• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CFD simulation of gas–liquid flow in a high-pressure bubble column with a modified population balance model☆

    2018-08-31 05:29:52BoZhangLingtongKongHaiboJinGuangxiangHeSuoheYangXiaoyanGuo

    Bo Zhang,Lingtong Kong,Haibo Jin*,Guangxiang He,Suohe Yang,Xiaoyan Guo

    Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology,Beijing Institute of Petrochemical Technology,Beijing 102617,China

    Keywords:High-pressure bubble column Bubble coalescence Computational fluid dynamics Population balance model

    A B S T R A C T In this study,based on the Luo bubble coalescence model,a model correction factor C e for pressures according to the literature experimental results was introduced in the bubble coalescence efficiency term.Then,a coupled modified population balance model(PBM)with computational fluid dynamics(CFD)was used to simulate a high-pressure bubble column.The simulation results with and without C e were compared with the experimental data.The modified CFD-PBM coupled model was used to investigate its applicability to broader experimental conditions.These results showed that the modified CFD-PBM coupled model can predict the hydrodynamic behaviors under various operating conditions.

    1.Introduction

    Bubble column reactor has simple structure,large capacity,easy operation,adequate heat and mass transfer,and small bed pressure drop[1–3].Therefore,bubble columns are widely used in industry including chemical engineering,petrochemical,bio-engineering,environmental energy etc.[4].Many scholars have applied the population balance model in studying atmospheric bubble columns[5–7].But bubble columns in chemical production are generally operated under high pressures and examples are hydrocracking of petroleum(P=5.0–21 MPa),Fischer-Tropsch synthesis(P=2.0–5.0 MPa)and benzene hydrogenation(P=5.0 MPa)[8–11].Although high-pressure bubble columns are widely used in chemical and biochemical processes,their fundamental hydrodynamic behaviors,which are essential for reactor scale-up and design,are still not fully understood.

    The effect of pressure on the hydrodynamic behaviors of bubble columns has been experimentally investigated by many researchers.The gas holdup in high-pressure columns significantly increases due to the decreased bubble size[12–14].The gas–liquid mass transfer and reaction performance are enhanced as the pressure rises[10,15].With the development of computer technology,numerical simulation of gas–liquid two-phase flow has been greatly developed.Among them,Krishna et al.[16]used a CFD model to simulate the high-pressure bubble column with the drag force between gas and liquid was considered only,and a density correction term ρ/ρ0due to pressure change was introduced into the drag force model.Chen et al.[17]modified the gas density correction term in the drag model based on[16].Although the radial and axial velocity components were better predicted,the bubble diameter distribution was assumed constant.As the population balance model(PBM)can resolve the influence of bubble coalescence and breakup on bubble size distribution,the simulation of high-pressure bubble columns has been intensively conducted using the CFD-PBM coupled model in recent years.Wang et al.[18]imposed the energy and capillary constraints in the bubble breakup model,and got a modified PBM to express the effect of pressure.The bubble size distribution was then reasonably predicted by the modified PBM.Xing et al.[19]proposed a unified breakup model for both bubbles and droplets with the effect of pressure included.And this unified breakup model gave good predictions of both the effect of pressure(or gas density)on the bubble breakup rate and the different daughter size distributions of bubbles and droplets.Many works have been reported on the effect of pressure in bubble columns,but the mechanism of pressure effect was little addressed.

    Although the influence of pressure on the hydrodynamics in bubble columns is pronounced and very important for the design and scale-up of reactors at high pressures,further studies need to be conducted on the effects of pressure.In this paper,based on the Luo bubble coalescence kernel model,a correction coefficient Ceabout density ρ/ρ0is introduced in the bubble coalescence efficiency item.The modified CFDPBM coupled model is used to simulate the flow field in a high-pressure bubble column.The effects of pressure on the gas–liquid two-phase flow in the high-pressure bubble column were investigated at 0.5–2.0 MPa.It is shown that the modified CFD-PBM coupled model can describe the effect of pressure on the hydrodynamic parameters in the high-pressure bubble column.

    2.Mathematical Model

    2.1.Two- fluid model

    In the present work,the main approach for simulating gas–liquid flow s in a bubble column is Euler–Euler model.In contrast with the Euler–Lagrange approach,the gas phase and the liquid phase in the bubble column were considered as continuous phases of mutual penetration with the Euler–Euler approach.This approach gives a possibility of lower computational cost and particle size distributions.The control equations of the two- fluid model are generally based on the Reynolds-averaged method[20–22],assuming that the gas is incompressible,ignoring the heat transfer and mass transfer between the two phases.So a simplified form of control equations can be obtained:

    Continuity equation:

    Momentum conservation equation:

    2.2.Turbulence equations

    The standard k-ε model is selected for turbulence modeling.It is a classical representation of the Reynolds-averaged method.

    The k and ε equations are:

    with C1ε=1.44,C2ε=1.92,C3ε=1.2,Cμ=0.99,σk=1.0,σε=1.3.

    Turbulent viscosity is calculated by:

    2.3.Interphase forces

    The exact expression of the interphase forces is the key to simulating the gas–liquid two-phase flows,and many researches exist on the inter phase forces between gas and liquid[23,24].In this work,the drag force,transverse lift force,turbulent dispersion force and wall lubrication force are considered.

    2.3.1.The drag force

    It is generally believed that the drag is the predominant force in modeling the gas–liquid flow s of bubble columns[25],as did in many simulation[14,26].Air bubbles are formed from the bottom of the tower with a certain gas velocity.In the control volume formulation,all bubbles in the control volume suffer the total drag force as follow s:

    Liu et al.[23]introduced a modified drag coefficient CDin the bubble group drag model.And the modified drag model was used in the numerical investigations of the flow characteristics of pressurized churn turbulent bubble column with the operation pressure varying from 0.5 MPa to 2.0 MPa,and superficial gas velocity from 0.20 m·s?1to 0.31 m·s?1.The simulation results can accurately reflect varioushydrodynamic parameters in the bubble column.Therefore,their drag coefficient CD[23]is adopted in this work:

    2.3.2.Turbulent dispersion force

    In order to simulate the turbulence of the fluid in the high-pressure bubble column,it is necessary to introduce the turbulence diffusion force,which can help in making the gas holdup evenly distributed.A turbulent diffusion force formula proposed by Lopez de Bertodano[27]is as follows:

    CTDisthe coefficient of turbulent diffusion force,and its default value is 1.

    If Eq.(8)is used directly in the simulation,the simulation is not easy to converge.Therefore,the limiting function fTD,limitingis introduced into the Fluent 15.0 platform to adjust the turbulent disperation force model.The new expression of the turbulent diffusion force model becomes:

    w here εG,1and εG,2was set to be 0.3 and 0.7.

    2.3.3.Transverse lift force

    When the bubble is moving in the liquid,the pressure distribution around the bubble is not balanced due to the asymmetry of the liquid in the direction of the moving air bubbles.So that a transverse lift force is generated perpendicular to the direction of bubble motion.The lift force of the discrete phase in the continuous phase given by Drew[20]is.

    The coefficients CLand CTDhave different values in the literature.This uncertainty reflects the complexity of gasbubble diffusion in turbulent multiphase media and the limitations of prior know ledge.Zhang[28]considered the parameter CL/CTDas a function of liquid holdup εLand the equation is as follow s:

    2.3.4.Wall lubrication force

    The bubbles are subjected to a force toward the center,so the bubbles move in the direction away from the wall,and this force is called the wall lubrication force.Liquid velocity dependence on wall lubrication force is clearly shown by Nguyen et al.[29].So the wall lubrication force was introduced in the simulation of gas–liquid flow s.

    Tomiyama wall lubrication force model[30]is used in this work:

    where CWLis a value from Eq.(14).

    and CWis defined as:

    The definition of Eo is:

    2.4.Population balance model

    When the gas contacts with the liquid in the high-pressure bubble column,the dispersed bubbles exist in a broad range of size.A significant attribute of gas–liquid flows is that the bubbles of different sizes interact with each other through the mechanisms of breakup and coalescence.At present,the population balance model(PBM)is used to deal with this feature.A general form of the population balance equation is:

    2.4.1.Bubble breakup model

    Because the Luo model has a relatively simple form,high prediction accuracy,it is widely used.Therefore,the Luo model is adopted in this paper.

    in which K,n,m,β,b can be expressed as

    2.4.2.Bubble coalescence model

    The expression of bubble coalescence model[31]is.

    The collision frequency between bubbles can be expressed as.

    Based on the Luo model and the correction coefficient Ceintroduced,the modified bubble coalescence model is.

    In this work,the coalescence resulted from turbulent eddies was considered.Turbulent eddies cause the bubbles to collide and coalesce with a certain probability.The mechanism of pressure on bubble coalescence is not yet clear.Up to now,models for bubble coalescence are mainly based on experimental phenomena by semi-theoretical semiempirical analysis.Wang[6]introduced a constant correction coefficient Cein the bubble coalescence model.But,we find that the correction coefficient Ceis not a constant under different gas velocities and pressures.In this work,according to the experimental data of Qin[14]from cold experiment,a density correction factor Cecan be obtained by simulation at the apparent gas velocity 0.199,0.233,0.275 m·s?1and the operating pressure at 0.5,1,1.5,2.0 MPa.Specific data are shown in Table 1.The linear regression equation between Ceand the gas density is as follow s:

    Table 1Coalescence model correction coefficients and the simulated gas holdups

    3.Geometric Model and Mesh Generation

    The experiment of Qin[14]mainly examined the impact of pressure on the hydrodynamic behaviorsin variousoperating conditionsat 25°C.Air wasused asthe gasphase and water asliquid phase,the gas velocity was varied from 0.119 to 0.312 m·s?1and pressures from 0.5 to 2.0 MPa.

    The geometry of the high-pressure bubble column is shown in Fig.1(a):height 6600 mm,diameter 300 mm,wall thickness5 mm.Tw o conductivity probes at the height of 2550 mm and 3050 mm are used to measure the bubble size in the radial direction and the velocity of rise of bubble groups.The electrodes of Electrical Resistance Tomography(ERT)are evenly mounted on the inner wall of the high-pressure bubble column at the height of 2600 mm and 3000 mm to measure the local air holdup and average gas holdup.

    Compared with the 3D geometric model,the computational amount of the numerical simulation will be greatly reduced by the two-dimensional geometric model.Wang et al.[18]succeeded in simulating gas–liquid flow behaviors in a bubble column by an axisymmetric model.Therefore,two-dimensional axisymmetric geometric model are used in this work.As shown in Fig.1(b):6.6 m high and 0.15 m wide.In the model,no gas distribution plate is arranged on the column bottom and the gas is directly fed from the central bottom of the column(r/R≤0.8).The heights of 2550,2600,3000 and 3050 mm were set as the sampling sections.The experimental and simulation results are compared and analyzed in the following sections.

    The mesh of 2D simulation structure is generated by the Mapped Face Meshing method.Modification of mesh at the wall:wall inflation,Maximum Layers:5,Grow th Rate:1.2.As shown in Fig.1(c),the obtained mesh is between the two sections from 2000 mm to 3200 mm above the bottom,and this section of 1200 mm length is enlarged to show the refine meshing at the wall.

    In Fig.2,a grid independence verification was performed under the condition of 0.160 m·s?1and 0.5 MPa.The simulation results of radial gas holdup were compared and analyzed with four different grid fineness.This figure indicates that the simulation results with other three grids are basically consistent except for the first grid.Therefore,to ensure a high computing accuracy and an acceptable computing time,the grid with 5940 cells was adopted.

    Fig.2.Effect of grid on the simulation results of gas holdup.

    4.Results and Discussion

    4.1.Gas holdup

    4.1.1.Average gas holdup

    Fig.3.Gas holdup at different apparent velocities and operating pressures(0.5,1.0,1.5,2.0 MPa).

    The simulation results of the average gas holdup between the heights 2600 and 3000 mm at different apparent gas velocities and pressure were compared with the experimental data[14]in Fig.3.It is indicated that although the gas holdup made by the CFD-PBM coupled model without Cedirectly increases with the increasing apparent gas velocity,the error is greater than that by the modified CFD-PBM model with Cecorrection.It is shown that the modified CFD-PBM coupled model can accurately simulate the average gas holdup under other experimental conditions of Qin[14].

    4.1.2.Radial gas holdup

    In Fig.4,the simulated radial gas holdup profiles are compared with the experimental data under the operating conditions of 0.5,1.0,1.5,2.0 MPa and 0.160,0.215,0.253,0.317 m·s?1.The two diagrams at the same apparent velocity show the simulation results of the modified CFD-PBM coupled model and the CFD-PBM coupled model respectively compared with the experimental data.And the radial gas holdup showed a decreasing trend from the center to the column wall.It can be seen that the simulation results obtained by the CFD-PBM coupled model are generally smaller than the experimental data at elevated pressure.Luo et al.[32]proposed a model for the bubble interaction time by energy conservation analysis,ignoring the effects of operating pressures.If the Luo coalescence model is used directly to simulate high-pressure bubble column,as the simulation environment pressure is lower than the really pressure,the simulation result of gas holdup is smaller.It can be seen that when the density correction coefficient Ceis introduced into the Luo coalescence model,the error between the simulation results and the experimental data of Qin[14]is reduced.

    4.2.Bubble diameter

    4.2.1.Radial distribution of bubbles

    Fig.5 describes the effect of operating pressure on bubble size radial distribution at the apparent gas velocity of 0.160,0.215,0.253,0.317 m·s?1.It can be seen from Fig.5 that although the bubble size decreases from the center to the edge of the column,the results obtained by the CFD-PBM coupled model are far larger than the experimental data at four different operating pressures(0.5–2.0 MPa)per gas velocity.On the other hand,the results obtained by the modified CFD-PBM coupled model are more consistent with experimental data.Therefore,the effect of operating pressure on the bubble diameter in the gas–liquid flow s can be well simulated by adjusting the density correction coefficient Cein the bubble coalescence model.

    4.2.2.Bubble size distribution

    Fig.6 shows the simulation results of the influence of pressure on the bubble sizedistribution at the apparent gas velocity of 0.160 m·s?1.The bubbles show a unimodal distribution.The number of medium bubbles(3–8 mm)increased at elevated pressure,while the number of smaller bubbles(<3 mm)almost unchanged.It was consistent with the simulation results of Yang et al.[33].This is fully showed that the bubble size became smaller and more uniform at elevated pressure.

    4.3.Velocity distribution

    4.3.1.Air axial velocity

    Fig.7 shows the effect of operating pressures on radial distribution of gas rising velocity.Simulation results at four gas velocities show a gradual decrease from the center to the column wall,and the gas velocity increases with the increase in the operating pressure and apparent gas velocity.The variation trend was consistent with the experiment reported by Wilkson et al.[34]

    Fig.4.Gas holdup on radial distribution(u G=0.160,0.215,0.253,0.317 m·s?1).

    4.3.2.Water axial velocity

    Fig.8 shows the effect of pressure on the radial profiles of water axial velocity.It can be seen from Fig.8 that the axial liquid velocity gradually decreases from the center to the wall of the column.The liquid velocity is positive in the center of the column and negative near the side wall of the column.This indicates that the liquid phase appears to circulate in the column.The liquid circulation is in favor of gas–liquid fully contact.The difference in axial velocity is not significant at different operating pressures,indicating that the liquid velocity is not greatly affected by pressure.And the simulated results affected by pressure at other apparent gas velocities(0.215,0.253,0.317 m·s?1)are similar to result of 0.160 m·s?1.

    Fig.5.Bubble diameter in the radial direction(u G=0.160,0.215,0.253,0.317 m·s?1).

    5.Validation of the Modified CFD-PBM Coupled Model

    The experiment of Wilkson and Dierendonck[34]mainly examined the influence of pressure on gas hold-up and bubble size in bubble column.The column had a diameter of 0.16 m,the height of column was 2.0 m.The liquid was deionized water(20°C),and gas was nitrogen.From the research of Reilly et al.[35]it is known that the influence of column diameter on gas-holdup can be neglected.So we choose the experimental data of gas-holdup versus superficial gas velocity for the water/nitrogen system[34]to validate the modified CFD-PBM coupled model.

    Fig.9 shows the comparison between simulation results by the modified CFD-PBM coupled model and Wilkson's experimental data[34]under each pressure(0.5,1.0,1.5 MPa)at different apparent gas velocities.As can be seen,the simulation results of gasholdup are basically in agreement with the experimental data.So it shows that the modified CFD-PBM coupled model according to the experimental data of Qin[14]can be applied to the simulation under other experimental conditions.

    Fig.6.Effect of operating pressure on bubble size distribution at 0.160 m·s?1.

    6.Conclusions

    The work focused on simulating the effects of operating pressure on hydrodynamic behavior.The CFD-PBM coupled model was employed to investigate the gas–liquid flow in a high-pressure bubble column.From the work,the following conclusions can be draw n:

    Fig.8.Axial water velocity at different pressure simulated with C e(u G=0.160 m·s?1).

    (1)From the comparison between experimental data and simulation results by two models(the CFD-PBM coupled model and the modified CFD-PBM coupled model),it can be seen that the latter model offers good agreement with experimental data.So the effects of operating pressure on the hydrodynamic parameters can be well predicted by the modified CFD-PBM coupled model.

    (2)The effects of operating pressure on the bubble size distribution were predicted by the modified CFD-PBM coupled model in gas–liquid flow.The bubble size became smaller and more uniform at elevated pressure.

    (3)Through the validation of the modified CFD-PBM coupled model with the water-nitrogen system of Wilkson and Dierendonck[34],it can be seen that the simulation results are in good agreement with the experimental results.So the modified model may be applied to other experimental systems.

    Fig.7.Air axial velocity at different gas velocities and pressures.

    Fig.9.Gas holdup under different apparent gas velocities.

    Nomenclature

    CDdrag coefficient

    CD,∞ideal state drag coefficient

    CLtransverse lift coefficient

    CTDturbulent dispersion coefficient

    CWLwall lubrication coefficient

    dBdiameter of bubble,m

    E0parameter E0

    Fexinterphase forces

    FDdrag force,N·m?3

    FLtransverse lift,N

    FTD,LFTD,Gturbulent dispersion force,N

    fTD,limitingturbulent diffusion force model limiting function

    FWLwall lubrication force,N

    Gkturbulence energy generation

    Gbk term of turbulent kinetic energy

    g gravity acceleration,m·s?2

    k,kLturbulent kinetic energy,m2·s?2

    P operating pressure,Pa

    Poatmospheric pressure under standard conditions,Pa

    P(ViVj) bubble coalescence efficiency

    Uivelocity,m·s?1,i=1:gas phase,i=2:liquid phase

    uGgas velocity,m·s?1

    uLliquid velocity,m·s?1

    uijcharacteristic velocity of bubble collision

    Ωbr(V,V′)bubble breakage rate

    Ωag(ViVj)bubble coalescence rate,

    εiphase holdup,i=1:gas phase,i=2:liquid phase

    εGaverage gas phase holdup

    εGgas phase holdup

    εLliquid phase holdup

    εG,1εG,2turbulent diffusion force limit function constant

    ζijrelative diameter of bubble

    ζminminimum relative diameter of bubble

    μtturbulent viscosity,Pa·s

    ρ0Gas density under standard conditions,kg·m?3

    ρLliquid density,kg·m?3

    ρGgas density,kg·m?3

    σ surface tension,N·s?1

    ω(ViVj) collision frequency between bubbles of size diand dj,m3·s?1

    91字幕亚洲| 久久久精品免费免费高清| 精品乱码久久久久久99久播| 精品久久久久久久毛片微露脸 | 少妇的丰满在线观看| 精品第一国产精品| 精品福利观看| 日韩电影二区| 国产亚洲精品久久久久5区| 69精品国产乱码久久久| 亚洲情色 制服丝袜| 国产精品熟女久久久久浪| 亚洲精品第二区| 国产亚洲精品一区二区www | 丰满迷人的少妇在线观看| 精品卡一卡二卡四卡免费| 久久国产精品影院| 嫩草影视91久久| 国产真人三级小视频在线观看| 久久精品aⅴ一区二区三区四区| 日本黄色日本黄色录像| 高清黄色对白视频在线免费看| 免费人妻精品一区二区三区视频| 久久这里只有精品19| 欧美精品av麻豆av| av电影中文网址| 不卡一级毛片| 两个人免费观看高清视频| 99国产综合亚洲精品| 色精品久久人妻99蜜桃| 国产色视频综合| 成年人黄色毛片网站| 久久九九热精品免费| 欧美精品av麻豆av| 国产精品久久久久久精品古装| 蜜桃在线观看..| 午夜福利在线观看吧| 国产成人啪精品午夜网站| 久久久久网色| 人妻 亚洲 视频| 老鸭窝网址在线观看| 高清av免费在线| 女性被躁到高潮视频| 国产精品久久久av美女十八| 亚洲性夜色夜夜综合| 日韩制服骚丝袜av| av电影中文网址| tube8黄色片| 免费观看人在逋| 国产成人免费观看mmmm| 久久久久网色| 考比视频在线观看| 成年人黄色毛片网站| 久久人人爽av亚洲精品天堂| 久久久久久人人人人人| 国产av精品麻豆| 精品久久久久久电影网| 热99国产精品久久久久久7| 亚洲欧美色中文字幕在线| 狠狠婷婷综合久久久久久88av| 最新在线观看一区二区三区| 老熟妇乱子伦视频在线观看 | 国产精品成人在线| 久久久久久久久免费视频了| 狠狠精品人妻久久久久久综合| 大香蕉久久网| 中文字幕色久视频| 午夜激情av网站| 国产精品香港三级国产av潘金莲| 1024视频免费在线观看| 黄色怎么调成土黄色| 欧美亚洲日本最大视频资源| 亚洲中文av在线| 日本一区二区免费在线视频| 搡老熟女国产l中国老女人| 97在线人人人人妻| 久久精品国产亚洲av高清一级| 久久久久国产一级毛片高清牌| 99国产精品一区二区三区| 在线观看一区二区三区激情| av超薄肉色丝袜交足视频| 免费av中文字幕在线| 狂野欧美激情性bbbbbb| 久久av网站| 香蕉国产在线看| 一级毛片女人18水好多| 久久精品国产a三级三级三级| 国产一区二区三区在线臀色熟女 | 久久精品熟女亚洲av麻豆精品| 欧美精品一区二区大全| 久久久久久久久免费视频了| 亚洲精品一区蜜桃| 天堂中文最新版在线下载| 中文精品一卡2卡3卡4更新| 丝袜脚勾引网站| 国产精品国产av在线观看| 欧美日韩成人在线一区二区| 亚洲精品av麻豆狂野| 91字幕亚洲| 欧美日韩亚洲综合一区二区三区_| 狂野欧美激情性xxxx| 老司机亚洲免费影院| 在线观看免费视频网站a站| 国产精品久久久久久人妻精品电影 | 久久国产精品大桥未久av| 国产精品秋霞免费鲁丝片| 日韩免费高清中文字幕av| 欧美av亚洲av综合av国产av| 免费看十八禁软件| 免费一级毛片在线播放高清视频 | 久久国产精品大桥未久av| 亚洲精品乱久久久久久| 精品少妇一区二区三区视频日本电影| 欧美日本中文国产一区发布| 日本撒尿小便嘘嘘汇集6| 不卡av一区二区三区| 国产淫语在线视频| 亚洲熟女精品中文字幕| 老司机深夜福利视频在线观看 | 免费在线观看日本一区| 少妇精品久久久久久久| 久久久久国内视频| 欧美久久黑人一区二区| 99国产极品粉嫩在线观看| 少妇裸体淫交视频免费看高清 | 韩国精品一区二区三区| 人成视频在线观看免费观看| 精品第一国产精品| 亚洲成人免费av在线播放| 大型av网站在线播放| 黑人猛操日本美女一级片| 激情视频va一区二区三区| 国产三级黄色录像| 午夜激情久久久久久久| 激情视频va一区二区三区| 性高湖久久久久久久久免费观看| 熟女少妇亚洲综合色aaa.| 欧美成人午夜精品| 亚洲av电影在线进入| 一本色道久久久久久精品综合| 一边摸一边抽搐一进一出视频| 国产一卡二卡三卡精品| 99热网站在线观看| 亚洲专区国产一区二区| 亚洲av日韩精品久久久久久密| 最新在线观看一区二区三区| 国产精品一二三区在线看| 亚洲av日韩精品久久久久久密| 18禁裸乳无遮挡动漫免费视频| 下体分泌物呈黄色| 99国产精品免费福利视频| 国产成人一区二区三区免费视频网站| 777久久人妻少妇嫩草av网站| 欧美午夜高清在线| 亚洲欧美成人综合另类久久久| 我要看黄色一级片免费的| 久久精品aⅴ一区二区三区四区| 欧美精品一区二区免费开放| 国产深夜福利视频在线观看| 18禁黄网站禁片午夜丰满| 精品久久久久久电影网| 亚洲精品国产av成人精品| avwww免费| 91国产中文字幕| 91精品伊人久久大香线蕉| 啦啦啦免费观看视频1| 国产成人影院久久av| 日日夜夜操网爽| 丁香六月天网| 亚洲一区二区三区欧美精品| 午夜日韩欧美国产| 他把我摸到了高潮在线观看 | 一级毛片女人18水好多| 久久狼人影院| 99热国产这里只有精品6| 91九色精品人成在线观看| 国产av一区二区精品久久| 一区在线观看完整版| 一本综合久久免费| 亚洲av美国av| 可以免费在线观看a视频的电影网站| av免费在线观看网站| 亚洲精品美女久久久久99蜜臀| 桃花免费在线播放| 热re99久久精品国产66热6| 天天添夜夜摸| 黑人欧美特级aaaaaa片| 免费少妇av软件| 久久性视频一级片| 一本大道久久a久久精品| 久久毛片免费看一区二区三区| 日韩有码中文字幕| 秋霞在线观看毛片| 欧美激情高清一区二区三区| 精品国产乱子伦一区二区三区 | 中文字幕最新亚洲高清| 丁香六月天网| 午夜精品久久久久久毛片777| 又黄又粗又硬又大视频| 国产欧美日韩精品亚洲av| 成人国产av品久久久| 黄色视频,在线免费观看| 黑人猛操日本美女一级片| 久久久久久人人人人人| 十八禁人妻一区二区| 久久精品国产综合久久久| 欧美变态另类bdsm刘玥| 亚洲精品乱久久久久久| 嫩草影视91久久| a级毛片在线看网站| 久久久精品94久久精品| 下体分泌物呈黄色| 在线观看舔阴道视频| 一区二区三区精品91| 自拍欧美九色日韩亚洲蝌蚪91| 丰满迷人的少妇在线观看| 一级a爱视频在线免费观看| 999久久久国产精品视频| 精品乱码久久久久久99久播| 国产成人影院久久av| svipshipincom国产片| 手机成人av网站| 国产又爽黄色视频| 久久精品国产亚洲av高清一级| 久久久久视频综合| 一本大道久久a久久精品| 少妇精品久久久久久久| 黄频高清免费视频| 爱豆传媒免费全集在线观看| av电影中文网址| 国产成人系列免费观看| 满18在线观看网站| 黑人猛操日本美女一级片| 天堂俺去俺来也www色官网| 午夜福利,免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜激情av网站| 精品久久久久久久毛片微露脸 | 韩国高清视频一区二区三区| 69av精品久久久久久 | 飞空精品影院首页| 久久精品成人免费网站| 五月天丁香电影| 女人久久www免费人成看片| √禁漫天堂资源中文www| 韩国精品一区二区三区| 久久久国产成人免费| 777久久人妻少妇嫩草av网站| 日韩视频一区二区在线观看| 窝窝影院91人妻| h视频一区二区三区| 老司机午夜十八禁免费视频| 老熟妇仑乱视频hdxx| 母亲3免费完整高清在线观看| 精品卡一卡二卡四卡免费| 欧美黄色片欧美黄色片| 人妻久久中文字幕网| 久久久久久久国产电影| 日本av免费视频播放| 老司机在亚洲福利影院| 欧美激情高清一区二区三区| 午夜日韩欧美国产| 日韩三级视频一区二区三区| 伦理电影免费视频| 久久精品熟女亚洲av麻豆精品| 日韩制服骚丝袜av| 18禁观看日本| 亚洲美女黄色视频免费看| 下体分泌物呈黄色| 满18在线观看网站| 久久精品亚洲熟妇少妇任你| 最近中文字幕2019免费版| 人人澡人人妻人| 日韩 欧美 亚洲 中文字幕| 日本wwww免费看| 精品国产超薄肉色丝袜足j| 男女免费视频国产| 91九色精品人成在线观看| 国产在线视频一区二区| 天堂8中文在线网| 久热这里只有精品99| 一本色道久久久久久精品综合| 91字幕亚洲| 两性夫妻黄色片| av免费在线观看网站| 黄频高清免费视频| 亚洲欧美清纯卡通| 一区福利在线观看| 亚洲五月婷婷丁香| 久久久精品94久久精品| 欧美日韩视频精品一区| 日日摸夜夜添夜夜添小说| 美女午夜性视频免费| 视频区欧美日本亚洲| 成人三级做爰电影| 国产无遮挡羞羞视频在线观看| av有码第一页| 性少妇av在线| 我要看黄色一级片免费的| 精品高清国产在线一区| 欧美变态另类bdsm刘玥| 久久久精品国产亚洲av高清涩受| 热99国产精品久久久久久7| 久久亚洲国产成人精品v| 狠狠狠狠99中文字幕| 久久久国产一区二区| 91九色精品人成在线观看| 亚洲第一av免费看| 中国美女看黄片| 91老司机精品| 老熟女久久久| 亚洲黑人精品在线| 国产精品一区二区免费欧美 | 亚洲精华国产精华精| 中文字幕最新亚洲高清| 亚洲全国av大片| 日本a在线网址| 欧美大码av| 人人妻,人人澡人人爽秒播| 亚洲av日韩在线播放| 免费久久久久久久精品成人欧美视频| 午夜两性在线视频| 大香蕉久久网| 大片电影免费在线观看免费| 一边摸一边抽搐一进一出视频| 国产成人精品在线电影| 亚洲国产欧美网| 国产在线免费精品| 91精品伊人久久大香线蕉| 国产一区二区三区综合在线观看| 国产日韩一区二区三区精品不卡| 1024香蕉在线观看| 亚洲av电影在线观看一区二区三区| 日韩欧美一区视频在线观看| 国产片内射在线| 久久狼人影院| 黑人猛操日本美女一级片| 日韩 欧美 亚洲 中文字幕| 亚洲成国产人片在线观看| 日韩欧美国产一区二区入口| 老司机午夜十八禁免费视频| 国产深夜福利视频在线观看| 日本撒尿小便嘘嘘汇集6| 日韩制服丝袜自拍偷拍| 99久久精品国产亚洲精品| 欧美+亚洲+日韩+国产| 最黄视频免费看| 国产一级毛片在线| 久久久国产成人免费| 另类精品久久| 精品熟女少妇八av免费久了| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 丝瓜视频免费看黄片| 亚洲第一av免费看| 91麻豆av在线| 精品一品国产午夜福利视频| √禁漫天堂资源中文www| 亚洲精品久久成人aⅴ小说| 亚洲国产欧美在线一区| 在线观看人妻少妇| 大码成人一级视频| 日韩电影二区| 亚洲精品国产色婷婷电影| 一区二区日韩欧美中文字幕| www.熟女人妻精品国产| 免费在线观看完整版高清| 两个人看的免费小视频| 十八禁网站网址无遮挡| 真人做人爱边吃奶动态| 美女脱内裤让男人舔精品视频| 午夜日韩欧美国产| 香蕉丝袜av| 亚洲欧美清纯卡通| 永久免费av网站大全| 亚洲午夜精品一区,二区,三区| 纵有疾风起免费观看全集完整版| 一二三四在线观看免费中文在| 亚洲av欧美aⅴ国产| 水蜜桃什么品种好| 欧美日韩成人在线一区二区| 悠悠久久av| 丝袜人妻中文字幕| 99久久综合免费| kizo精华| 三级毛片av免费| 成人手机av| 曰老女人黄片| 国产精品av久久久久免费| 精品一区二区三区av网在线观看 | 午夜激情av网站| 欧美激情高清一区二区三区| 精品少妇久久久久久888优播| 国产主播在线观看一区二区| 亚洲欧美成人综合另类久久久| 久久人人爽人人片av| 国产有黄有色有爽视频| 久久青草综合色| 1024香蕉在线观看| 一级毛片电影观看| 精品亚洲成国产av| 色婷婷av一区二区三区视频| 下体分泌物呈黄色| 99国产综合亚洲精品| 国产免费视频播放在线视频| 亚洲成人国产一区在线观看| 法律面前人人平等表现在哪些方面 | 久久亚洲国产成人精品v| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩中文字幕国产精品一区二区三区 | 国产不卡av网站在线观看| 一进一出抽搐动态| 国产精品免费视频内射| 久久精品人人爽人人爽视色| 50天的宝宝边吃奶边哭怎么回事| 亚洲视频免费观看视频| 欧美国产精品一级二级三级| 国产精品久久久av美女十八| 精品熟女少妇八av免费久了| 水蜜桃什么品种好| 色94色欧美一区二区| 青春草亚洲视频在线观看| 精品亚洲乱码少妇综合久久| 亚洲美女黄色视频免费看| 久久久久网色| 久久精品国产亚洲av高清一级| 女人爽到高潮嗷嗷叫在线视频| 女性生殖器流出的白浆| 我的亚洲天堂| 久久精品aⅴ一区二区三区四区| 国产男女内射视频| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费日韩欧美大片| 亚洲专区国产一区二区| 亚洲av欧美aⅴ国产| 美女国产高潮福利片在线看| 精品免费久久久久久久清纯 | 久久人妻熟女aⅴ| 淫妇啪啪啪对白视频 | 欧美精品一区二区大全| 丰满少妇做爰视频| 岛国毛片在线播放| 人人澡人人妻人| 亚洲第一青青草原| 亚洲综合色网址| 国产一区有黄有色的免费视频| 性少妇av在线| 午夜视频精品福利| 制服诱惑二区| 国产视频一区二区在线看| 伊人亚洲综合成人网| 国产成+人综合+亚洲专区| 国产在线视频一区二区| 在线观看免费午夜福利视频| 国产亚洲av高清不卡| 天天操日日干夜夜撸| 亚洲精品国产av成人精品| 色94色欧美一区二区| 脱女人内裤的视频| 亚洲,欧美精品.| 久久久精品94久久精品| av欧美777| 91麻豆av在线| 国产精品麻豆人妻色哟哟久久| 日韩制服骚丝袜av| 久久久久久久大尺度免费视频| 国产色视频综合| 国产视频一区二区在线看| av超薄肉色丝袜交足视频| 女性被躁到高潮视频| 天堂中文最新版在线下载| 日韩免费高清中文字幕av| 国产一区二区三区在线臀色熟女 | 每晚都被弄得嗷嗷叫到高潮| 在线av久久热| 91麻豆精品激情在线观看国产 | 波多野结衣av一区二区av| 亚洲国产欧美一区二区综合| 精品国产一区二区久久| 激情视频va一区二区三区| 18在线观看网站| 一级a爱视频在线免费观看| 久久精品成人免费网站| 黄网站色视频无遮挡免费观看| 久久天躁狠狠躁夜夜2o2o| 亚洲国产欧美网| 亚洲久久久国产精品| 久久ye,这里只有精品| 午夜福利一区二区在线看| 夜夜夜夜夜久久久久| 丝瓜视频免费看黄片| 国产成人一区二区三区免费视频网站| 午夜精品国产一区二区电影| 麻豆国产av国片精品| 丝袜脚勾引网站| 国产亚洲精品久久久久5区| 国产成人av激情在线播放| 国产一卡二卡三卡精品| 成人影院久久| 亚洲精品一二三| 国产精品一区二区在线不卡| 国产精品99久久99久久久不卡| 国产成人a∨麻豆精品| 19禁男女啪啪无遮挡网站| 久久 成人 亚洲| 国产免费现黄频在线看| 黄色怎么调成土黄色| 国产欧美日韩精品亚洲av| 91精品伊人久久大香线蕉| 日韩视频一区二区在线观看| 丰满少妇做爰视频| 国产精品av久久久久免费| 国产在视频线精品| 黄色视频,在线免费观看| 一区二区三区乱码不卡18| 黑丝袜美女国产一区| 亚洲专区字幕在线| 男女之事视频高清在线观看| 欧美国产精品va在线观看不卡| 久久国产精品大桥未久av| 色播在线永久视频| 美女脱内裤让男人舔精品视频| 欧美乱码精品一区二区三区| 俄罗斯特黄特色一大片| 中文字幕精品免费在线观看视频| 国产福利在线免费观看视频| 亚洲午夜精品一区,二区,三区| 天天操日日干夜夜撸| 亚洲精品国产av成人精品| 亚洲欧美一区二区三区久久| 成年人免费黄色播放视频| 亚洲色图综合在线观看| 黄色视频不卡| 久久国产亚洲av麻豆专区| 成人免费观看视频高清| 啦啦啦视频在线资源免费观看| 亚洲国产精品999| 午夜免费鲁丝| 国产又色又爽无遮挡免| 精品少妇久久久久久888优播| 成人免费观看视频高清| 日本av手机在线免费观看| 成人免费观看视频高清| 一本大道久久a久久精品| 伊人亚洲综合成人网| 99热全是精品| 免费在线观看黄色视频的| 涩涩av久久男人的天堂| 大片电影免费在线观看免费| 午夜福利一区二区在线看| 国产亚洲午夜精品一区二区久久| kizo精华| 久久青草综合色| 国产亚洲欧美在线一区二区| 99久久99久久久精品蜜桃| 国产亚洲精品久久久久5区| 欧美日韩精品网址| 国产成人影院久久av| 欧美日韩黄片免| 成人手机av| 热re99久久精品国产66热6| 日韩有码中文字幕| 伊人久久大香线蕉亚洲五| 精品久久久久久电影网| 巨乳人妻的诱惑在线观看| www.熟女人妻精品国产| 深夜精品福利| 亚洲色图综合在线观看| 免费高清在线观看日韩| 精品少妇内射三级| 日韩欧美免费精品| av不卡在线播放| 免费女性裸体啪啪无遮挡网站| 曰老女人黄片| 麻豆av在线久日| 一区二区三区激情视频| 一区在线观看完整版| 成年av动漫网址| 性少妇av在线| 亚洲欧美色中文字幕在线| 夫妻午夜视频| 捣出白浆h1v1| 精品国产国语对白av| 国产精品一区二区在线观看99| 美国免费a级毛片| 国产福利在线免费观看视频| 一边摸一边抽搐一进一出视频| 亚洲av欧美aⅴ国产| 黄网站色视频无遮挡免费观看| 欧美精品一区二区免费开放| 成人av一区二区三区在线看 | 精品国产国语对白av| 免费观看av网站的网址| 亚洲欧美精品综合一区二区三区| 免费高清在线观看视频在线观看| 女人被躁到高潮嗷嗷叫费观| 夜夜夜夜夜久久久久| av欧美777| 人人澡人人妻人| 午夜福利免费观看在线| 99国产精品一区二区三区| av超薄肉色丝袜交足视频| 国产精品国产三级国产专区5o| 国产熟女午夜一区二区三区| 日韩制服丝袜自拍偷拍| 亚洲国产欧美在线一区| 欧美午夜高清在线| 亚洲色图综合在线观看| 精品免费久久久久久久清纯 | 亚洲国产中文字幕在线视频| 国产一区二区三区综合在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 日日摸夜夜添夜夜添小说| 视频区欧美日本亚洲| 国产在视频线精品|