• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    n-Decane hydro-conversion over bi-and tri-metallic Al-HMS catalyst in a mini-reactor

    2018-08-31 05:29:46MahdiAbdiKhanghahMostafaAdelizadehZahraNaserzadehZhienZhang

    Mahdi Abdi-Khanghah Mostafa Adelizadeh 2*Zahra Naserzadeh 3*Zhien Zhang 4*

    1 Department of Chemical Engineering,Petroleum University of Technology,Ahwaz,Iran

    2 Department of Environmental Engineering,Azad University of Rudehen,Tehran,Iran

    3 Industrial Safety and HSE Department,Faculty of Engineering,Kar Higher Education Institute,Qazvin,Iran

    4 College of Chemistry and Chemical Engineering,Chongqing University of Technology,Chongqing 400054,China

    Keywords:Catalytic hydro cracking Bi-and tri-metallic mesoporous catalyst Al-HMS n-Decane Mini-reactor

    A B S T R A C T Bi-metallic(Pt–Sn and Sn–Ni)and tri-metallic(Pt–Sn–Ni)catalysts,supported on Al-containing hexagonal mesoporous silica(Al-HMS)(Si/Al=20)materials,were synthesized.N 2 adsorption–desorption,X-ray diffraction(XRD),Brunauer–Emmett–Teller(BET)test,and temperature programed desorption(NH3-TPD)were used to characterize physicochemical characteristics and textural properties of the Al-HMS catalysts.Catalytic performances on hydro-cracking of n-decane at different reaction conditions were studied in a microreactor.Comparison between Pt–Sn,Sn–Ni and Pt–Sn–Ni catalyst under different hydro-cracking conditions was made.The experimental results indicate that the proper balance between the acid and metal functions is the key in synthesizing a catalyst with a better performance in hydro-cracking.Tri-metallic catalyst exhibits the best catalytic performance in n-decane hydro-cracking than two bi-metallic catalysts.

    1.Introduction

    Due to increasing demand for high quality middle distillates,catalytic cracking and hydro-conversion have attracted extensive attention in the last decade[1–4].Hydrocracking and hydrogenation of n-decane can be obtained by using metal particles(e.g.Pt/Al2O3)and acid sites as bifunctional catalysts,with the acid sites providing the cracking function and metal sites promoting hydrogenation–dehydrogenation function[5].Hamoule et al.[6]investigated the catalytic performance of different bi-functional catalysts,changing the ratio of Si/Al from 5 to 30,since the molar Si/Al ratio influenced the structural regularity and surface acidity of catalyst.Acidity of Al-HMS was enhanced due to the reduction of Si/Al ratio.Because n-decane cracks to valuable product such as C4,C5and C6,the acidic sites resulted from increased Al content made the product distribution more desirable.

    The growth of bi-and tri-metallic catalystsisan attainment of recent years in the field of catalytic hydro-conversion.In spite of the fact that in industrial practices,the main purpose of using tri-metallic catalyst is to facilitate the removal of sulfur content of feed.Further literature survey suggested that by adding a third metal,such as iridium,rhenium,or tin,the promotion effect on platinum catalyst for conversion and selectivity can be observed experimentally[7–16].Peyrovi et al.[17]characterized different bi-and tri-metallic catalysts supported on Al-containing hexagonal mesoporous silica(Al-HMS)with a constant Si/Al ratio,and catalyst application was investigated via n-heptane hydro conversion.The catalytic performances were found to be a function of interaction between metal phases,and the better performance was observed for the tri-metallic catalyst in comparison with bi-metalic one.

    Due to the large and uniform pore sizes together with high surface area and wide applications of mesoporous materials as supports for catalysis,the silicate mesoporous materials have received extensive attention in the last decade.Then,Alothman[18,19]in a review emphasized on silicate mesoporous materials and their applications.The structure and performance of different mesoporous catalysts have shown a better hydro-conversion activity in comparison with the Al2O3supported catalyst[17].Regardless of zeolite supports in catalysis,organic groups in the mesoporous materials modify the surface properties,protect the surface from chemical attacks and tune the surface reactivity between 2 and 10 nm pore sizes[18].

    This paper presents the synthesis of novel bi-and tri-metallic catalysts which are used for hydro-conversion for the first time.Also,CFD simulation of a mini-reactor which is used for n-decane hydroconversion has been carried out in this work.An experimental investigation of the effect of temperature and BET surface area of catalyst on reactant conversion and product distribution was performed.Experiments with different operating conditions of the hydro-conversion in a laboratory micro-reactor indicate that the tri-metallic(Pt–Sn–Ni)is the best catalyst for the conversion of n-decane under the optimum operating condition as compared with other bi-metallic catalysts.

    2.Experimental

    2.1.Catalyst preparation method

    Impregnation method was used to synthesize the Al-HMS with the ratio of Si/Al=20 through two steps as described by Tanev et al.previously:a)support synthesis,and b)active phase addition[19].Mesopouros support(Al-HMS)preparation was done using a sol–gel method:tetraethyl orthosilicate(TEOS,Merck),aluminum isopropoxide(Merck),and dodecyl amine(Merck)as the support silica source,aluminum source,and surfactant were respectively mixed and stirred.In a typical preparation,tetraethyl orthosilicate(1.0 mol)was added under vigorous stirring to a solution of amine(0.27 mol)in ethanol(9.09 mol)and deionized water(29.6 mol).The solid product was filtrated and washed with water,then dried at 90°C overnight in ambient air,and finally calcined at 600°C for 5 h in the air flow.

    One tri-metallic catalyst[(0.1)Pt–(0.1)Sn–(0.3)Ni]and two bimetallic catalysts[(0.1)Pt–(0.4)Ni]and[(0.1)Sn–(0.4)Ni]w ere prepared by the impregnation of Al-HMS(Si/Al=20)support with appropriate concentrations of H2PtCl6,SnCl2and Ni(NO3)2as the platinum,tin and nickel sources,respectively.For the presence of consistency between catalyst metal loadings,all metals such as Pt,Sn and Ni being specified with weight percentage in the brackets.Impregnated samples were dried overnight at 90 °C,and then calcined in air at 350 °C for 3 h.Calcination temperatures were selected according to the available methods for different synthesized catalysts[14].It should be noted that in the figures and tables,catalysts which are denoted as Pt–Sn–Ni,Pt–Ni,Sn–Ni,respectively,are(0.1 wt%)Pt–(0.1 wt%))Sn–(0.4 wt%))Ni,(0.1 wt%))Pt–(0.4 wt%))Ni,and(0.1 wt%))Sn–(0.4)Ni.

    2.2.Characterization

    To study the effect of physicochemical properties of the catalysts,the fresh mesoporous catalysts were analyzed by the surface characterization technique[20].The crystallinity and purity of crystals of the bifunctional Al-HMS catalyst were measured by X-Ray Pow der Diffraction(XRD)technique by means of STOE diffractometer(Germany).Nitrogen adsorption–desorption(physisorption)technique with using liquid nitrogen to maintain test temperature at?4 °C was used for bi-and tri-metallic catalysts and calculation based on nitrogen adsorption for the Brunauer–Emmett–Teller(BET)surface area in the range of relative pressures 0.03<P/P0<0.30 was implemented and the isotherm of nitrogen physisorption at P/P0=0.99 was used to obtain pore volume of synthesized mesoporous catalysts.

    2.3.Catalytic evaluation reactor

    The catalyst evaluation experiments were conducted in a multipurpose mini-reactor which was prepared and modified for the hydroprocessing of n-decane.The reactor setup consisted of four major sections:decane feed storage,hydrogen-n-decane mixer,Hitach MFC,and high pressure liquid chromatography(HPLC)feed pump.Additionally,it was included of a mini-reactor(10 mm inner radius),packed with bi-and tri-metallic meso-porous catalyst(catalyst particles are between 80 and 200 nm)supported on Al-HMS(Si/Al=20).An online gas chromatograph YOUNG LIN 6000(YL Instruments,China)equipped with a HID detector and connected to a personal computer were used for analyzing the products and storing the data(Fig.1).The reactor which is used for heterogeneous catalyst-gas reaction was placed in a temperature-controlled furnaces and the temperature of the catalytic bed was monitored by a thermocouple located at the center of the reactor.The specified molar ratio of hydrogen to hydrocarbon in feed(H2:HC)=1:8 controlled by the Hitachi mass flow controller(MFC).

    The amount of 1 g bi-functional catalyst with using 5 g of silicon carbide(5 times the weight of catalyst)was packed in the middle of horizontal stainless steel mini-reactor and the catalytic bed was then reduced with a hydrogen flow of 57 ml·min?1at 450 °C for 2 h before the reaction.The n-decane and hydrogen gas at a rate of 20 ml·min?1were fed into the reactor at a specified molar ratio(10:1)using the mass flow controller and the liquid hourly space velocity(LHSV)of n-decane varying in the range of 1–3 h?1was arranged using a HPLC pump.After each experimental run(30 min)for the specified temperature,the reduction procedure was repeated for 20 min.Hydro-processing products were analyzed by the gas chromatograph with the HID detector using He as the carrier gas.

    n-Decane conversion and product selectivity are crucial parameters for hydro-conversion and hydrogenation of n-decane.The operating and experimental conditions in Table 1 list different experimental results for n-decane conversion published in the literature and those in the present study.

    3.Numerical Simulation

    3.1.Geometry

    ANSYS Workbench multi-physic was used for axisymmetric CFD model generation.Fig.2 illustrates the computational domain with specified boundary and dimensional conditions similar to the experimental reactor.A stainless steel 316 L horizontal mini-reactor was used with the radius and length of 10 mm and 100 mm of the physical properties of the porous media in reaction region is obtained from the Ergun equation:whereΔP is the pressure drop in bed,Δl is the bed length,μis the viscosity,? is the bed porosity and dpis the particle diameter.

    Fig.2.Computational grid domain and specified boundary conditions.a)3D physical domain,b)axisymmetric schematic of mesh and physical boundary.

    Fig.2b shows the physical domain and boundary conditions used for reactor modeling.Grid is finer at the inlet region and near the reactor wall due to the larger gradients of temperature and species concentration.

    3.2.Mathematical modeling

    To develop a general form of catalytic hydro-conversion reactor model,the conservation equation of species,mass,energy and momentum were applied on the control volume using ANSYS 15.By using the plug flow theory,the boundary conditions 1–3 and the assumptions 4–7 were applied for the reactor.

    (1)Inlet:velocity inlet condition;mass fraction of H2=0.11;mass fraction of C10H22=0.89

    (2)Outlet:out flow condition,

    (3)Wall:no slip condition,T=Tw

    (4)The temperature of the reactor wall was maintained constant Tw;the equilibrium form for an isothermal condition

    (5)Ideal gas was assumed for all species in reactor

    (6)Laminar and incompressible flow obtained from the low Reynolds number(in the range of 10–100)

    (7)Porous media was assumed for the catalytic region

    Using the above assumptions,the governing equations are rewritten as follow s:

    Species transport equation

    Momentum equation

    The porosity of catalyst(?)appears in Eqs.(2)–(5),and the effective thermal conductivity of the bed(k)in Eq.(5).

    3.3.Chemical reaction model

    Here,the kinetic model deals with nine species:C1,C2,C3,C4,iC4,C5,iC5,C6+,and H2.They represent methane,ethane,propane,n-butane,iso-butane,n-pentane,iso-pentane,higher than hexane hydrocarbons and hydrogen respectively.This kinetic model was proposed to predict the light species production as the amount of light species,such as hydrogen and light hydrocarbons,affected the performance of downstream equipment.The reaction rate in the micro reactor is expressed as follow s:where(r)diis the reaction rate of hydro-cracking of n-decane,Pn-decaneis the partial pressure of n-decane and Ptotalis the total pressure in the mini-reactor.Rate constants illustrated in Table 2 were obtained from successive quadratic programming(SQP)[24].The C code of the reaction mechanism and source term were compiled,and then linked with the commercial Fluent software.

    Table 2Rate constant of the proposed kinetic model[24]

    3.4.Verification of the numerical model

    The feed hydro-conversion was used for the verification of numerical simulation(Fig.3).Maximum error of experimental data used for the verification of reactor modeling is 2.5%which is calculated based on repeating each experiment for three times.Under the same operating conditions,the numerical predictions are in good agreement with the experimental data of the hydro-conversion of n-decane over trimetallic(Pt–Sn–Ni)supported on Al-HMS(Si/Al=20)with error<4%.Also for some feed flow rates,reduction of conversion at 450°C relates to the reaction mechanism which is complex and the possible error in experimental measurements.Grid in dependency of reactor simulation was confirmed in terms of the hydro conversion of ndecane.To this end,four different numbers of mesh element(8000,16000,24000,and 28000)(2 mesh=8 mm)were considered and the simulated conversion of n-decane in 28000 mesh elements showed a deviation of 1%below the result of 24000 mesh.Hence,the grid of 24000 mesh elements was utilized for the subsequent modeling of hydro conversion reactor.

    4.Results and Discussion

    4.1.Catalyst characterization

    The crystallinity of different synthesized catalyst was determined to by means of XRD characterization test.Fig.4 shows the XRD patterns of Al-HMS-20 material and corresponding metal loaded catalysts introduced as Sn–Ni,Pt–Sn,and Pt–Sn–Ni in the 2θ range of 1–80°.For synthesized Al-HMS-20 support and corresponding catalysts,drastic peak and intensive reflection were observed at SAXS test which informs the mesoporous structure of synthesized catalyst.To specify another understanding from XRD pattern,focus on the broadening of low angle peak is crucial since the mentioned peak was decreased with impregnating metal phase on Al-HMS-20 support.It is clear that for Al-HMS-20 mesoporous catalyst,partially collapse of the framework occurred during the metal addition and the effect of this phenomenon is significant for Pt–Ni/Al-HMS-20.In addition,Table 3 contains structural properties of bi-metallic(Sn–Ni),(Pt–Ni)and tri-metallic(Pt-Sn-Ni)catalysts supported on Al-HMS-20.

    4.2.n-Decane hydro-conversion over mesoporous catalyst

    Fig.3.Comparing the numerical results and experimental data for the conversion of n-decane for tri-metallic catalyst at different wall temperatures(300–500 °C),atmospheric pressure and inlet superficial velocities(0.0001–0.01 m·s?1).

    Fig.4.XRD patterns of Al-HMS-20 material and corresponding metal loaded catalysts.

    Table 3Structural properties of bi-metallic(Sn-Ni),(Pt-Ni)and Tri-metallic(Pt-Sn-Ni)catalysts,supported on Al-HMS(Si/Al=20)

    Comparison of experimental selectivity of different types of products(aromatics,cracking,isodecane and hydrogenolisis)over three mesoporous(Pt–Sn,Sn–Ni and Pt–Sn–Ni)catalysts at reaction condition were shown in Fig.5 and the compositions of products were also presented.Fig.5 indicates that tri-metallic Pt-Sn-Ni catalyst supported on Al-HMS has the best selectivity for aromatics and isodecane in atemperature range of 400–500 °C.This is very promising as the high octane numbers have been shown to be directly related to the higher yields and higher selectivity for aromatics and branched hydrocarbon[25].

    The cracking products of bi-and tri-metallic catalysts indicated that the selectivity of light hydrocarbons,such as C1–C2,increased with the increasing temperature(data not shown here).This was from the competition between cracking,hydrogenation and aromatization at high temperature,which were affected by different properties of catalyst.Various selectivities of light hydrocarbons imply the acidity of support and its declination due to the presence of Sn.This has been reported that with the addition of Sn at high temperature,the hydrocracking at the strong acid site is inhibited[26].

    Fig.6 shows the 2D contour of temperature in the mini-reactor based on the simulation results.The exothermic hydro-conversion reactions are the main reason for rising the temperature in the radial direction.Also,the temperature variation along the reactor axis exists due to the occurrence of exothermic hydro conversion reaction.In the other word for the temperature distribution along the reactor axis,the higher the distance from the reactor inlet the higher the temperature.Moreover,since wall temperature is constant,reactor wall temperature maintained at 300°C as shown in the figure(blue line near the wall temperature).Also,symmetry of reactor temperature with respect to reactor axis is comprehensible which is consistent with the existence of axisymmetric condition implemented in the simulation.

    Fig.5.Comparison of selectivity of different types of hydrocarbon produced at reaction conditions:LHSV=2 h?1,P=0.1 MPa,temperature=300–600 °C,H2/n-decane=8.

    Fig.5(continued).

    Fig.6.Temperature contours in the vertical cross-section of catalytic reactor for atri-metallic Pt–Sn–Ni catalyst at inlet velocity=0.001 m·s?1 and constant wall temperature 300 °C.

    4.2.1.Effect of wall temperature

    The effect of wall temperature is critical as a minor change in the wall temperature can leads to a massive change in the reaction rates.Fig.7 indicates the effect of temperature on the conversion efficiency of C10H22and H2as reactants,and the CH4concentration as the product which is conducted by simulation.The production rate and reactant conversion increased by about 16%due to a temperature rise of 200°C,the higher the temperature the higher the conversion of n-decane.At 500°C the mole fraction of n-decane and hydrogen is the low est at 0.03 and 0.02 respectively while methane has the highest fraction 0.2.Fig.8 demonstrates the effect of temperature on the simulated CH4distribution throughout the catalytic porous media.This finding is important as the occurrence of more conversion occurred by increasing temperature.

    4.2.2.Effect of feed flow rate

    The n-decane hydroconversions under several feed inlet velocities(0.0001,0.001,and 0.01 m·s?1)were investigated numerically over tri-metallic(Pt–Sn–Ni)Al-HMS-20 catalyst.An increase in the inlet velocity caused the reduction in the n-decane conversion(Fig.9).This result is against the result reported by Sabour et al.[27]for the LHSV effect on conversion over Al-HMS catalyst.Further,different types of hydrocarbon,saturated,branched and aromatic are reported in Figs.5 and 6,under an optimum inlet velocity condition(inlet velocity=0.0001 m·s?1or LHSV=2 h?1).It can be seen that the mole fraction contour of CH4at different inlet velocities indicates that the lower the inlet velocity the higher the production of cracking products(Fig.10)and observation of this phenomena is consistent with the increment of residence time of reactant in the catalytic bed.By comparing the results in Figs.8 and 10,it is found that the temperature effect on the contour of species distribution is greater than the one from inlet velocity in a hydro conversion process.

    Fig.7.Effect of wall temperature on(a)the C10H22 and CH4 mole fraction,and(b)the H2 mole fraction(absolute velocity=0.001 m·s?1)in experiments.

    Fig.9.Effect of feed flow rate on(a)the C10H22 and CH4 mole fraction,and(b)the H2 mole fraction(wall temperature=300°C)as demonstrated by experiments.

    Fig.8.Contour of mole fraction of CH4 at(a)wall temperature=300 °C,and(b)wall temperature=500 °C(absolute inlet velocity=0.001 m·s?1).

    Fig.10.Contours of mole fraction of CH4 at(a)absolute inlet velocity=0.0001 m·s?1,and(b)absolute inlet velocity=0.01 m·s?1(wall temperature=300 °C).

    5.Conclusions

    The catalytic hydroconversion of n-decane in a laboratory scale mini-reactor was investigated through numerical and experimental endeavors[28–30].Due to the combination of micro-and mesoporosity the catalytic activity was clearly improved as implied by N2adsorption–desorption.Unsteady,homogeneous and axisymmetric simulations of the catalytic performance of tri-metallic(Pt–Sn–Ni),supported on Al-HMS(Si/Al=20),were carried out for the minireactor setup.A good agreement was achieved between experimental data and the results from the numerical modeling with the following conclusions:

    ?The tri-metallic(Pt–Sn–Ni)catalyst,supported on Al-HMS(Si/Al=20),had the higher activity and selectivity than those of bi-and mono-metallic catalysts.

    ?The production of light hydrocarbon was reduced in the presence of Sn.

    ?An increase in the wall temperature produced the higher n-decane conversion.

    ?The impact of temperature on product distribution was greater than the feed flow rate effect.

    ?The wall temperature of 500 °C can be recommended for the hydrocracking over the introduced catalyst.

    欧美黑人欧美精品刺激| aaaaa片日本免费| 丝袜美腿在线中文| 桃红色精品国产亚洲av| 嫩草影院入口| 美女免费视频网站| 亚洲av二区三区四区| 亚洲人成电影免费在线| 国产私拍福利视频在线观看| 国产精品98久久久久久宅男小说| svipshipincom国产片| 在线观看免费午夜福利视频| 亚洲人成电影免费在线| 18禁黄网站禁片午夜丰满| 国产精品久久久久久久久免 | 欧美黄色淫秽网站| 亚洲av美国av| 国产免费男女视频| 亚洲一区高清亚洲精品| 国产三级在线视频| 丁香六月欧美| 欧美极品一区二区三区四区| 高清日韩中文字幕在线| 欧美绝顶高潮抽搐喷水| 色综合欧美亚洲国产小说| 桃色一区二区三区在线观看| 热99re8久久精品国产| 在线观看免费午夜福利视频| 成年免费大片在线观看| 老司机福利观看| 亚洲avbb在线观看| 欧美大码av| 国产激情欧美一区二区| 国产激情偷乱视频一区二区| 欧美日本视频| 日韩国内少妇激情av| 免费av不卡在线播放| 成人高潮视频无遮挡免费网站| 国产男靠女视频免费网站| 90打野战视频偷拍视频| 久久久国产成人精品二区| 国产亚洲精品综合一区在线观看| 亚洲成人精品中文字幕电影| 女人十人毛片免费观看3o分钟| 久久久国产成人精品二区| 91九色精品人成在线观看| 久久精品人妻少妇| 香蕉丝袜av| 国产视频内射| 日本熟妇午夜| 草草在线视频免费看| 久久久久久久午夜电影| 18禁在线播放成人免费| 99精品欧美一区二区三区四区| 激情在线观看视频在线高清| 中出人妻视频一区二区| 在线观看美女被高潮喷水网站 | 亚洲久久久久久中文字幕| 最近最新中文字幕大全免费视频| 亚洲av熟女| 国产高清视频在线观看网站| 国产精品,欧美在线| 长腿黑丝高跟| 国产精品日韩av在线免费观看| 女人高潮潮喷娇喘18禁视频| 亚洲精品粉嫩美女一区| 熟女人妻精品中文字幕| 无限看片的www在线观看| 无遮挡黄片免费观看| 美女高潮喷水抽搐中文字幕| www.999成人在线观看| 亚洲七黄色美女视频| 亚洲人与动物交配视频| 欧美一级a爱片免费观看看| 在线观看免费视频日本深夜| 女人高潮潮喷娇喘18禁视频| 亚洲国产欧洲综合997久久,| 男插女下体视频免费在线播放| 老司机午夜十八禁免费视频| 日本在线视频免费播放| 少妇熟女aⅴ在线视频| 日本五十路高清| 香蕉av资源在线| 女人十人毛片免费观看3o分钟| 午夜激情欧美在线| 九色国产91popny在线| 在线观看舔阴道视频| 国产精品一区二区三区四区免费观看 | 欧美成人a在线观看| 亚洲精品456在线播放app | 毛片女人毛片| 成年免费大片在线观看| 亚洲一区高清亚洲精品| 精品日产1卡2卡| 国产精品一区二区免费欧美| 婷婷亚洲欧美| 美女免费视频网站| 香蕉丝袜av| 99久久精品国产亚洲精品| 两个人看的免费小视频| 九九在线视频观看精品| 欧美在线黄色| 国产一区二区三区在线臀色熟女| 亚洲成av人片免费观看| www.熟女人妻精品国产| 香蕉久久夜色| 亚洲真实伦在线观看| 露出奶头的视频| 三级毛片av免费| 美女被艹到高潮喷水动态| 国产一级毛片七仙女欲春2| 午夜影院日韩av| 欧美性猛交╳xxx乱大交人| bbb黄色大片| 日日摸夜夜添夜夜添小说| 女同久久另类99精品国产91| 亚洲精品日韩av片在线观看 | 又爽又黄无遮挡网站| netflix在线观看网站| 精品一区二区三区人妻视频| 国产精品,欧美在线| 亚洲aⅴ乱码一区二区在线播放| 在线免费观看不下载黄p国产 | 欧美zozozo另类| 狂野欧美白嫩少妇大欣赏| 日本三级黄在线观看| 熟妇人妻久久中文字幕3abv| 亚洲精品一区av在线观看| 久久精品影院6| www.www免费av| 热99re8久久精品国产| 脱女人内裤的视频| 网址你懂的国产日韩在线| 男插女下体视频免费在线播放| 亚洲欧美日韩卡通动漫| 久久久国产精品麻豆| 国产精品免费一区二区三区在线| 69av精品久久久久久| 成年免费大片在线观看| 波多野结衣巨乳人妻| 国产一级毛片七仙女欲春2| 丰满的人妻完整版| 女人高潮潮喷娇喘18禁视频| 999久久久精品免费观看国产| 亚洲中文字幕一区二区三区有码在线看| 欧美日韩国产亚洲二区| xxx96com| 在线国产一区二区在线| 人妻丰满熟妇av一区二区三区| 伊人久久精品亚洲午夜| 日本五十路高清| 亚洲乱码一区二区免费版| 久久精品国产自在天天线| 国产成年人精品一区二区| 久久久久亚洲av毛片大全| 成人国产综合亚洲| 成人欧美大片| 国产在视频线在精品| 男插女下体视频免费在线播放| 18禁在线播放成人免费| 1024手机看黄色片| 欧美性感艳星| 亚洲av第一区精品v没综合| 毛片女人毛片| 久久伊人香网站| 99久久99久久久精品蜜桃| 国产精品99久久99久久久不卡| 亚洲精品一区av在线观看| 天堂√8在线中文| 日本撒尿小便嘘嘘汇集6| 又黄又爽又免费观看的视频| 欧美绝顶高潮抽搐喷水| 天堂动漫精品| 精品午夜福利视频在线观看一区| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清| 日本三级黄在线观看| 成人av一区二区三区在线看| av在线天堂中文字幕| 日本 欧美在线| 一个人看的www免费观看视频| 亚洲av二区三区四区| 精品久久久久久,| 国产高清视频在线观看网站| 性色avwww在线观看| 亚洲人成网站在线播| 波多野结衣巨乳人妻| 亚洲人成网站在线播放欧美日韩| 免费看日本二区| 一本精品99久久精品77| 99精品在免费线老司机午夜| 99久久99久久久精品蜜桃| 一本综合久久免费| 无遮挡黄片免费观看| 我要搜黄色片| 日本黄色片子视频| 欧美日韩国产亚洲二区| 精品久久久久久,| 精品免费久久久久久久清纯| 日本免费a在线| 岛国在线免费视频观看| 亚洲av第一区精品v没综合| 国产精品 国内视频| 偷拍熟女少妇极品色| 十八禁网站免费在线| 久久6这里有精品| 最后的刺客免费高清国语| 在线观看日韩欧美| 日韩欧美精品v在线| 欧美一区二区国产精品久久精品| 一级作爱视频免费观看| 久久人妻av系列| 999久久久精品免费观看国产| 国产蜜桃级精品一区二区三区| 亚洲五月婷婷丁香| 亚洲五月婷婷丁香| 中文字幕久久专区| 日韩欧美 国产精品| 欧美性感艳星| 国产成人欧美在线观看| 麻豆一二三区av精品| 成年女人看的毛片在线观看| 亚洲片人在线观看| 亚洲熟妇中文字幕五十中出| a级毛片a级免费在线| 色播亚洲综合网| 亚洲人成网站高清观看| 亚洲中文字幕一区二区三区有码在线看| 久久香蕉国产精品| 国产日本99.免费观看| netflix在线观看网站| 最好的美女福利视频网| 天美传媒精品一区二区| av片东京热男人的天堂| 最近最新中文字幕大全电影3| 窝窝影院91人妻| 欧美+日韩+精品| 亚洲专区国产一区二区| 亚洲成人久久性| 国产一区二区在线av高清观看| 久久久国产成人免费| 午夜视频国产福利| 99久久精品一区二区三区| tocl精华| 天天添夜夜摸| 国产私拍福利视频在线观看| 久久精品国产亚洲av涩爱 | 国产精品久久视频播放| 综合色av麻豆| 香蕉av资源在线| 亚洲自拍偷在线| 色哟哟哟哟哟哟| 欧美日韩精品网址| 人人妻人人看人人澡| 日韩欧美在线二视频| 亚洲欧美激情综合另类| 俺也久久电影网| 天美传媒精品一区二区| 一二三四社区在线视频社区8| 午夜福利欧美成人| 男人舔奶头视频| 亚洲中文字幕日韩| 成人永久免费在线观看视频| 夜夜躁狠狠躁天天躁| 老司机午夜福利在线观看视频| 在线观看日韩欧美| 18美女黄网站色大片免费观看| or卡值多少钱| 国产高清视频在线观看网站| 在线观看一区二区三区| 日本五十路高清| av在线蜜桃| av天堂中文字幕网| 一本综合久久免费| 国产成人av激情在线播放| 特大巨黑吊av在线直播| 男女下面进入的视频免费午夜| 又粗又爽又猛毛片免费看| 亚洲中文字幕日韩| 成年版毛片免费区| 国产午夜精品论理片| 国产精品野战在线观看| 九色国产91popny在线| 国产精品久久电影中文字幕| 成年免费大片在线观看| 女警被强在线播放| 给我免费播放毛片高清在线观看| 淫妇啪啪啪对白视频| 好男人电影高清在线观看| 国产精品精品国产色婷婷| 久久精品国产99精品国产亚洲性色| 最新在线观看一区二区三区| 高清毛片免费观看视频网站| 欧美黑人巨大hd| 51午夜福利影视在线观看| 亚洲无线在线观看| 免费高清视频大片| 88av欧美| 美女黄网站色视频| 欧美午夜高清在线| 男女下面进入的视频免费午夜| 亚洲成人精品中文字幕电影| 亚洲精品亚洲一区二区| 老熟妇仑乱视频hdxx| 国产极品精品免费视频能看的| 国产精品98久久久久久宅男小说| 成人高潮视频无遮挡免费网站| 久久精品亚洲精品国产色婷小说| 午夜免费男女啪啪视频观看 | 男插女下体视频免费在线播放| 欧美黑人巨大hd| 丝袜美腿在线中文| 日日干狠狠操夜夜爽| 一夜夜www| 中文字幕熟女人妻在线| 欧美性猛交黑人性爽| 伊人久久大香线蕉亚洲五| 一进一出抽搐gif免费好疼| 12—13女人毛片做爰片一| 每晚都被弄得嗷嗷叫到高潮| 身体一侧抽搐| 两个人的视频大全免费| 两个人的视频大全免费| 成人av一区二区三区在线看| 一区二区三区高清视频在线| 精品一区二区三区人妻视频| 每晚都被弄得嗷嗷叫到高潮| 每晚都被弄得嗷嗷叫到高潮| 一进一出抽搐gif免费好疼| 国产精品综合久久久久久久免费| 国产一级毛片七仙女欲春2| 不卡一级毛片| 国内少妇人妻偷人精品xxx网站| 国产爱豆传媒在线观看| 欧美又色又爽又黄视频| 欧美日本亚洲视频在线播放| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩无卡精品| 中文字幕人成人乱码亚洲影| 国产精品av视频在线免费观看| 久久这里只有精品中国| 国产91精品成人一区二区三区| 精品乱码久久久久久99久播| 亚洲熟妇中文字幕五十中出| 成年女人永久免费观看视频| 国产精品爽爽va在线观看网站| 偷拍熟女少妇极品色| 黑人欧美特级aaaaaa片| 欧美日本亚洲视频在线播放| 国产精华一区二区三区| 搡老熟女国产l中国老女人| 日韩 欧美 亚洲 中文字幕| 一个人免费在线观看电影| 一级作爱视频免费观看| 天堂网av新在线| 一区二区三区激情视频| 香蕉av资源在线| 亚洲欧美激情综合另类| 成人一区二区视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 女同久久另类99精品国产91| 一区二区三区高清视频在线| 无遮挡黄片免费观看| 久久久成人免费电影| 长腿黑丝高跟| 国产黄色小视频在线观看| 免费看十八禁软件| 一级作爱视频免费观看| 性欧美人与动物交配| www.熟女人妻精品国产| 国产激情欧美一区二区| 老司机深夜福利视频在线观看| 一个人看的www免费观看视频| 国产成年人精品一区二区| 欧美3d第一页| 不卡一级毛片| 成人特级av手机在线观看| 老司机午夜十八禁免费视频| 91在线观看av| 欧美国产日韩亚洲一区| 欧美精品啪啪一区二区三区| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月 | 国产主播在线观看一区二区| 久久精品综合一区二区三区| 免费观看人在逋| 精品欧美国产一区二区三| 老司机午夜福利在线观看视频| 两个人看的免费小视频| 国产伦在线观看视频一区| 久久香蕉精品热| 午夜影院日韩av| 日韩欧美三级三区| 日韩欧美免费精品| 精品欧美国产一区二区三| 免费看日本二区| 国产探花在线观看一区二区| 国产精品乱码一区二三区的特点| 日韩中文字幕欧美一区二区| 村上凉子中文字幕在线| 五月玫瑰六月丁香| 国产高清有码在线观看视频| 亚洲欧美日韩高清专用| 老司机午夜福利在线观看视频| 亚洲在线观看片| 日本熟妇午夜| 亚洲成人久久性| 国产精品av视频在线免费观看| 90打野战视频偷拍视频| 日韩高清综合在线| 日本黄色片子视频| 国产探花在线观看一区二区| 国产精品一区二区三区四区免费观看 | 国产精品爽爽va在线观看网站| 久久天躁狠狠躁夜夜2o2o| 国产中年淑女户外野战色| 久久久久精品国产欧美久久久| netflix在线观看网站| 成年女人看的毛片在线观看| eeuss影院久久| 久久久精品欧美日韩精品| 性色avwww在线观看| 国产成人欧美在线观看| 成人欧美大片| 国产精品99久久99久久久不卡| 欧美日韩精品网址| 国产极品精品免费视频能看的| 精品国产超薄肉色丝袜足j| 日韩免费av在线播放| 午夜免费观看网址| 51午夜福利影视在线观看| 国产精品美女特级片免费视频播放器| 99久久成人亚洲精品观看| 日韩国内少妇激情av| 亚洲av成人不卡在线观看播放网| 高清日韩中文字幕在线| 狠狠狠狠99中文字幕| 99热6这里只有精品| 99热精品在线国产| 一区二区三区激情视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美一区二区亚洲| 成人性生交大片免费视频hd| 国产 一区 欧美 日韩| 国产精品一区二区三区四区免费观看 | 久久天躁狠狠躁夜夜2o2o| 亚洲欧美精品综合久久99| 在线国产一区二区在线| 一区二区三区高清视频在线| 亚洲,欧美精品.| 色精品久久人妻99蜜桃| 91麻豆av在线| 国产成+人综合+亚洲专区| 3wmmmm亚洲av在线观看| 色视频www国产| 99国产极品粉嫩在线观看| 2021天堂中文幕一二区在线观| 亚洲av日韩精品久久久久久密| 午夜精品在线福利| 男女那种视频在线观看| 欧美区成人在线视频| 免费av毛片视频| 夜夜爽天天搞| 精品午夜福利视频在线观看一区| 国产精品99久久久久久久久| 久久久久亚洲av毛片大全| 国产一区二区激情短视频| 麻豆成人午夜福利视频| 啦啦啦观看免费观看视频高清| 精品一区二区三区视频在线观看免费| 久久久久久久久大av| www.www免费av| 午夜久久久久精精品| 九九在线视频观看精品| 九九久久精品国产亚洲av麻豆| 免费搜索国产男女视频| 精品99又大又爽又粗少妇毛片 | 最新中文字幕久久久久| 少妇的丰满在线观看| 国产精品影院久久| 午夜精品久久久久久毛片777| av在线蜜桃| 成人特级av手机在线观看| 三级毛片av免费| 亚洲成av人片在线播放无| 国产男靠女视频免费网站| 日韩欧美免费精品| 蜜桃亚洲精品一区二区三区| 国产探花极品一区二区| eeuss影院久久| 亚洲精品影视一区二区三区av| 日本在线视频免费播放| 国产精品亚洲一级av第二区| 丰满人妻一区二区三区视频av | 国内精品久久久久久久电影| 国产亚洲精品一区二区www| 搡老岳熟女国产| 日韩av在线大香蕉| 中文字幕人妻熟人妻熟丝袜美 | 叶爱在线成人免费视频播放| 色视频www国产| 亚洲av二区三区四区| 欧美成人性av电影在线观看| 成人高潮视频无遮挡免费网站| 我要搜黄色片| 亚洲av中文字字幕乱码综合| 国产高清激情床上av| 日本撒尿小便嘘嘘汇集6| 亚洲电影在线观看av| 狠狠狠狠99中文字幕| 成人精品一区二区免费| 美女黄网站色视频| 亚洲成a人片在线一区二区| www日本在线高清视频| 国产91精品成人一区二区三区| 亚洲人成电影免费在线| 国产精品99久久久久久久久| 男女做爰动态图高潮gif福利片| a在线观看视频网站| 看片在线看免费视频| 五月伊人婷婷丁香| 中国美女看黄片| 可以在线观看毛片的网站| 亚洲乱码一区二区免费版| 国产精品 国内视频| 脱女人内裤的视频| 国产真实伦视频高清在线观看 | 制服人妻中文乱码| 大型黄色视频在线免费观看| 51午夜福利影视在线观看| 亚洲国产欧美网| 琪琪午夜伦伦电影理论片6080| 真实男女啪啪啪动态图| 久久这里只有精品中国| 少妇的丰满在线观看| 日韩欧美国产一区二区入口| 给我免费播放毛片高清在线观看| 99久久九九国产精品国产免费| 十八禁网站免费在线| 三级毛片av免费| 亚洲 欧美 日韩 在线 免费| 亚洲欧美一区二区三区黑人| 亚洲人成伊人成综合网2020| 老司机在亚洲福利影院| 亚洲精品粉嫩美女一区| 色av中文字幕| 悠悠久久av| 69av精品久久久久久| 国产精品电影一区二区三区| 中文字幕人成人乱码亚洲影| 国产欧美日韩一区二区精品| 欧美精品啪啪一区二区三区| 国产欧美日韩精品亚洲av| 91麻豆av在线| 91久久精品电影网| 男女视频在线观看网站免费| 午夜精品一区二区三区免费看| 亚洲国产精品sss在线观看| 国产亚洲精品久久久com| 熟妇人妻久久中文字幕3abv| 日本精品一区二区三区蜜桃| 国产成人欧美在线观看| 国产一区二区三区视频了| 欧美成人性av电影在线观看| 精品国内亚洲2022精品成人| 欧美bdsm另类| 午夜激情福利司机影院| 亚洲人成网站在线播放欧美日韩| 欧美性感艳星| 一级毛片女人18水好多| avwww免费| 亚洲欧美激情综合另类| 精品国产亚洲在线| 亚洲欧美日韩卡通动漫| 麻豆一二三区av精品| 91麻豆精品激情在线观看国产| 97超级碰碰碰精品色视频在线观看| 成人特级黄色片久久久久久久| 一个人免费在线观看电影| 国产激情欧美一区二区| 日韩欧美一区二区三区在线观看| 国产视频内射| 国产精品综合久久久久久久免费| 亚洲五月天丁香| 老司机深夜福利视频在线观看| 19禁男女啪啪无遮挡网站| 日本在线视频免费播放| 色在线成人网| 亚洲国产色片| 在线天堂最新版资源| 69人妻影院| 亚洲午夜理论影院| 长腿黑丝高跟| 国产 一区 欧美 日韩| avwww免费| 欧美中文日本在线观看视频| 亚洲专区中文字幕在线| 亚洲成av人片免费观看| av天堂中文字幕网| 岛国在线免费视频观看| 好看av亚洲va欧美ⅴa在| 亚洲精品国产精品久久久不卡| 日韩欧美国产在线观看| 在线观看一区二区三区| 国产成人欧美在线观看| 国产精品影院久久| 99精品久久久久人妻精品| 成人特级黄色片久久久久久久| 男女视频在线观看网站免费| 天天一区二区日本电影三级| 亚洲性夜色夜夜综合| 真人做人爱边吃奶动态| 免费高清视频大片| 99热这里只有是精品50| 国产私拍福利视频在线观看|