:

    Example 3.1.Taking φ(y,t)=eytm(for which the 2VGP pn(x,y)reduce to the GHP(x,y)Table 1(I))in the l.h.s.of generating function(2.1),we find that the resultant Gould-Hopper Peter polynomials(GHPP),denoted byH(m)Sn(x,y;λ;μ)in the r.h.s.are defined by the following generating function:

    The series definitions and other results for the GHPPH(m)Sn(x,y;λ;μ)are given in Table 3.

    Remark 3.1.Since for m=2,the GHP(x,y)reduce to the 2VHKdFP Hn(x,y)(Table 1(II)).Therefore,taking m=2 in Eq.(3.1),we get the following generating function for the 2-variable Hermite Peters polynomials(2VHPP),denoted byHSn(x,y;λ;μ):

    The series definitions and other results for the 2VHPPHSn(x,y;λ;μ)can be obtained by taking m=2 in the results given in Table 3.

    Remark 3.2.Since for x→2x and y=?1 the 2VHKdFP Hn(x,y)reduce to the classical Hermite polynomials Hn(x)[1].Therefore,taking x→2x and y=?1 in Eq.(3.2),we get the following generating function for the Hermite Peters polynomials(HPP),denoted by

    The series definitions and other results for the HPPHSn(x;λ;μ)can be obtained by taking m=2,x→2x and y=?1 in the results given in Table 3.

    Taking suitable values of the parameters in the results of the GHPPH(m)Sn(x,y;λ;μ)and in view of Eqs.(1.15a)and(1.15b),we can find the corresponding results for the mixed special polynomials related toH(m)Sn(x,y;λ;μ).We use the suitable notations forthese polynomials and present their generating functions and series definitions in Table 4.

    Table 3:Results forH(m)Sn(x,y;λ;μ).

    Table 4:Special cases of the GHPPH(m)Sn(x,y;λ;μ).

    We note that for m=2 the results derived above for the GHBlPH(m)Bln(x,y;λ)and GHChPH(m)Chn(x,y)give the corresponding results for the 2-variable Hermite Boole polynomials(2VHBlP)HBln(x,y;λ)and 2-variable Hermite Changee polynomials(2VHChP)HChn(x,y),respectively.Again,for m=2,x→2x and y=?1,we get the corresponding results for the Hermite Boole polynomials(HBlP)HBln(x;λ)and Hermite Changee polynomials(HChP)HChn(x).Also in the results of the mixed special polynomials with(x,y)as base,we obtain the results(with corresponding changes in values of indices and variable)for the corresponding mixed special polynomials with Hn(x,y)and Hn(x)as base.

    Example 3.2.Taking φ(y,t)=C0(?ytm)(for which the 2VGP pn(x,y)reduce to the 2VGLPmLn(y,x)Table 1(III))in the l.h.s.of generating function(2.1),we find that the resultant 2-variable generalized Laguerre Peters polynomials(2VGLPP),denoted bymLSn(y,x;λ;μ)in the r.h.s.are defined by the following generating function:

    The series definitions and other results for the 2VGLPPmLSn(y,x;λ;μ)are given in Table 5.

    Remark 3.3.Since for m=1 and y→?y,the 2VGLPmLn(y,x)reduce to the 2VLP Ln(y,x)(Table 1(IV)).Therefore,taking m=1 and y→?y in Eq.(3.4),we get the following generating function for the 2-variable Laguerre Peters polynomials(2VLPP),denoted byLSn(y,x;λ;μ)

    The series definitions and other results for the 2VLPPLSn(y,x;λ;μ)can be obtained by taking m=1 and y→?y in the results given in Table 5.

    Table 5:Results formLSn(y,x;λ;μ).

    Remark 3.4.Since for x=1,the 2VLP Ln(y,x)reduce to the classical Laguerre polynomials Ln(y)[1].Therefore,taking x=1 in Eq.(3.5),we get the following generating function for the Laguerre Peters polynomials(LPP),denoted byLSn(y;λ;μ)

    The series definitions and other results for the LPPLSn(y;λ;μ)can be obtained by taking m=1,y→?y and x=1 in the results given in Table 5.

    Taking suitable values of the parameters in the results of the 2VGLPPmLSn(y,x;λ;μ)and in view of Eqs.(1.15a)and(1.15b),we can find the corresponding results for the mixed special polynomials related tomLSn(y,x;λ;μ).We use the suitable notations for these polynomials and present their generating functions and series definitions in Table 6.

    We note that for m=1,y→?y the results derived above for the 2VGLBlPmLBln(y,x;λ)and 2VGLChPmLChn(y,x)give the corresponding results for the 2-variable Laguerre Boole polynomials(2VLBlP)LBln(x,y;λ)and 2-variable Laguerre Changee polynomials(2VLChP)LChn(x,y),respectively.Again,for m=1,y→?y and x=1,we get the corresponding results for the Laguerre Boole polynomials(LBlP)LBln(x;λ)and Laguerre Changee polynomials(LChP)LChn(x).Thus,in the results of the mixed special polynomials withmLn(y,x)as base,we obtain the results(with corresponding changes in values of parameters)for the corresponding mixed special polynomials with Ln(y,x)and Ln(y)as base.

    Example 3.3.By taking φ(y,t)=(for which the 2VGP pn(x,y)reduce to the 2VTEP(x,y)Table 1(V))in the l.h.s.of generating function(2.1),we find that the resultant 2-variable truncated exponential Peters polynomials(2VTEPP),denoted bye(r)Sn(x,y;λ;μ)in the r.h.s.are defined by the following generating function:

    The series definitions and other results for the 2VTEPPe(r)Sn(x,y;λ;μ)are given in Table 7.

    Remark 3.5.Since for r=2,the 2VTEP e(r)(x,y)of order r reduce to the 2VTEP[2]en(x,y)(Table 1(VI)).Therefore,taking r=2 in Eq.(3.7),we get the following generating func-tion for the 2-variable truncated exponential Peters polynomials(2VTEPP),denoted by[2]eSn(x,y;λ;μ):

    Table 6:Special cases of the 2VGLPPmLSn(y,x;λ;μ).

    Table 7:Results fore(r)Sn(x,y;λ;μ).

    The series definitions and other results for the 2VTEPP[2]eSn(x,y;λ;μ)can be obtained by taking r=2 in the results given in Table 7.

    Remark3.6.Sincefor y=1,the[2]en(x,y)reduce to the truncatedex ponential polynomials[2]en(x)[6].Therefore,taking y=1 in Eq.(3.8),we get the following generating function for the truncated exponential Peters polynomials(TEPP),denoted by[2]eSn(x;λ;μ):

    The series definitions and other results for the TEPP[2]eSn(x;λ;μ)can be obtained by taking r=2 and y=1 in the results given in Table 7.

    Taking suitable values of the parameters in the results of the 2VTEPPe(r)Sn(x,y;λ;μ)and in view of Eqs.(1.15a)and(1.15b),we can find the corresponding results for the mixed special polynomials related toe(r)Sn(x,y;λ;μ).We use the suitable notations for these polynomials and present their generating functions and series definitions in Table 8.

    It is also important to observe that taking r=2 in the results of the mixed special polynomials with(x,y)as base,we obtain the results for the corresponding mixed special polynomials with[2]en(x,y)as base.Also,taking r=2 and y=1,we obtain the results for the mixed special polynomials with[2]en(x)as base.

    Further,we note that the multiplicative and derivative operators,differential equations,operational rule and summation formulae for the polynomials mentioned in Table??,Table 6 and Table 8 can also be obtained by taking suitable values of the parameters in the corresponding results of the GHPPH(m)Sn(x,y;λ;μ),2VGLPPmLSn(x,y;λ;μ)and 2VTEPPe(r)Sn(x,y;λ;μ),respectively.

    Table 8:Special cases of the 2VTEPPe(r)Sn(x,y;λ;μ).

    In the next section,numbers related to some mixed special polynomials are explored.

    4 Concluding remarks

    We know that the Peters,Boole and changee numbers have deep connections with number theory and occur in combinatorics.These numbers appear as special values of the Peters,Boole and changee polynomials as indicated in Eq.(1.20).

    The Peter numbers Sn(λ;μ)are defined by the generating function(1.18a).In view of relations(1.15a)and(1.15b),we find the following special cases of Sn(λ;μ):

    Here,we explore the numbers corresponding to the HPPHSn(x;λ;μ)defined by the generating function(3.3).Taking m=2,y=?1 and replacing x by 2x in series definition of the GHPPH(m)Sn(x,y;λ;μ)(Table 3(I)),we find the following series definition of the HPPHSn(x;λ;μ)

    Since,the HPPHSn(x;λ;μ)are defined in terms of the Hermite polynomials.Therefore,in order to find the Hermite Peters numbers,denoted byHSn(λ;μ),we require the Hermite numbers.

    We recall that the Hermite numbers Hnare the values of the Hermite polynomials Hn(x)at zero argument,that is

    From the generating function of the Hermite polynomials

    it follows that

    A closed formula for Hnis given as:

    Now,taking x=0 in both sides of definition(4.2)and using the notation

    in the l.h.s.and notation(4.3)in the r.h.s.of the resultant equation,we find that the Hermite Peters numbersHSn(λ;μ)are defined as:

    Takingμ=1 in Eq.(4.8)and using relation(4.1a)in the r.h.s.and denoting the resultant Hermite Boole numbers in the l.h.s.byHBln(λ),that is

    we find the following series definition of theHBln(λ):

    Next,taking λ=1 and μ=1 in Eq.(4.8)and using relation(4.1b)in the r.h.s.and denoting the resultant Hermite Changee numbers,in the l.h.s.byHChn,that is

    we find the following series definition of theHCh:

    In our next investigation,we derive certain results for the 2-variable Apostol type and related polynomials by means of umbral technique.

    Acknowledgements

    This work has been done under UGC-BSR Reaserch Start-Up-Grant(Office Memo No.30-90/2015(BSR))awarded to the author by the University Grants Commission(UGC),Government of India,New Delhi.

    2021天堂中文幕一二区在线观 | 国产欧美日韩一区二区三| 国产精品免费一区二区三区在线| 叶爱在线成人免费视频播放| 久久午夜亚洲精品久久| 法律面前人人平等表现在哪些方面| 脱女人内裤的视频| 亚洲专区国产一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 男女下面进入的视频免费午夜 | aaaaa片日本免费| 伦理电影免费视频| 国产乱人伦免费视频| 韩国精品一区二区三区| 免费电影在线观看免费观看| 亚洲精华国产精华精| 非洲黑人性xxxx精品又粗又长| 国产单亲对白刺激| 色播在线永久视频| 一进一出抽搐gif免费好疼| av在线播放免费不卡| 久久久国产精品麻豆| 国产成人影院久久av| 少妇的丰满在线观看| 日日夜夜操网爽| 亚洲国产欧美网| 精品卡一卡二卡四卡免费| 怎么达到女性高潮| 亚洲国产毛片av蜜桃av| 日韩国内少妇激情av| 人人澡人人妻人| 欧美黄色淫秽网站| 很黄的视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 一本久久中文字幕| 亚洲精品在线美女| 又黄又爽又免费观看的视频| 老熟妇乱子伦视频在线观看| 好男人电影高清在线观看| 亚洲av美国av| 亚洲一码二码三码区别大吗| 夜夜夜夜夜久久久久| 亚洲天堂国产精品一区在线| 日日夜夜操网爽| a级毛片在线看网站| 久久婷婷人人爽人人干人人爱| 在线永久观看黄色视频| 国产真人三级小视频在线观看| 精品人妻1区二区| 无遮挡黄片免费观看| ponron亚洲| 999久久久精品免费观看国产| 国产乱人伦免费视频| 又紧又爽又黄一区二区| 少妇 在线观看| 一级黄色大片毛片| 午夜福利欧美成人| 夜夜爽天天搞| 亚洲欧美精品综合久久99| 丰满人妻熟妇乱又伦精品不卡| 国产激情久久老熟女| 亚洲精品国产一区二区精华液| 老司机福利观看| 亚洲avbb在线观看| 中文在线观看免费www的网站 | 日本免费a在线| 91av网站免费观看| 欧美日韩乱码在线| 久久天躁狠狠躁夜夜2o2o| 老司机午夜福利在线观看视频| 国内久久婷婷六月综合欲色啪| 一本精品99久久精品77| 熟女电影av网| 国产精品免费一区二区三区在线| 亚洲色图 男人天堂 中文字幕| 精品午夜福利视频在线观看一区| 国产又黄又爽又无遮挡在线| 黑人欧美特级aaaaaa片| 麻豆一二三区av精品| av免费在线观看网站| 亚洲 国产 在线| 亚洲第一av免费看| 国产一区在线观看成人免费| 亚洲国产精品sss在线观看| 美女大奶头视频| 免费av毛片视频| 免费人成视频x8x8入口观看| 国产单亲对白刺激| 成年版毛片免费区| 免费av毛片视频| 国产精品 国内视频| 成年女人毛片免费观看观看9| 黑人操中国人逼视频| 亚洲全国av大片| 亚洲精品美女久久av网站| 国产精华一区二区三区| 国产激情欧美一区二区| 亚洲精品国产区一区二| 色综合站精品国产| 琪琪午夜伦伦电影理论片6080| 午夜福利高清视频| 欧美另类亚洲清纯唯美| 麻豆国产av国片精品| 国产欧美日韩一区二区精品| 欧美丝袜亚洲另类 | 亚洲黑人精品在线| 成人三级做爰电影| 久久国产精品影院| 亚洲久久久国产精品| www.www免费av| 国产麻豆成人av免费视频| 亚洲成国产人片在线观看| 午夜福利成人在线免费观看| 制服人妻中文乱码| 99国产精品99久久久久| 手机成人av网站| 美国免费a级毛片| 男人操女人黄网站| 免费看十八禁软件| 男人操女人黄网站| 精品久久蜜臀av无| e午夜精品久久久久久久| 久久久久久久久免费视频了| 亚洲av五月六月丁香网| 欧美又色又爽又黄视频| 免费在线观看完整版高清| 俄罗斯特黄特色一大片| 麻豆成人午夜福利视频| 国产片内射在线| 在线天堂中文资源库| av在线天堂中文字幕| 这个男人来自地球电影免费观看| 麻豆av在线久日| 非洲黑人性xxxx精品又粗又长| 久久草成人影院| 亚洲在线自拍视频| 激情在线观看视频在线高清| 亚洲 国产 在线| 99精品欧美一区二区三区四区| 久久久久九九精品影院| www国产在线视频色| 正在播放国产对白刺激| 在线观看舔阴道视频| 亚洲av五月六月丁香网| 亚洲 国产 在线| 亚洲第一av免费看| 成人亚洲精品一区在线观看| 99精品久久久久人妻精品| 亚洲成国产人片在线观看| 久久国产亚洲av麻豆专区| 人人澡人人妻人| 亚洲人成网站在线播放欧美日韩| 老熟妇仑乱视频hdxx| 精品人妻1区二区| 淫秽高清视频在线观看| 欧美zozozo另类| 欧美日韩福利视频一区二区| 99热6这里只有精品| 精品欧美一区二区三区在线| 欧美大码av| 欧美大码av| 女性被躁到高潮视频| 国产爱豆传媒在线观看 | 香蕉久久夜色| 欧美成人午夜精品| 一级黄色大片毛片| 免费av毛片视频| 欧美日韩亚洲综合一区二区三区_| 一级片免费观看大全| 人人妻人人澡人人看| 精品第一国产精品| 观看免费一级毛片| 国产成人精品久久二区二区免费| 成人特级黄色片久久久久久久| 好男人电影高清在线观看| 亚洲av成人不卡在线观看播放网| 国产亚洲精品第一综合不卡| 免费在线观看完整版高清| 国产精品av久久久久免费| 母亲3免费完整高清在线观看| 18禁黄网站禁片午夜丰满| 人成视频在线观看免费观看| 色在线成人网| 亚洲第一青青草原| 99国产精品一区二区蜜桃av| 国产成人精品无人区| 婷婷精品国产亚洲av在线| 黄色女人牲交| 国产亚洲精品久久久久5区| 亚洲人成电影免费在线| 午夜福利成人在线免费观看| 欧美乱码精品一区二区三区| 成人国产综合亚洲| 神马国产精品三级电影在线观看 | 国产亚洲精品一区二区www| av免费在线观看网站| 亚洲国产精品999在线| 免费高清在线观看日韩| 国产成人av教育| 国产激情欧美一区二区| av免费在线观看网站| 免费av毛片视频| 无限看片的www在线观看| 老熟妇乱子伦视频在线观看| 12—13女人毛片做爰片一| 亚洲片人在线观看| 亚洲国产精品成人综合色| 两个人视频免费观看高清| 一区二区三区国产精品乱码| 桃色一区二区三区在线观看| 老司机午夜十八禁免费视频| 国产精品一区二区三区四区久久 | 黄网站色视频无遮挡免费观看| 可以在线观看毛片的网站| 国产成+人综合+亚洲专区| 日本 欧美在线| 一本久久中文字幕| 久久这里只有精品19| 校园春色视频在线观看| 亚洲国产欧美网| 欧美精品啪啪一区二区三区| 日韩精品青青久久久久久| 日韩三级视频一区二区三区| 国产精品久久久久久人妻精品电影| 在线av久久热| 亚洲中文日韩欧美视频| 精品一区二区三区视频在线观看免费| 免费看a级黄色片| 亚洲精品美女久久久久99蜜臀| 听说在线观看完整版免费高清| 桃红色精品国产亚洲av| 亚洲成国产人片在线观看| 中文在线观看免费www的网站 | 国产久久久一区二区三区| 精品国内亚洲2022精品成人| 一级a爱视频在线免费观看| 亚洲国产欧美日韩在线播放| 国产又爽黄色视频| 国产伦人伦偷精品视频| 18禁黄网站禁片午夜丰满| 高潮久久久久久久久久久不卡| 黄色成人免费大全| 亚洲成人精品中文字幕电影| 国产一区二区在线av高清观看| a级毛片在线看网站| 桃色一区二区三区在线观看| 一级毛片女人18水好多| 欧美精品啪啪一区二区三区| 久久久国产欧美日韩av| АⅤ资源中文在线天堂| 欧美成人性av电影在线观看| 国产视频内射| 一级毛片高清免费大全| 18禁观看日本| 国产一区二区激情短视频| 亚洲av熟女| 婷婷丁香在线五月| 91九色精品人成在线观看| 欧美激情久久久久久爽电影| 男人舔女人的私密视频| 久久精品国产清高在天天线| 黄频高清免费视频| 国产成人一区二区三区免费视频网站| www.熟女人妻精品国产| 在线十欧美十亚洲十日本专区| 精品人妻1区二区| 黄色女人牲交| 人成视频在线观看免费观看| 国产97色在线日韩免费| 亚洲 欧美一区二区三区| 亚洲精品中文字幕在线视频| 99精品欧美一区二区三区四区| 亚洲五月婷婷丁香| 精品久久久久久久久久免费视频| 在线观看免费视频日本深夜| 日本精品一区二区三区蜜桃| 国产真实乱freesex| xxx96com| 精品少妇一区二区三区视频日本电影| www日本黄色视频网| 99国产综合亚洲精品| 日韩一卡2卡3卡4卡2021年| 日日爽夜夜爽网站| 国产99白浆流出| 巨乳人妻的诱惑在线观看| 天堂动漫精品| 午夜精品在线福利| 精品久久久久久久久久免费视频| 亚洲一区二区三区色噜噜| 精品国产美女av久久久久小说| 日本免费a在线| 久久久久久亚洲精品国产蜜桃av| 欧美一级a爱片免费观看看 | 女人爽到高潮嗷嗷叫在线视频| 亚洲专区中文字幕在线| 国产亚洲欧美在线一区二区| 久久久久九九精品影院| 午夜久久久在线观看| 精品福利观看| 亚洲成av片中文字幕在线观看| 男人操女人黄网站| 99精品在免费线老司机午夜| 嫩草影视91久久| 欧美成人性av电影在线观看| 国产v大片淫在线免费观看| 欧美精品啪啪一区二区三区| 中文字幕人成人乱码亚洲影| 欧美成人性av电影在线观看| 久久久久精品国产欧美久久久| 国产亚洲av高清不卡| 亚洲av成人av| 日韩一卡2卡3卡4卡2021年| 黑人操中国人逼视频| 日韩成人在线观看一区二区三区| 亚洲黑人精品在线| 亚洲第一欧美日韩一区二区三区| www日本在线高清视频| 亚洲男人天堂网一区| 非洲黑人性xxxx精品又粗又长| 激情在线观看视频在线高清| 女生性感内裤真人,穿戴方法视频| av福利片在线| 波多野结衣巨乳人妻| 国产欧美日韩一区二区三| 国产日本99.免费观看| 亚洲电影在线观看av| 99国产精品一区二区蜜桃av| 欧美绝顶高潮抽搐喷水| 露出奶头的视频| 精品久久久久久久久久免费视频| 国产91精品成人一区二区三区| 国产v大片淫在线免费观看| 嫩草影视91久久| 两性夫妻黄色片| 国语自产精品视频在线第100页| 黑丝袜美女国产一区| 成人18禁高潮啪啪吃奶动态图| 精品国产一区二区三区四区第35| 免费在线观看亚洲国产| 亚洲全国av大片| 18美女黄网站色大片免费观看| 一本大道久久a久久精品| 色综合站精品国产| 级片在线观看| 亚洲av成人不卡在线观看播放网| 亚洲成av人片免费观看| 一边摸一边做爽爽视频免费| 久久久久国内视频| 亚洲最大成人中文| 免费观看人在逋| 色播在线永久视频| 精品久久久久久久毛片微露脸| 中文字幕久久专区| 老汉色av国产亚洲站长工具| 精品国产乱子伦一区二区三区| 久久天堂一区二区三区四区| 高清在线国产一区| 久久精品国产亚洲av香蕉五月| 精品久久蜜臀av无| 村上凉子中文字幕在线| 首页视频小说图片口味搜索| 亚洲自拍偷在线| 亚洲人成伊人成综合网2020| 午夜福利在线在线| 99热6这里只有精品| 中文字幕精品亚洲无线码一区 | 国产精品久久久av美女十八| 性欧美人与动物交配| 精品少妇一区二区三区视频日本电影| 国产一区二区激情短视频| 最近最新免费中文字幕在线| 日韩欧美一区二区三区在线观看| 在线观看免费日韩欧美大片| 99国产精品99久久久久| 99re在线观看精品视频| 两个人视频免费观看高清| 欧美最黄视频在线播放免费| 嫩草影视91久久| 色综合婷婷激情| 亚洲一区二区三区不卡视频| 久久久久久久久久黄片| 免费在线观看亚洲国产| 亚洲中文字幕一区二区三区有码在线看 | 午夜激情av网站| 亚洲熟妇熟女久久| 国产成人啪精品午夜网站| 12—13女人毛片做爰片一| 亚洲黑人精品在线| 亚洲中文日韩欧美视频| 99精品欧美一区二区三区四区| 亚洲成a人片在线一区二区| 国产亚洲av高清不卡| 欧美性猛交╳xxx乱大交人| 男女那种视频在线观看| 中文字幕av电影在线播放| 国产又色又爽无遮挡免费看| 亚洲人成电影免费在线| 亚洲五月色婷婷综合| 亚洲激情在线av| 欧美乱妇无乱码| 久久久久国产精品人妻aⅴ院| 久久久久久久久久黄片| 久久久国产成人精品二区| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕人妻丝袜一区二区| 非洲黑人性xxxx精品又粗又长| 亚洲精品在线美女| 狠狠狠狠99中文字幕| 色播在线永久视频| 免费电影在线观看免费观看| aaaaa片日本免费| 欧美成人午夜精品| 日本免费a在线| 人人澡人人妻人| 精品国产一区二区三区四区第35| 99在线视频只有这里精品首页| 亚洲国产精品合色在线| 国产精品爽爽va在线观看网站 | 欧美日本视频| 免费在线观看完整版高清| 可以在线观看的亚洲视频| 黑人巨大精品欧美一区二区mp4| 极品教师在线免费播放| 男女那种视频在线观看| 国产精品久久久av美女十八| 热99re8久久精品国产| 亚洲电影在线观看av| 亚洲av第一区精品v没综合| 看免费av毛片| 亚洲美女黄片视频| 在线观看午夜福利视频| 天堂动漫精品| 国产在线观看jvid| 禁无遮挡网站| 岛国在线观看网站| 久久久久久久午夜电影| √禁漫天堂资源中文www| 波多野结衣高清无吗| 一区二区三区精品91| 亚洲午夜精品一区,二区,三区| 男女视频在线观看网站免费 | 国产成人欧美| 亚洲精品国产区一区二| 一本一本综合久久| 天天躁夜夜躁狠狠躁躁| 欧美色欧美亚洲另类二区| 日韩成人在线观看一区二区三区| 国产激情久久老熟女| 免费av毛片视频| 午夜久久久久精精品| 国产精品二区激情视频| 波多野结衣巨乳人妻| av在线天堂中文字幕| 欧美国产精品va在线观看不卡| 一个人观看的视频www高清免费观看 | 亚洲aⅴ乱码一区二区在线播放 | 色综合亚洲欧美另类图片| 久久国产精品人妻蜜桃| 久久久久久国产a免费观看| 欧美日本视频| 色播亚洲综合网| 手机成人av网站| 国产成人影院久久av| 国产一区二区三区视频了| 亚洲成人久久爱视频| av中文乱码字幕在线| 老司机午夜福利在线观看视频| 亚洲片人在线观看| 欧美久久黑人一区二区| 色综合站精品国产| 国产精品乱码一区二三区的特点| a级毛片在线看网站| 精品国产亚洲在线| 精品一区二区三区四区五区乱码| www日本黄色视频网| 国产精品亚洲av一区麻豆| 91字幕亚洲| 国产精品自产拍在线观看55亚洲| 久久中文字幕人妻熟女| 性欧美人与动物交配| 亚洲一区中文字幕在线| 久久婷婷人人爽人人干人人爱| 日本撒尿小便嘘嘘汇集6| 精品国产亚洲在线| 搡老妇女老女人老熟妇| 成熟少妇高潮喷水视频| 午夜视频精品福利| 精品久久久久久久末码| 夜夜躁狠狠躁天天躁| 久久国产乱子伦精品免费另类| 精品无人区乱码1区二区| 美女大奶头视频| 国内久久婷婷六月综合欲色啪| 88av欧美| 亚洲午夜理论影院| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利高清视频| 久久草成人影院| 免费av毛片视频| 欧美最黄视频在线播放免费| 中文字幕另类日韩欧美亚洲嫩草| 少妇 在线观看| 午夜精品久久久久久毛片777| 女人高潮潮喷娇喘18禁视频| 国产精品久久电影中文字幕| 十八禁网站免费在线| 久久 成人 亚洲| 欧美日韩亚洲综合一区二区三区_| 欧美日韩精品网址| 久久久国产成人免费| 12—13女人毛片做爰片一| 在线观看免费日韩欧美大片| 国产精品影院久久| 国产v大片淫在线免费观看| 免费av毛片视频| 久久 成人 亚洲| 51午夜福利影视在线观看| 亚洲人成网站在线播放欧美日韩| 午夜激情福利司机影院| 久久国产精品男人的天堂亚洲| 亚洲欧洲精品一区二区精品久久久| 欧美激情极品国产一区二区三区| 国产精品乱码一区二三区的特点| 禁无遮挡网站| 男女午夜视频在线观看| 亚洲欧洲精品一区二区精品久久久| 黄色视频不卡| 久久久久国产精品人妻aⅴ院| 中文资源天堂在线| 亚洲七黄色美女视频| 亚洲成人免费电影在线观看| 美女 人体艺术 gogo| 欧美在线黄色| 人妻丰满熟妇av一区二区三区| 天天添夜夜摸| 日本成人三级电影网站| 欧美日韩福利视频一区二区| 精品国产一区二区三区四区第35| 国内精品久久久久精免费| 香蕉丝袜av| 精品不卡国产一区二区三区| 国产成人一区二区三区免费视频网站| 日本 av在线| 可以在线观看毛片的网站| 日本a在线网址| 亚洲电影在线观看av| 97超级碰碰碰精品色视频在线观看| 黄色女人牲交| 久久人妻福利社区极品人妻图片| 老熟妇乱子伦视频在线观看| 久9热在线精品视频| 色在线成人网| 亚洲人成网站高清观看| 精品国产乱码久久久久久男人| 熟女电影av网| 亚洲免费av在线视频| 一进一出好大好爽视频| 在线国产一区二区在线| 国产精品久久视频播放| 欧美又色又爽又黄视频| svipshipincom国产片| 日韩三级视频一区二区三区| 美女国产高潮福利片在线看| av福利片在线| 久久亚洲精品不卡| 亚洲中文日韩欧美视频| 1024视频免费在线观看| 波多野结衣高清无吗| 国产片内射在线| 国产精品爽爽va在线观看网站 | 淫秽高清视频在线观看| 少妇 在线观看| 很黄的视频免费| 久久天堂一区二区三区四区| 91九色精品人成在线观看| 高清毛片免费观看视频网站| 欧美日本亚洲视频在线播放| 男女那种视频在线观看| 国产黄色小视频在线观看| 欧美亚洲日本最大视频资源| 精品欧美一区二区三区在线| 变态另类丝袜制服| 老司机在亚洲福利影院| 中文字幕精品亚洲无线码一区 | 国产精品亚洲av一区麻豆| 99热只有精品国产| 又黄又粗又硬又大视频| 好男人在线观看高清免费视频 | 黑人欧美特级aaaaaa片| 久久人妻福利社区极品人妻图片| 妹子高潮喷水视频| 精品久久蜜臀av无| 啦啦啦 在线观看视频| 手机成人av网站| 国产成人av教育| 香蕉av资源在线| 欧美乱色亚洲激情| 亚洲色图 男人天堂 中文字幕| 99re在线观看精品视频| 真人做人爱边吃奶动态| 一边摸一边抽搐一进一小说| 午夜福利在线在线| 国产在线精品亚洲第一网站| 制服丝袜大香蕉在线| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美在线二视频| 黑丝袜美女国产一区| 精品国产亚洲在线| 人妻久久中文字幕网| 亚洲中文av在线| 女同久久另类99精品国产91| 亚洲一区高清亚洲精品| 亚洲成av片中文字幕在线观看| 日韩精品中文字幕看吧| 国产国语露脸激情在线看|