• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Measuring liquid-phase diffusion coefficient of aqueous sucrose solution using double liquid-core cylindrical lens

    2018-09-03 02:57:56SONGFangxiMENGWeidongXIAYanCHENYanPUXiaoyun
    中國光學(xué) 2018年4期
    關(guān)鍵詞:球差擴散系數(shù)水溶液

    SONG Fang-xi, MENG Wei-dong,3, XIA Yan, CHEN Yan, PU Xiao-yun,2*

    (1.Department of Physics and Astronomy,Yunnan University,Kunming 650091,China;2.International Joint Research Center for Photoelectronics Energy Materials,>Yunnan University,Kunming 650091,China;3.Key Laboratory of Quantum Information of Yunnan Province,Kunming 650091,China)

    Abstract: Based on the consideration of the high resolution of the spatial resolution of the refractive index of the double liquid-core cylindrical lens(DLCL), the liquid-phase diffusion coefficients of different concentrations of aqueous sucrose solution are measured at room temperature(25 ℃) using two methods. Method 1:equivalent RI(refractive index) method is used to calculate the liquid phase diffusion coefficient by recording the time-dependent change of a specific refractive index layer during diffusion. Method 2:instantaneous diffusion analytical method is used to determine the liquid diffusion coefficient by reading the relationship between image width and diffusion position in an instantaneous diffusion image. The front liquid core of the DLCL serves as a diffusion cell and a main imaging element, and the rear liquid core serves as an aplanatic auxiliary system. The spherical aberration at a particular thin liquid layer can be reduced as needed with a DLCL, and the spherical aberration advantage within a certain range of refractive index can also be reduced. Both methods have the characteristics of high measurement accuracy. The relative errors between the measured results and the literature values of the two methods are less than 1.3% and 3.9%, respectively, indicating that the measurement system is stable and reliable and the measurement results are accurate when the liquid-phase diffusion coefficient is measured with a DLCL.

    Key words: double liquid-core cylindrical lens;diffusion coefficient;diffusion imaging;spherical aberration;refractive index

    1 Introduction

    引 言

    The diffusion coefficient is an important basic data for the study of mass transfer process, calculation of mass transfer rate, and chemical design and development. It is widely used in fields of chemical, pharmaceutical, food, biological and environmental protection fields[1-4]. Since the average distance between liquid molecules is much smaller than that of gas molecules, and the liquid molecules do not have regular arrangments like solids, the theoretical description and experimental measurement of the liquid phase diffusion coefficient are far more difficult than gas and solids. The liquid phase diffusion data of different systems is quite lacking[5-6]. At present, the liquid phase diffusion coefficient is mainly obtained by experimental methods. By measuring the concentration-dependent spatial and temporal distribution of the solution due to the diffusion process, the liquid phase diffusion coefficient is calculated according to Fick′s law[7]for describing the diffusion process. From the experimental method to measure the diffusion coefficient, the diaphragm pool method[8], optical interference method[9]and Taylor dispersion method[10]are widely used. In addition, measurement methods such as nuclear magnetic resonance[11], dynamic light scattering[12], fluorescent molecular tracing[13]and radioactive element tracing[14]can also be used. Diaphragm cell method[8]is a classical steady-state measurement method. This method measures the initial and steady state solution concentrations in the upper and lower parts of the diffusion cell, so the measurement time is longer.Optical interference method[9]measures interference fringes formed when target light and reference light meet in space, and inverts the spatial and temporal distribution information of diffusion solution concentration carried by the target light through fringes. The measurement accuracy of this method is high, but its requirements for the experimental environment are extremely demanding. The Taylor dispersion method[10]is to inject trace solute into the solvent flowing in the capillary. The solute diffuses in the solvent to form a Gaussian distribution of the solution concentration along the capillary axis. The diffusion coefficient is calculated by measuring the concentration distribution curves at different times. The method is fast, but the measurement accuracy is low. The NMR method[11]has the characteristics of anti-interference, fast speed,etc., but it is only suitable for measuring some special substances. The dynamic light scattering method[12]is suitable for the measurement of the diffusion coefficient of a polymer solution. There are other methods such as fluorescent molecular tracing[13]and radioactive element tracing[14]. However, they are not widely used. In order to solve these problems, according to the imaging principle of the liquid-core cylindrical lens focal plane, we proposed the equivalent RI(refractive index) method[15-16]and the instantaneous diffusion image analytical method[16-17]to measure the liquid-phase diffusion coefficient by analyzing the diffusion image. Spherical aberration is the main factor influencing the imaging quality of diffused images. The ability of the DLCL[18]to reduce the spherical aberration improves the imaging quality of the diffused image,and it is the key to accurately measure the liquid-phase diffusion coefficient. The front liquid core of the DLCL serves as a diffusion cell and the main imaging element, and the rear liquid core serves as an aplanatic auxiliary system[19-20]. In this paper, DLCL is used to reduce the spherical aberration at certain thin liquid layers as needed, and it can reduce the advantage of spherical aberration within a certain refractive index range. In this paper, the diffusion coefficients of different concentrations of aqueous sucrose solution at room temperature(25 ℃) are measured by combining the above two methods.

    擴散系數(shù)是研究傳質(zhì)過程、計算傳質(zhì)速率及化工設(shè)計與開發(fā)的重要基礎(chǔ)數(shù)據(jù),廣泛應(yīng)用于化工、醫(yī)藥、食品、生物及環(huán)保等領(lǐng)域[1-4]。由于液體分子的平均間距遠比氣體分子小, 又不及固體那樣有規(guī)則排列, 所以液相擴散系數(shù)的理論描述和實驗測量遠比氣體及固體困難, 不同體系的液相擴散數(shù)據(jù)相當(dāng)缺乏[5-6]。目前,液相擴散系數(shù)主要依靠實驗方法獲得,通過測量溶液由于擴散過程形成的濃度隨空間和時間的分布,根據(jù)描述擴散過程的Fick定律[7]計算出液相擴散系數(shù)。從測量擴散系數(shù)的實驗方法來看,廣泛采用的是膜池法[8]、光干涉法[9]和泰勒分散法[10]。此外,還有核磁共振[11]、動態(tài)光散射[12]、熒光分子示蹤[13]和放射性元素示蹤[14]等測量方法。膜池法[8]是一種經(jīng)典的穩(wěn)態(tài)測量法,需要測量擴散池上下兩個部分初始及穩(wěn)態(tài)時的溶液濃度,測量時間較長。光干涉法[9]是測量目標(biāo)光和參考光在空間相遇時形成的干涉條紋,通過條紋反演出目標(biāo)光攜帶的擴散溶液濃度的空間和時間分布信息,該方法的測量精度較高,但其對實驗環(huán)境的要求極為苛刻。泰勒分散法[10]是將微量溶質(zhì)注入在毛細管中流動的溶劑中,溶質(zhì)在溶劑中的擴散形成溶液濃度沿毛細管軸向的高斯分布,通過測量不同時刻濃度的分布曲線計算出擴散系數(shù),該方法測量速度快,但測量精度較低。核磁共振法[11]具有抗干擾,測速快等特點,但只適用于測量一些特殊物質(zhì)。光散射法[12]適用于測量高分子溶液的擴散系數(shù)。另外,還有熒光分子示蹤[13]和放射性元素示蹤[14]等方法,但它們的使用并不廣泛。為了解決這些問題,我們根據(jù)液芯柱透鏡焦平面成像原理,提出了等折射率薄層移動法[15-16]和瞬態(tài)圖像分析法[16-17],通過分析擴散圖像測量液相擴散系數(shù)。球差是影響擴散圖像成像質(zhì)量的主要因素,雙液芯柱透鏡(DLCL)[18]減小球差的能力提高了擴散圖像的成像質(zhì)量,是精確測量液相擴散系數(shù)的關(guān)鍵。DLCL的前液芯作為擴散池和主要成像元件,后液芯作為消球差輔助系統(tǒng)[19-20]。本文利用DLCL可以按需減小特定液體薄層處的球差以及能夠在一定的折射率范圍內(nèi)同時減小球差的優(yōu)勢,結(jié)合兩種方法分別測量了室溫(25 ℃)下不同濃度蔗糖水溶液的擴散系數(shù)。

    2 Experimental setup

    實驗裝置

    The experimental setup is shown in Fig.1. Monochromatic parallel light(center wavelengthλ=589 nm) is normally incident on the DLCL after slit width limiting. The front liquid core of the DLCL serves as a diffusion cell and the main imaging element, and the rear liquid core serves as an abatement assistant system. As an image acquisition system, a CMOS industrial camera is fixed on a one-dimensional electronic displacement stage with a minimum division value of 1 μm and connected to a computer. The diffusion process can be observed on a computer in real time.

    Fig.1 Schematic diagram of the experimental setup 圖1 實驗裝置圖

    實驗裝置如圖1所示。單色平行光(中心波長λ=589 nm)經(jīng)狹縫限寬后垂直入射到DLCL上,DLCL的前液芯作為擴散池和主要成像元件,后液芯作為消球差輔助系統(tǒng)。CMOS工業(yè)相機作為圖像采集系統(tǒng),固定在一個最小分度值為1 μm的一維電子位移臺上并與計算機相連,在計算機上可實時觀測擴散過程。

    3 Measuring principle

    測量原理

    3.1 Imaging principle

    成像原理

    The imaging principle is shown in Fig.2. A single solution with a refractive index ofniis injected into the front liquid core of DLCL, and a liquid with refractive indexn′ is injected into the rear liquid core. The monochromatic parallel light passes through the lens perpendicular to theZaxis and the CMOS in the image focal plane of the cylindrical lens system will acquire a sharp focal line parallel to theZaxis, as shown in Fig.2(a). Two different refractive index solutions are injected in the front liquid core one after another. After diffusion, the liquid forms a concentration gradient distribution of the refractive index along the axis of the cylindrical lens. Select a thin liquid layer refractive indexnc, move CMOS to the image focal plane of the thin layer of refractive index, after the monochromatic parallel light passes through the cylindrical lens system, CMOS will collect a “beam waist” like diffusion image, as shown in Fig.2(b). On the imaging plane, only the thin layer of liquid corresponding to the refractive indexni=ncis clearly imaged; when the refractive indexni=n1nc, the focal point position is in front of the imaging plane, which is called “over-focusing”, and the parallel light forms a diffusion line segment with a width ofΣ2on the imaging plane.

    Fig.2 Imaging principle of DLCL 圖2 雙液芯柱透鏡成像原理圖

    成像原理如圖2所示。在DLCL的前液芯中注入折射率為ni的單一溶液,后液芯注入折射率為n′的液體,單色平行光垂直于Z軸通過透鏡后,位于柱透鏡系統(tǒng)像方焦平面的CMOS將采集到一條平行于Z軸的明銳焦線,如圖2(a)所示。在前液芯內(nèi)先后注入兩種不同折射率的溶液,經(jīng)擴散后,液體沿柱透鏡軸向形成折射率的某種濃度梯度分布。選定某一液體薄層折射率nc,移動CMOS到該折射率薄層的像方焦平面上,單色平行光經(jīng)過柱透鏡系統(tǒng)后,CMOS將采集到“束腰”狀的擴散圖像,如圖2(b)所示。在成像平面上只有折射率ni=nc對應(yīng)的液體薄層處清晰成像;當(dāng)折射率ni=n1nc時,焦點位置在成像平面前,即“過聚焦”,平行光在成像平面上形成寬度為Σ2的彌散線段。

    3.2 Method for calculating the spatial distribution of refractive index

    折射率空間分布的計算方法

    The refractive index of the front liquid core of DLCL isni, the refractive index of the rear liquid core isn′, and the focal length of the cylindrical lens system isfi. Based on the Gaussian formula of paraxial imaging,fiandnisatisfy the following recurrence relations[21-22]:

    DLCL的前液芯液體折射率為ni,后液芯液體折射率為n′,柱透鏡系統(tǒng)的焦距為fi,基于近軸成像高斯公式,fi和ni滿足如下遞推關(guān)系[21-22]:

    (1)

    (2)

    (3)

    (4)

    (5)

    (6)

    WhereRianddiare defined as shown in Fig.3,R1=|R4|=45.0 mm,R2=|R3|=27.9 mm,R5=21.5 mm,R6=∞, respectively represent the curvature radius of the DLCL glass surfaces;d1=d4=4.0 mm,d2=d3=3.0 mm,d5=3.2 mm,d6=12.0 mm respectively represent the distance between each surface of the lens and the distance from each surface to the center of the lens; the solid lens that makes up DLCL is K9 glass, the refractive indexn0=1.516 3. The focal length is measured by experiment. Substituting it into formulas (1)-(6), the refractive indexniof the liquid to be measured in the front liquid core can be inversely solved.

    式中,Ri及di的定義如圖3所示,R1=|R4|=45.0 mm,R2=|R3|=27.9 mm,R5=21.5 mm,R6=∞,分別表示DLCL各玻璃曲面的曲率半徑值;d1=d4=4.0 mm,d2=d3=3.0 mm,d5=3.2 mm,d6=12.0 mm,分別表示透鏡各個面之間及距透鏡中心的距離;組成DLCL的固態(tài)透鏡材料為K9玻璃,折射率n0=1.516 3。用實驗方法測量出焦距fi,代入式(1)~(6)即可反解出前液芯中待測液體的折射率ni。

    Taking “under focus” imaging as an example, a top view of the DLCL imaging light path is shown in Fig.3. When monochromatic parallel light with a width ofhpasses through the cylindrical lens system perpendicularly and if the refractive index of the thin liquid layer isni=nc, the monochromatic parallel light passes through the cylindrical lens and is clearly imaged on the imaging plane. The focal length of the cylindrical lens system isfc; When the refractive index of the thin liquid layerisni

    Fig.3 Top view of DLCL and corresponding imaging light path 圖3 雙液芯柱透鏡及其成像光路俯視圖

    以“欠聚焦”成像為例,DLCL成像光路俯視圖如圖3所示。當(dāng)寬度為h的單色平行光垂直通過柱透鏡系統(tǒng),液體薄層折射率ni=nc時,單色平行光經(jīng)柱透鏡后在成像平面上清晰成像,柱透鏡系統(tǒng)焦距為fc;液體薄層的折射率ni

    (7)

    The widthΣiof a certain position of an image is measured by an experimental method, and the focal lengthfiof the corresponding thin liquid layer can be calculated according to formula (7). Substitutingfiinto formulas (1)-(6), the refractive indexniof the thin liquid layer can be calculated.

    由實驗方法測量出圖像某一位置的寬度Σi,即可根據(jù)式(7)算出對應(yīng)液體薄層的焦距fi,將fi代入式(1)~(6)即可算出液體薄層的折射率ni。

    3.3 Method for calculating the liquid phase diffusion coefficient

    液相擴散系數(shù)的計算方法

    The diffusion of the two solutions along the cylindrical lens axis(Z-axis) is considered as a one-dimensional free diffusion process, assuming that the two diffusion solutions are A and B respectively, and the concentration of A in B isC, and the diffusion process ofCalongZaxis follows Fick′s second law[7]:

    將兩種溶液沿柱透鏡軸向(Z軸)的擴散看做一維自由擴散過程,假設(shè)兩種擴散溶液分別為A和B,A在B中的濃度為C,C沿Z軸的擴散過程遵循Fick第二定律[7]:

    (8)

    WhereC(Z,t) represents the concentration atZat timet, andDis the diffusion coefficient. Before diffusion(t<0), the initial concentrations of the two solutions at both sides of the contact interface(Z=0) areC1andC2, respectively, and the solution of equation (8) satisfies:

    式中,C(Z,t)表示t時刻位置Z處的濃度,D是擴散系數(shù)。擴散開始前(t<0),兩種溶液在接觸界面(Z=0)兩邊的初始濃度分別是C1和C2,式(8)的解滿足:

    (9)

    (10)

    3.3.1 Equivalentrefractive index thin layer transfer method

    等折射率薄層移動法

    For a fixed diffusion system, the time from the start of diffusion to the recording of a certain diffuse image is denoted ast. The inverse error function

    對一固定擴散體系,從擴散開始到記錄某一幅擴散圖像的時間記為t。選定折射率為nc的液體薄層后,反誤差函數(shù)

    (11)

    3.3.2 Refractive index spatial distribution instantaneous method

    折射率空間分布瞬態(tài)法

    (12)

    4 Measurement results and analysis

    測量結(jié)果與分析

    The diffusion coefficients of aqueous sucrose solution of 0.10, 0.30, 0.50 and 0.70 mol/L are measured at room temperature. First, different concentrations of aqueous sucrose solution are prepared, and the refractive index is measured with Abbe refractometer. The linear relationship between the aqueous sucrose concentration and the refractive index is fitted:C=f(n)=20.5082n-27.3387, linear correlation coefficient isR2=0.999 9.

    實驗測量了室溫下濃度分別為0.10、0.30、0.50和0.70 mol/L的蔗糖水溶液的擴散系數(shù)。首先配置不同濃度的蔗糖水溶液,用阿貝折射儀測量其折射率,擬合出蔗糖水溶液濃度和折射率之間滿足線性關(guān)系:C=f(n)=20.5082n-27.3387,線性相關(guān)系數(shù)R2=0.999 9。

    4.1 Measurement results of equivalent refractive index method

    等折射率薄層法測量結(jié)果

    For the equivalent refractive index thin layer method, it is necessary to collect a plurality of diffusion images within a certain diffusion time, and the diffusion coefficient is calculated by recording the relationship of the focal position with time. Accurate judgment of the position of the clear imaging point of the thin layer of this refractive index is required by this method, and it is also required to reduce the spherical aberration at the thin layer of the refractive index. After the diffusion solution is injected into the front liquid core of DLCL and a refractive index thin layer (close to the refractive index of the liquid to be measured[23]) is selected, the relationship between the spherical aberration of the DLCL system and the refractive index of the rear liquid core is calculated at different refractive index thin layers. The calculation result is shown in the following figure.

    等折射率薄層法需要在一定的擴散時間內(nèi)采集多幅擴散圖像,通過記錄焦點位置隨時間的變化關(guān)系計算擴散系數(shù)。此方法需要準確判斷折射率薄層清晰成像點的位置,要求在該折射率薄層處減小球差。在DLCL的前液芯中注入擴散溶液,選定折射率薄層(靠近待測液體折射率[23])后,計算不同折射率薄層處DLCL系統(tǒng)球差與后液芯液體折射率的關(guān)系,計算結(jié)果如圖4所示。

    Fig.4 Relationship between the refractive index thin layer spherical aberration and the refractive index of the rear liquid core 圖4 不同折射率薄層球差與后液芯液體折射率的關(guān)系

    The diffusion coefficients of aqueous sucrose solution of 0.10, 0.30, 0.50 and 0.70 mol/L are measured. The selected thin layers of refractive index are 1.3387, 1.3481, 1.3580, and 1.3676, respectively. If the calculated system spherical aberration is the minimal, the refractive index of the corresponding rear liquid core is 1.3973, 1.3973, 1.3985, and 1.4008, respectively.

    測量濃度分別為0.10、0.30、0.50和0.70 mol/L蔗糖水溶液的擴散系數(shù),所選定的折射率薄層分別為1.338 7、1.348 1、1.358 0和1.367 6,計算得到系統(tǒng)球差最小時,對應(yīng)的后液芯液體折射率分別為1.397 3、1.397 3、1.398 5和1.400 8。

    Taking the diffusion coefficient of a 0.10 mol/L aqueous sucrose solution as an example, a 25 mm-high 0.90 mol/L aqueous sucrose solution is slowly injected with a digital syringe in the front liquid core of the DLCL and allowed to stand for 600 s to reduce liquid disturbance. Then, 0.10 mol/L aqueous sucrose solution is slowly injected, and corresponding best aplanatic liquid(n′=1.397 3) is injected into the rear liquid core. Adjust the displacement platform of the CMOS imaging system so that it is located on the focal plane of the selected thin liquid layer(nc=1.338 7). In order to reduce the effect of turbulence on the measurement of the liquid diffusion coefficient, a diffusion image is to be collected every 300 s after standing for 1 200 s. The diffusion image of 0.10-0.90 mol/L aqueous sucrose solution is shown in Fig.5(only some experimental images are listed).

    以測量0.10 mol/L蔗糖水溶液的擴散系數(shù)為例,在DLCL的前液芯中,用數(shù)字注射器緩慢注入25 mm高的0.90 mol/L蔗糖水溶液,靜置600 s以減小液面擾動后,再緩慢注入0.10 mol/L蔗糖水溶液,后液芯注入對應(yīng)的最佳消球差液體(n′=1.397 3)。調(diào)節(jié)CMOS成像系統(tǒng)位移平臺,使其位于所選液體薄層(nc=1.338 7)的焦平面上,為了減小紊流對測量液相擴散系數(shù)的影響,靜置1 200 s后每隔300 s采集一幅擴散圖像。0.10→0.90 mol/L蔗糖水溶液的擴散圖像如圖5所示(僅列出部分實驗圖像)。

    Fig.5 Diffusion images of 0.10→0.90 mol/L aqueous sucrose solution 圖5 0.10→0.90 mol/L蔗糖水溶液擴散圖像

    Tab.1 Data record of equivalent refractive index location over time

    With this method, the diffusion coefficients of other aqueous sucrose solutions is measured. The results are shown in Tab.2.

    用此方法測量其他濃度蔗糖水溶液的擴散系數(shù),結(jié)果如表2所示。

    Tab.2 Data of the equivalent refractive index method of aqueous sucrose solution for different concentrations

    4.2 Instantaneous method measurement results

    瞬態(tài)法測量結(jié)果

    For instantaneous method, a diffusion image at a certain moment is acquired, and the liquid-phase diffusion coefficient is quickly calculated by recording the width characteristics of the image at different locations. The experimental error of this method is mainly caused by the influence of spherical aberration on the image width, so it is necessary to reduce the spherical aberration over the entire refractive index range of the diffusion system. The diffusion solution is injected into the front liquid core of DLCL. Based on the refractive index range of the liquid of the front liquid core, the relationship between the sum of the spherical aberration of the DLCL system and the refractive index of the rear liquid core is calculated. The calculation results are shown in the following figure.

    瞬態(tài)法只需在某一時刻采集一幅擴散圖像,通過記錄不同位置處圖像的寬度特征快速計算出液相擴散系數(shù)。此方法的實驗誤差主要由球差對圖像寬度的影響造成,所以要求在擴散體系的整個折射率范圍內(nèi)減小球差。在DLCL的前液芯中注入擴散溶液,根據(jù)前液芯液體的折射率范圍,計算不同擴散體系DLCL系統(tǒng)球差之和與后液芯液體折射率的關(guān)系,計算結(jié)果如圖6所示。

    Fig.6 Relationship between the sum of spherical aberrations of different diffusion systems and the refractive index of the rearliquid core 圖6 不同擴散體系球差之和與后液芯液體折射率的關(guān)系

    The refractive index ranges of 0.10→0.90 mol/L, 0.30→0.90 mol/L, 0.50→0.90 mol/L and 0.70→0.90 mol/L aqueous sucrose solution for different diffusion systems are 1.338 1-1.376 6, 1.347 5-1.376 6, 1.357 5-1.376 6 and 1.367 4-1.376 6, respectively. The corresponding optimal liquid core refractive indexes are calculated to be 1.398 0, 1.399 0, 1.400 5 and 1.402 3, respectively.

    不同擴散體系0.10→0.90 mol/L、0.30→0.90 mol/L、0.50→0.90 mol/L和0.70→0.90 mol/L蔗糖水溶液的折射率范圍分別為1.338 1~1.376 6、1.347 5~1.376 6、1.357 5~1.376 6和1.367 4~1.376 6,計算得到對應(yīng)的最佳后液芯液體折射率分別為1.398 0、1.399 0、1.400 5和1.402 3。

    Fig.7 Transient diffusion image of 0.10→0.90 mol/L aqueous sucrose solution 圖7 0.10→0.90 mol/L蔗糖水溶液的瞬態(tài)擴散圖像

    Tab.3 Refractive index spatial distribution data at 2400 s

    This method measures the diffusion coefficient of other concentrations of aqueous sucrose solution. The measurement results are shown in Tab.4, and the inverse error function is represented byxin the fitting result.

    此方法測量其他濃度蔗糖水溶液的擴散系數(shù),測量結(jié)果如表4所示,反誤差函數(shù)在擬合結(jié)果中用x表示。

    Tab.4 Data of transient methods for different concentrations of aqueous sucrose solution

    4.3 Error analysis

    誤差分析

    The experimental error of the instantaneous diffusion image analytical method is mainly caused by the influence of spherical aberration on the image width. Taking the diffusion coefficient of a 0.10 mol/L aqueous sucrose solution as an example, the refractive index of the liquid thin layer isnc=1.338 9, and the spherical aberration of the image in the refractive index rangeni=1.338 1~1.338 9 is calculated to be less than 2.0 μm, which is less than the size of one pixel. Calculate the diffusion coefficient by randomly adding -5.5 μm, 0, and to the image width(Σi) in Tabl.3. The diffusion coefficientDrdm=4.71×10-6cm2/s is randomly calculated. The relative error between the diffusion coefficientDrdmand the diffusion coefficientD=5.02×10-6cm2/s calculated by directly reading the image width is -6.2%.

    瞬態(tài)法實驗誤差主要由球差對圖像寬度的影響造成。以測量0.10 mol/L蔗糖水溶液的擴散系數(shù)為例,液體薄層折射率nc=1.338 9,計算出折射率范圍ni=1.338 1~1.338 9內(nèi)圖像的球差小于2.0 μm,小于一個像元的大小。對表3中圖像寬度(Σi)隨機加上-5.5 μm、0和5.5 μm,計算其擴散系數(shù)。隨機計算得到擴散系數(shù)Drdm=4.71×10-6cm2/s,與直接讀取圖像寬度計算得到的擴散系數(shù)D=5.02×10-6cm2/s的相對誤差為-6.2%。

    5 Conclusion

    結(jié) 論

    In this paper, the diffusion coefficient of aqueous solutions of different concentrations of aqueous sucrose solution at room temperature is measured using DLCL which is independently designed and processed. The front liquid core of the DLCL serves as a diffusion cell and a main imaging element, and the rear liquid core serves as an aplanatic auxiliary system. According to the refractive index of the liquid in the front liquid core, the solution of the appropriate refractive index is added in the rear liquid core, so that the cylindrical lens system can eliminate spherical aberration at different refractive index positions, or simultaneously decrease spherical aberration in a larger refractive index range. Based on this advantage, the liquid diffusion coefficients are measured by combining the equivalent refractive index thin liquid layer method and the instantaneous diffusion image analytical method. The relative errors between the measured results and the literature values of the two methods are less than 1.3% and 3.9%, respectively. Finally, the error analysis of the two methods is performed. The experimental error of the first method is mainly raised by the reading error of the focus position, and the reading error may cause a relative deviation of 1.0%. The experimental error of the second method is mainly caused by the influence of spherical aberration on the image width, and the spherical aberration of one pixel may cause a relative deviation of 6.2% when reading the image width. The results show that the measurement system is stable and reliable, and the measurement result is accurate when the liquid-phase diffusion coefficient is measured with DLCL. The capability of DLCL to reduce the spherical aberration improves the imaging quality of the diffusion image and plays a key role in accurately measuring the liquid diffusion coefficient.

    本文利用自主設(shè)計加工的DLCL測量了室溫下不同濃度蔗糖水溶液的擴散系數(shù)。DLCL的前液芯作為擴散池和主要成像元件,后液芯作為消球差輔助系統(tǒng)。根據(jù)前液芯中液體的折射率,在后液芯中放入適當(dāng)折射率的溶液,可實現(xiàn)柱透鏡系統(tǒng)在不同折射率位置處消球差,或在較大的折射率范圍內(nèi)同時減小球差。利用這一優(yōu)勢,結(jié)合等折射率薄層移動法和瞬態(tài)圖像分析法測量液相擴散系數(shù),兩種方法的測量結(jié)果與文獻值的相對誤差分別小于1.3%和3.9%。最后對兩種方法進行了誤差分析,第一種方法的實驗誤差主要由焦點位置的讀數(shù)誤差引起,讀數(shù)誤差可能引起1.0%的相對偏差。第二種方法的實驗誤差主要由球差對圖像寬度的影響引起,讀取圖像寬度時一個像元的球差可能引起6.2%的相對偏差。結(jié)果表明,用DLCL測量液相擴散系數(shù)時,測量系統(tǒng)穩(wěn)定可靠,測量結(jié)果準確,DLCL減小球差的能力提高了擴散圖像的成像質(zhì)量,是精確測量液相擴散系數(shù)的關(guān)鍵。

    猜你喜歡
    球差擴散系數(shù)水溶液
    高階像差中球面像差與近視進展的研究現(xiàn)狀
    年齡相關(guān)性白內(nèi)障患者角膜球面像差分析
    開封地區(qū)年齡相關(guān)性白內(nèi)障患者角膜球面像差分析
    DMAC水溶液乙酸吸附分離過程
    聚焦水溶液中的三大守恒關(guān)系
    TEA水溶液的流變性研究
    基于Sauer-Freise 方法的Co- Mn 體系fcc 相互擴散系數(shù)的研究
    上海金屬(2015年5期)2015-11-29 01:13:59
    FCC Ni-Cu 及Ni-Mn 合金互擴散系數(shù)測定
    上海金屬(2015年6期)2015-11-29 01:09:09
    非時齊擴散模型中擴散系數(shù)的局部估計
    添加酸對HPP-SO2水溶液熱解吸的影響
    少妇的丰满在线观看| www.自偷自拍.com| 88av欧美| 一本久久中文字幕| 日本在线视频免费播放| 欧美激情久久久久久爽电影| 久久久国产欧美日韩av| 成人特级av手机在线观看| 亚洲精品久久国产高清桃花| 国产成人啪精品午夜网站| 国产伦一二天堂av在线观看| 久久国产乱子伦精品免费另类| 日韩三级视频一区二区三区| 久久久色成人| 精品久久久久久久久久免费视频| 精品一区二区三区视频在线观看免费| 99热只有精品国产| 男人的好看免费观看在线视频| 亚洲欧美精品综合久久99| 亚洲中文日韩欧美视频| 精品人妻1区二区| 变态另类丝袜制服| 精品熟女少妇八av免费久了| 精品久久久久久久人妻蜜臀av| 日本黄大片高清| 草草在线视频免费看| 搡老妇女老女人老熟妇| 欧美极品一区二区三区四区| 激情在线观看视频在线高清| 午夜a级毛片| 性色av乱码一区二区三区2| 非洲黑人性xxxx精品又粗又长| 啦啦啦观看免费观看视频高清| 亚洲熟女毛片儿| 久久精品国产亚洲av香蕉五月| 亚洲精品中文字幕一二三四区| 在线看三级毛片| 亚洲av中文字字幕乱码综合| 人人妻,人人澡人人爽秒播| 床上黄色一级片| 久久午夜亚洲精品久久| 丁香六月欧美| 女人高潮潮喷娇喘18禁视频| 精品免费久久久久久久清纯| 99久久综合精品五月天人人| 熟妇人妻久久中文字幕3abv| 一a级毛片在线观看| 午夜亚洲福利在线播放| 亚洲国产中文字幕在线视频| 国产亚洲av高清不卡| 国产高清激情床上av| 91在线精品国自产拍蜜月 | 在线看三级毛片| 免费一级毛片在线播放高清视频| 身体一侧抽搐| 亚洲av成人av| 很黄的视频免费| 一区二区三区国产精品乱码| 少妇熟女aⅴ在线视频| 不卡一级毛片| 在线十欧美十亚洲十日本专区| 最近最新中文字幕大全电影3| 国产成+人综合+亚洲专区| 999久久久精品免费观看国产| 精品久久久久久,| 国产私拍福利视频在线观看| 淫秽高清视频在线观看| 精品一区二区三区视频在线 | 国产成人啪精品午夜网站| 久久久久精品国产欧美久久久| 久久久久久久久免费视频了| 色综合婷婷激情| 久久久久国产精品人妻aⅴ院| 麻豆久久精品国产亚洲av| 亚洲精品色激情综合| 国模一区二区三区四区视频 | 亚洲精品美女久久av网站| 男人和女人高潮做爰伦理| 精品久久久久久久久久免费视频| 97碰自拍视频| 国产高清有码在线观看视频| 精品久久久久久成人av| 在线观看免费视频日本深夜| 天堂√8在线中文| 后天国语完整版免费观看| 夜夜躁狠狠躁天天躁| 三级国产精品欧美在线观看 | 欧美日韩国产亚洲二区| 美女免费视频网站| 亚洲七黄色美女视频| 99久久综合精品五月天人人| 国产精品一区二区精品视频观看| 深夜精品福利| 在线观看日韩欧美| 99久久99久久久精品蜜桃| 国产男靠女视频免费网站| 综合色av麻豆| 免费看日本二区| 国产精品国产高清国产av| 色噜噜av男人的天堂激情| 色精品久久人妻99蜜桃| 中文字幕久久专区| av中文乱码字幕在线| 国内毛片毛片毛片毛片毛片| 欧美一级毛片孕妇| 精品不卡国产一区二区三区| 国产精品九九99| 国产成人av教育| 国产亚洲精品综合一区在线观看| 美女午夜性视频免费| 免费人成视频x8x8入口观看| 国产成人av激情在线播放| 日韩免费av在线播放| 久久久久久大精品| 成人三级做爰电影| 成年女人看的毛片在线观看| 国产一区二区在线av高清观看| 国产成人av教育| 国产成+人综合+亚洲专区| 国产精品香港三级国产av潘金莲| 日韩高清综合在线| 可以在线观看毛片的网站| 欧美+亚洲+日韩+国产| or卡值多少钱| 欧美中文综合在线视频| av在线蜜桃| 麻豆国产97在线/欧美| 美女 人体艺术 gogo| 亚洲一区二区三区不卡视频| 久久天堂一区二区三区四区| 亚洲人成电影免费在线| 日本熟妇午夜| 日韩欧美一区二区三区在线观看| 可以在线观看的亚洲视频| 国产亚洲精品综合一区在线观看| 日韩欧美一区二区三区在线观看| 久久这里只有精品19| 搞女人的毛片| 久久久久久久久久黄片| 99久久精品国产亚洲精品| 日韩国内少妇激情av| 午夜a级毛片| 免费观看的影片在线观看| 欧美最黄视频在线播放免费| 巨乳人妻的诱惑在线观看| 免费人成视频x8x8入口观看| 波多野结衣巨乳人妻| 欧美日本亚洲视频在线播放| 十八禁人妻一区二区| 成人一区二区视频在线观看| 99re在线观看精品视频| 亚洲人成电影免费在线| 不卡av一区二区三区| 婷婷六月久久综合丁香| 18禁黄网站禁片午夜丰满| 欧美日韩国产亚洲二区| 亚洲av免费在线观看| 国产精品美女特级片免费视频播放器 | 国产一区二区在线观看日韩 | bbb黄色大片| 国产成+人综合+亚洲专区| 国产蜜桃级精品一区二区三区| 久久九九热精品免费| 中文字幕高清在线视频| 久久精品国产清高在天天线| x7x7x7水蜜桃| 日本成人三级电影网站| 亚洲中文av在线| 少妇的丰满在线观看| 九九在线视频观看精品| 国产精品av久久久久免费| 国产成人啪精品午夜网站| 两个人的视频大全免费| 99国产精品一区二区蜜桃av| 日日摸夜夜添夜夜添小说| 美女免费视频网站| 可以在线观看的亚洲视频| 国产精品乱码一区二三区的特点| 国产欧美日韩精品亚洲av| 国产视频内射| 欧美三级亚洲精品| 久久久精品欧美日韩精品| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区三区视频了| 国产精品女同一区二区软件 | 久久香蕉国产精品| 日韩欧美在线二视频| 老熟妇仑乱视频hdxx| 制服丝袜大香蕉在线| 国产高清videossex| ponron亚洲| 午夜亚洲福利在线播放| 国内精品久久久久精免费| 人人妻,人人澡人人爽秒播| www.999成人在线观看| 午夜精品久久久久久毛片777| 国产成人av教育| 日韩高清综合在线| 夜夜夜夜夜久久久久| 757午夜福利合集在线观看| 99久久精品热视频| 女警被强在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 免费电影在线观看免费观看| bbb黄色大片| 香蕉久久夜色| 久久亚洲真实| 一级毛片女人18水好多| 最好的美女福利视频网| 一本久久中文字幕| 99热这里只有是精品50| av天堂在线播放| 亚洲av第一区精品v没综合| 伦理电影免费视频| 又粗又爽又猛毛片免费看| 狠狠狠狠99中文字幕| 亚洲国产中文字幕在线视频| av中文乱码字幕在线| 91在线精品国自产拍蜜月 | 淫妇啪啪啪对白视频| 成人国产一区最新在线观看| 国产伦人伦偷精品视频| 精品一区二区三区av网在线观看| 国内精品美女久久久久久| 99国产综合亚洲精品| 久久精品国产99精品国产亚洲性色| 亚洲va日本ⅴa欧美va伊人久久| 国产精品av视频在线免费观看| 黄片大片在线免费观看| 成人18禁在线播放| 伦理电影免费视频| 亚洲精品色激情综合| 制服丝袜大香蕉在线| 后天国语完整版免费观看| 亚洲avbb在线观看| 国产激情偷乱视频一区二区| 女同久久另类99精品国产91| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩卡通动漫| 法律面前人人平等表现在哪些方面| 精品国产乱子伦一区二区三区| 变态另类成人亚洲欧美熟女| 久久精品夜夜夜夜夜久久蜜豆| 免费人成视频x8x8入口观看| 免费看日本二区| 成人永久免费在线观看视频| 黑人巨大精品欧美一区二区mp4| 老熟妇仑乱视频hdxx| 国产一区二区在线av高清观看| 91麻豆av在线| 一区二区三区高清视频在线| 日日干狠狠操夜夜爽| 久久人妻av系列| www.自偷自拍.com| 欧美成狂野欧美在线观看| 亚洲一区二区三区不卡视频| 99热只有精品国产| 成熟少妇高潮喷水视频| 天天躁狠狠躁夜夜躁狠狠躁| 美女 人体艺术 gogo| 亚洲国产高清在线一区二区三| 亚洲七黄色美女视频| 少妇的逼水好多| 精品国产美女av久久久久小说| 最新在线观看一区二区三区| 午夜视频精品福利| 亚洲精品久久国产高清桃花| 一个人看的www免费观看视频| 露出奶头的视频| 制服人妻中文乱码| 亚洲欧美日韩无卡精品| 精品一区二区三区四区五区乱码| 国产一区二区三区视频了| 免费搜索国产男女视频| 亚洲国产日韩欧美精品在线观看 | 舔av片在线| 国产在线精品亚洲第一网站| 国产主播在线观看一区二区| 欧美极品一区二区三区四区| 搡老岳熟女国产| 精品欧美国产一区二区三| 一级毛片高清免费大全| 精品国产美女av久久久久小说| 又爽又黄无遮挡网站| 久久久久久九九精品二区国产| 亚洲国产欧美一区二区综合| www日本在线高清视频| 国产精品日韩av在线免费观看| 亚洲第一电影网av| 欧美+亚洲+日韩+国产| 免费大片18禁| 国产亚洲av嫩草精品影院| 一二三四社区在线视频社区8| 久久久久国内视频| 女人被狂操c到高潮| 欧美绝顶高潮抽搐喷水| 一区福利在线观看| 日韩高清综合在线| 看免费av毛片| 18禁观看日本| 国产精品自产拍在线观看55亚洲| 老司机午夜福利在线观看视频| 在线观看66精品国产| 中文字幕人妻丝袜一区二区| 欧美成狂野欧美在线观看| 国产探花在线观看一区二区| 亚洲av中文字字幕乱码综合| 精品福利观看| 99国产极品粉嫩在线观看| a级毛片a级免费在线| 日本 欧美在线| 午夜成年电影在线免费观看| 国产免费男女视频| 国产高清视频在线播放一区| 亚洲精品美女久久av网站| av女优亚洲男人天堂 | 白带黄色成豆腐渣| 一进一出好大好爽视频| 日韩av在线大香蕉| 久久人妻av系列| 日本成人三级电影网站| 久久精品国产亚洲av香蕉五月| 国产高潮美女av| 亚洲电影在线观看av| 亚洲片人在线观看| 精品久久久久久久末码| 婷婷丁香在线五月| 在线国产一区二区在线| 99在线人妻在线中文字幕| 观看免费一级毛片| 久久精品国产清高在天天线| 国产 一区 欧美 日韩| 日本 av在线| www国产在线视频色| av中文乱码字幕在线| 国产成人av教育| 久久精品91蜜桃| 99国产综合亚洲精品| 午夜免费激情av| 亚洲精品中文字幕一二三四区| 狂野欧美激情性xxxx| 国产精品一区二区三区四区免费观看 | 日日摸夜夜添夜夜添小说| 在线观看一区二区三区| 欧美成人免费av一区二区三区| 久久久国产欧美日韩av| 精品久久蜜臀av无| 国产成人系列免费观看| 色av中文字幕| 少妇丰满av| 免费看日本二区| 久久国产乱子伦精品免费另类| 久久这里只有精品19| 又粗又爽又猛毛片免费看| 日韩有码中文字幕| 国产精品久久久久久亚洲av鲁大| 久久久久性生活片| av中文乱码字幕在线| 老司机午夜十八禁免费视频| 村上凉子中文字幕在线| 又爽又黄无遮挡网站| 日韩人妻高清精品专区| bbb黄色大片| 国产乱人视频| 亚洲人成电影免费在线| 神马国产精品三级电影在线观看| 免费在线观看成人毛片| 亚洲真实伦在线观看| 在线免费观看不下载黄p国产 | 精品一区二区三区视频在线 | 国产精品九九99| 美女被艹到高潮喷水动态| 一二三四社区在线视频社区8| 一本精品99久久精品77| 五月玫瑰六月丁香| 高潮久久久久久久久久久不卡| 18禁国产床啪视频网站| 日本一本二区三区精品| 精华霜和精华液先用哪个| 久久午夜亚洲精品久久| 91av网站免费观看| 国产久久久一区二区三区| 黄色 视频免费看| 亚洲欧美日韩卡通动漫| 国内久久婷婷六月综合欲色啪| 999久久久精品免费观看国产| 噜噜噜噜噜久久久久久91| 久久国产精品人妻蜜桃| 99re在线观看精品视频| 久久这里只有精品19| 欧美激情久久久久久爽电影| 一进一出好大好爽视频| 可以在线观看的亚洲视频| 欧美乱码精品一区二区三区| 亚洲精品色激情综合| 成人三级做爰电影| 欧美+亚洲+日韩+国产| 51午夜福利影视在线观看| 级片在线观看| 成人av一区二区三区在线看| 欧美日韩中文字幕国产精品一区二区三区| 少妇的丰满在线观看| 日本熟妇午夜| 少妇裸体淫交视频免费看高清| 中文字幕av在线有码专区| 国产精品一区二区三区四区久久| 制服人妻中文乱码| 久久精品aⅴ一区二区三区四区| 最近在线观看免费完整版| 看片在线看免费视频| 日本 av在线| 操出白浆在线播放| 一个人看的www免费观看视频| 黄色视频,在线免费观看| 高清在线国产一区| 99国产极品粉嫩在线观看| 又大又爽又粗| 亚洲av片天天在线观看| 亚洲激情在线av| 国产麻豆成人av免费视频| 一区二区三区高清视频在线| tocl精华| 两性午夜刺激爽爽歪歪视频在线观看| 99久久精品热视频| 国产成人aa在线观看| 午夜日韩欧美国产| 亚洲激情在线av| 老司机午夜十八禁免费视频| 国产亚洲av高清不卡| 国内毛片毛片毛片毛片毛片| 久久午夜综合久久蜜桃| 国产一区在线观看成人免费| 免费观看的影片在线观看| 亚洲专区字幕在线| 哪里可以看免费的av片| 99久国产av精品| 精品电影一区二区在线| 日韩av在线大香蕉| 窝窝影院91人妻| 久久婷婷人人爽人人干人人爱| 久久久国产成人精品二区| 久久久久久人人人人人| a在线观看视频网站| 亚洲av成人一区二区三| 叶爱在线成人免费视频播放| 国语自产精品视频在线第100页| 天堂网av新在线| 国产蜜桃级精品一区二区三区| 制服人妻中文乱码| 成年女人永久免费观看视频| 国产伦一二天堂av在线观看| 精品久久久久久久末码| 12—13女人毛片做爰片一| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品999在线| 色尼玛亚洲综合影院| 国产精品免费一区二区三区在线| 成人一区二区视频在线观看| 少妇裸体淫交视频免费看高清| 白带黄色成豆腐渣| 精品欧美国产一区二区三| 亚洲av成人不卡在线观看播放网| 久久草成人影院| 一进一出好大好爽视频| 国产1区2区3区精品| 久久中文字幕人妻熟女| 成年版毛片免费区| 国产欧美日韩一区二区精品| 久久久国产欧美日韩av| 天堂影院成人在线观看| 19禁男女啪啪无遮挡网站| 亚洲中文日韩欧美视频| 91久久精品国产一区二区成人 | 欧美不卡视频在线免费观看| 高清毛片免费观看视频网站| 国产爱豆传媒在线观看| 在线观看日韩欧美| 我的老师免费观看完整版| 久久中文字幕一级| 日本精品一区二区三区蜜桃| 久久久久性生活片| 人妻夜夜爽99麻豆av| 一本久久中文字幕| 三级男女做爰猛烈吃奶摸视频| 欧美日韩乱码在线| 国产午夜精品论理片| 国产精品精品国产色婷婷| 99国产精品99久久久久| av天堂在线播放| 黄色片一级片一级黄色片| 男插女下体视频免费在线播放| 久久久久久九九精品二区国产| 少妇的丰满在线观看| 亚洲激情在线av| 99国产精品99久久久久| 亚洲黑人精品在线| 一区二区三区高清视频在线| 中出人妻视频一区二区| 久久中文看片网| 午夜日韩欧美国产| 欧美黑人巨大hd| 午夜视频精品福利| 国产97色在线日韩免费| 1024香蕉在线观看| 国产亚洲精品av在线| 18禁美女被吸乳视频| 小说图片视频综合网站| 午夜激情福利司机影院| 久久精品国产亚洲av香蕉五月| 成人一区二区视频在线观看| 两个人视频免费观看高清| 国产一级毛片七仙女欲春2| 两人在一起打扑克的视频| 久久久成人免费电影| 脱女人内裤的视频| 日日干狠狠操夜夜爽| 亚洲中文字幕一区二区三区有码在线看 | 亚洲天堂国产精品一区在线| 老汉色av国产亚洲站长工具| 免费看光身美女| 久久九九热精品免费| 日本与韩国留学比较| 久久午夜综合久久蜜桃| 99国产综合亚洲精品| 99视频精品全部免费 在线 | 精品国产美女av久久久久小说| 成人精品一区二区免费| 色播亚洲综合网| ponron亚洲| 精品久久久久久成人av| 国产精品日韩av在线免费观看| 手机成人av网站| 最近在线观看免费完整版| 18禁黄网站禁片免费观看直播| 夜夜躁狠狠躁天天躁| 亚洲av第一区精品v没综合| 欧美日韩黄片免| 少妇的丰满在线观看| 亚洲18禁久久av| 一本综合久久免费| 欧美乱妇无乱码| 91av网一区二区| 日韩大尺度精品在线看网址| av视频在线观看入口| 一区二区三区高清视频在线| 亚洲国产中文字幕在线视频| 久久久久久久午夜电影| 亚洲专区国产一区二区| 午夜激情福利司机影院| 午夜免费观看网址| 国产成+人综合+亚洲专区| 久久九九热精品免费| 一级a爱片免费观看的视频| 久久久久久久久免费视频了| 搡老妇女老女人老熟妇| 悠悠久久av| 99热这里只有精品一区 | 国产高清videossex| 久久久精品欧美日韩精品| 九九在线视频观看精品| 首页视频小说图片口味搜索| 亚洲精品美女久久久久99蜜臀| 老司机深夜福利视频在线观看| 青草久久国产| 亚洲国产精品999在线| 国产探花在线观看一区二区| 99久久无色码亚洲精品果冻| 亚洲av成人不卡在线观看播放网| 中文在线观看免费www的网站| 免费大片18禁| 身体一侧抽搐| 国产激情久久老熟女| 综合色av麻豆| 国产精品久久久久久久电影 | 熟妇人妻久久中文字幕3abv| 国产欧美日韩一区二区精品| 国内揄拍国产精品人妻在线| 国产亚洲精品综合一区在线观看| 日本一二三区视频观看| 无遮挡黄片免费观看| 精品久久久久久久久久免费视频| 最近最新中文字幕大全免费视频| 999久久久国产精品视频| 日本三级黄在线观看| 国产精品精品国产色婷婷| 午夜福利在线观看免费完整高清在 | 在线观看一区二区三区| xxxwww97欧美| 无遮挡黄片免费观看| 天堂影院成人在线观看| 九色成人免费人妻av| 91九色精品人成在线观看| 一个人免费在线观看电影 | 一个人免费在线观看电影 | 黄片大片在线免费观看| 成人av一区二区三区在线看| 午夜激情福利司机影院| 亚洲片人在线观看| 窝窝影院91人妻| 搡老妇女老女人老熟妇| 麻豆成人av在线观看| 亚洲精品久久国产高清桃花| 国产99白浆流出| 亚洲欧美激情综合另类| 久久精品国产亚洲av香蕉五月| 午夜久久久久精精品| 18禁国产床啪视频网站| 丁香六月欧美| 成在线人永久免费视频| 小说图片视频综合网站| 麻豆成人午夜福利视频| 欧美又色又爽又黄视频| 国产久久久一区二区三区| 国产精品九九99| 手机成人av网站|