• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A phase inversion based sponge-like polysulfonamide/SiO2 composite separator for high performance lithium-ion batteries☆

    2018-08-31 05:29:38XiaoWangGaojieXuQingfuWangChenglongLuChengzhongZongJianjunZhangLipingYueGuangleiCui

    Xiao Wang ,Gaojie Xu ,Qingfu Wang ,Chenglong Lu ,Chengzhong Zong *,Jianjun Zhang ,Liping Yue ,Guanglei Cui ,*

    1 School of Polymer Science and Engineering,Qingdao University of Science and Technology,Qingdao 266042,China

    2 Qingdao Industrial Energy Storage Research Institute,Qingdao Institute of Bioenergy and Bioprocess Technology,Chinese Academy of Sciences,Qingdao 266101,China

    Keywords:Polysulfonamide/SiO2 composite Phase inversion method Separator Performance enhancement Lithium-ion battery

    A B S T R A C T In this work,a sponge-like polysulfonamide(PSA)/SiO2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Compared to the commercial polypropylene(PP)separator,the sponge-like PSA/SiO2 composite possesses better physical and electrochemical properties,such as higher porosity,ionic conductivity,thermal stability and flame retarding ability.The LiCoO2/Li half-cells using the sponge-like composite separator demonstrate superior rate capability and cyclability over those using the commercial PP separator.Moreover,the sponge-like composite separator can ensure the normal operation of LiCoO2/Li half-cell at an extremely high temperature of 90°C,while the commercial PP separator cannot.All these encouraging results suggest that this phase inversion based sponge-like PSA/SiO2 composite separator is really a promising separator for high performance LIBs.

    1.Introduction

    Due to their intrinsic high energy density,low self-discharge rate,and long lifetime/shelf life,rechargeable lithium-ion batteries(LIBs)have been widely used as main power source in portable electronic devices and electric transportation tools,and are expected to play a prominent role in accessing(converting–storing–transporting)renewable energy,such as wind,solar and tidal pow er[1,2].As one of the most important components in rechargeable LIBs,the separator not only provides a physical barrier between the positive and negative electrodes to prevent electrical short circuits,but also serves as the electrolyte reservoir to enable ionic transport during battery operation[3,4].Despite their good chemical/electrochemical stability,excellent mechanical strength,and proper thermal shutdown properties,the most widely commercialized polyolefin-based(such as polyethylene(PE),polypropylene(PP)and PP/PE/PP sandwich composite)microporous separators always suffer from severe thermal shrinkage,poor electrolyte wettability,low porosity,and highly flammable,which will inevitably cause safety concern and deteriorate the electrochemical performances(especially the rate capability)of LIBs[5–10].Therefore,tremendous efforts have been paid to select alternative materials(such as poly(vinylidene fluoride-co-hexa fluoropropylene)(PVd FHFP)[11–14],polyimide(PI)[15],polyacrylonitrile(PAN)[16],polyetherimide(PEI)[17],poly(acrylonitrile–methyl methacrylate)(P(AN-MMA)[18])and pore-structure making technologies(such as electrospinning[11,19],phase inversion[20–22])for advanced separators with better performances than conventional polyolefin-based separators[3].

    With excellent thermal,mechanical,dielectric properties,as well as favorable chemical resistance,the rigid polymer of polysulfonamide(PSA)has been investigated asakey component in advanced separators(composite of PP nonwoven membrane and PSA polymer,composite of PSA nonwoven membrane and silicananoparticles,nonwoven composite membrane with PSA core/PVDF-HFP shell structured micro fiber,micro fibrillar composite membrane of both cellulose and PSA)by our group[9,10,23,24].As an effective way to prepare sponge-like porous membranes(separators),the phase inversion method(based on the dissolution of polymer in a precisely controlled mixture of solvents)has received attention[9,18,25].How ever,to the best of our know ledge,the phase inversion based PSA-based porous membrane and its application as separator in LIBs is not reported yet.

    It is proved that ceramic materials(such as silica(SiO2),Al2O3)can endow the separators with excellent thermal/interfacial stability and high thermal conductivity,which are beneficial for suppressing micro-short circuiting and ensuring battery safety at abuse conditions(such as crush/penetration,overcharge,overheat)[26–31].Among these ceramic fillers,SiO2particles can most efficiently reduce the interfacial resistance between separator and electrodes[30,31].Compared to the Al2O3particles,SiO2particles have a better affinity with organic solvents[31].In this work,a self-standing sponge-like PSA/SiO2composite membrane,which possesses excellent thermal and electrochemical stability,is unprecedentedly prepared by the phase inversion method.LiCoO2/Li half-cells using this novel composite separator demonstrate superior rate capability and cyclability,suggesting that this novel composite separator is promising for future high performance LIBs.

    2.Experimental

    2.1.Materials

    Polysulfonamide(PSA)short fiber was purchased from Du Pont Co,USA.N,N-dimethylacetamide(DMAc,99.5%)and ethylene glycol(EG,99.0%)was purchased from Sinopharm Chemical Reagent Co.,China.Deionized water was commercially available.Fumed silica powder(SiO2,CAB-O-SIL TS530)was purchased from Cabot Co.,USA.Polypropylene(PP)separator(Celgard 2500)was purchased from Celgard Co.,USA and used as comparative analysis.Lithium cobalt oxidate(LiCoO2)was used as cathode and offered by Citic GuoAn Power Technology Co.,China.Solution of lithium hexafluorophosphate(LiPF6,1 mol·L?1)in ethylene carbonate(EC)/dimethyl carbonate(DMC)(1/1,V/V)was supplied by Long Power Systems(Suzhou)Co.,China.Other chemical reagents were all purchased commercially and used without further purification.

    2.2.Sponge-like PSA/SiO2 composite membrane by phase inversion method

    The PSA short fiber was ultrasonically washed with ethanol and dried for 12 h at 80°C before usage.The casting solution was prepared by dissolving PSA,EG,SiO2in DMAc(with amassratio of 10:9:2:90)homogeneously at 40°C.Then the obtained homogeneous solution was casted on a glass plate with a thickness of 200 μm.The semi- finished membrane was treated by a dual-bath coagulation method to make porous structure.In the first coagulation bath,the membrane was washed with mixtures of deionized water and DMAc(3:1,by mass)for 10 min.After this,the membrane was washed with deionized water for 10 h to get rid of all solvent.The final PSA/SiO2composite membrane was dried under vacuum at 100°Cto remove residuals,and later was investigated as the separator in LIBs.

    2.3.Characterization of separators

    The thickness of the separators was measured by a micrometer caliper.The surface morphology of the separators and cross-section image of the PSA/SiO2composite separator was obtained using field emission scanning electron microscopy(SEM,Hitachi S-4800,Japan).The separators were immersed in n-butanol for 2 h,and then the porosity of separators was calculated by the equation:

    where mband mais the mass of n-butanol and the separator,ρband ρais the density of n-butanol and the separator,respectively.To evaluate the air permeability of separators,the Gurley value(defined as the time of 100 cm3air to pass through the separator)was measured using the Gurley-type densometer(4110 N,Teledyne Gurley,USA).The electrolyte uptake(EU)was estimated by the following equation:

    w here Wiand Wfis the mass of the separator before and after soaking in electrolyte for 2 h,respectively.Thermal dimensional change of separators(original size is 2 cm×2 cm)was measured after half an hour storage at various temperatures(100 °C,110 °C,120 °C,130 °C,140 °C and 150 °C).And the thermal shrinkage ratio(Rts)was calculated using the following formula:

    w here S0and S1indicate the area of separator before and after thermal treatment,respectively.The pore sizedistribution and poresize was calculated by the BJH method using a pore size analyzer(Quantachrome instruments,USA)[32].Contact angle measurements were performed using a contact angle goniometer(Shanghai Zhongchen Digtai Technology Apparatus Co.,China).A differential scanning calorimeter(Diamond DSC,PerkinElmer DSC,USA)ranging from 50 °C to 300 °C at 10 °C·min?1under N2atmosphere was used to evaluate the thermal stability of separators.

    The ionic conductivity(σ)of the separators with electrolyte between two stainless steel(SS)plates was calculated by the equation:σ =L/(A·R)

    where L and A was the thickness and geometric area of the separator,respectively,while R was the total bulk resistance,which was obtained through analysis of electrochemical impedance spectroscopy(EIS)(VMP3,Bio-Logic Science Instruments SAS,France,frequency range:100 mHz–1 MHz,amplitude:10 m V).The electrochemical stability window of the electrolyte-soaked separators was obtained by alinear sweep voltammograms(LSV)experiment(VMP3,Bio-Logic Science Instruments SAS,France)performed on SS/Separator/Li cells ranging from 2.5 V to 6.0 V at a 10 m V·s?1scan rate.

    The charge–discharge tests of LiCoO2/Li 2032-coin type half cells including cyclability and rate capability were carried out using a LAND battery testing system(LANHE CT2001A,Wuhan LAND electronics Co.,China).The LiCoO2cathode was composed of LiCoO2powder(90 wt%),carbon black(5 wt%)and PVDF binder(5 wt%).The cycling performance was evaluated at 0.5 C rate at room temperature and at 1 C rate at 90 °C,respectively,with a potential range of 4.2–3 V.The rate capability test was performed at 0.2 C,0.3 C,0.5 C,1 C,2 C,3 C,5 C,10 C and then reversed back to 0.2 C,successively.The EIS(VMP3,Bio-Logic Science Instruments SAS,France)of the cells was performed over frequencies ranging from 1 MHz to 100 m Hz with a voltage amplitude of 10 m V.

    3.Results and Discussion

    Fig.1.Typical SEM images of(a)the surfacemorphology of phase inversion based PSA/SiO2 composite separator and(b)its partial cross-section morphology after being freeze-fractured in liquid nitrogen.The pore size distribution of(c)the PSA/SiO2 composite separator and(d)the commercial PP separator,the inset of(d)is the surface morphology of the commercial PP separator.Inset of(a)is a photograph of homogeneous PSA/DMAc/EG solution with and without SiO2.

    The typical SEM images and pore size distribution of the PSA/SiO2composite separator and commercial PP separator are demonstrated in Fig.1.It is clearly observed(Fig.1a and b)that the phase inversion based PSA/SiO2composite separator is “sponge-like”and has homogeneously distributed largepores.The as-prepared PSA/DMAc/EG solution with SiO2is transparent and homogeneous,indicating the fumed SiO2particles are well dispersed in the polymer matrix(inset of Fig.1a).Here,the model of the binodal liquid–liquid phase separation is used to explain the formation mechanism of sponge-like pore structure[33–35].When the casted membrane is immersed in the first coagulation bath,the solvent DMAc in the casted membrane and the nonsolvent H2O in the first coagulation bath will inter-diffuse into each other immediately.As a result,the binodal liquid–liquid phase separation happens,leading to the formation of interconnected(spongelike)pore structure[33–35].In the initial process of the binodal liquid–liquid phase separation,the small droplets of the polymer-poor phase(containing large amount of solvent DMAc,non-solvent H2O,and small amount of polymer PSA)are well dispersed in the continuous polymer-rich phase(containing small amount of solvent DMAc,nonsolvent H2O,and large amount of polymer PSA).Then,under the driven of concentration gradient,these small polymer-poor phase droplets become larger until the surrounding continuous polymer-rich phase is solidified by phase transformation of polymer PSA.Just before the solidification of continuous polymer-rich phase,the polymer-poor phase droplets coalesce with each other to facilitate the interconnected pore structure formation.In the second coagulation bath,the continuous polymer-rich phase is totally solidified,and all solvents are removed.

    The pore size distribution of the PSA/SiO2composite separator is discontinuous(Fig.1c).About 90%of its pore dimension ranges from 1000 nm to 1500 nm,confirming that the sponge-like PSA/SiO2composite separator possessed relatively uniform pore distribution.As a comparison,the commercial uniaxial stretched PP separator has smaller elliptic pores and narrower pore size distribution(Fig.1d).The homogeneous incorporation of fumed SiO2(with no obvious agglomeration of silica particles in Fig.1a and b)will not only impart the mechanical strength to the composite separator,but also enhance the thermal/interfacial stability of the composite separator.Thus,this unique sponge-like PSA/SiO2composite separator is anticipated to obtain high electrolyte uptake,uniform Li-ion transportation at high charge/discharge rates and excellent ability of suppressing grow th of lithium dendrites,which are beneficial for battery power and safety[9,10,23,24].

    The thickness,porosity,Gurley value and electrolyte uptake of PSA/SiO2composite separator and the commercial PP separator are listed in Table 1.It is well known that high porosity and low Gurley value can result in high electrolyte uptake,which is advantageous to rapid ionic transportation.The sponge-like PSA/SiO2composite separator also has excellent wettability(Fig.2).As clearly shown in Fig.2a and b the contact angle of the sponge-like PSA/SiO2composite separator is 68.5°,which is lower than that of PP separator 105.5°.The lower contact angle implies that the sponge-like PSA/SiO2composite separator can be quickly wetted by organic liquid electrolyte,which is confirmed in Fig.2c and d.Inferior electrolyte wettability of the separators will inevitably result in dry-zone during battery operation,which can deteriorate the cyclability of battery and possibly cause hazard.These excellent properties of the sponge-like PSA/SiO2composite separator are favorable to enhance the electrochemical performances(especially rate capability)of LIBs.

    Thermal shrinkage of separators plays a key role in the safety of LIBs[9,10,23,24].The thermal shrinkage of the sponge-like PSA/SiO2composite separator and the commercial PP separator is obtained by recording their size change after being stored for 0.5 h at varied temperatures.As it is clearly shown in Fig.3,the sponge-like PSA/SiO2composite separator demonstrates slightly thermal shrinkage over temperatures ranging from 100 °C to 150 °C,while the commercial PP separator shrinks seriously and the shrinkage at 150°C is about 47%at the uniaxial-stretched direction.According to DSC curves in Fig.4,the commercial PP separator begins to melt at 150°C and has an endothermic peak at 165°C.Encouragingly,the sponge-like PSA/SiO2composite separator shows no obvious endothermic peak until 245.87°C(with the peak width of 7.28°C).The slightly thermal shrinkage of the spongelike PSA/SiO2composite separator is mainly ascribed to thehigh melting point of both PSA and SiO2[36–38].Therefore,during high temperature operation of LIBs,the sponge-like PSA/SiO2composite separator can ensure battery safety,better than the commercial PP separator,by efficiently preventing internal short circuit problem caused by thermal shrinkage of separators.

    Table 1Brief physical properties of the sponge-like PSA/SiO2 composite separator and the commercial PP separator

    Fig.2.Contact angle images between organic liquid electrolyte droplet and(a)PSA/SiO2 composite separator,(b)PP separator,respectively.Photographs showing liquid electrolyte wetting behavior((c)before and(d)after 10 s droplet of electrolyte)of the sponge-like PSA/SiO2 composite separator and the PP separator.

    The flame retarding capability of separators is also important for guaranteeing the safety of LIBs at abusive conditions(such as crush/penetration,short circuit,overcharge,and overheat).Combustion test of the sponge-like PSA/SiO2composite separator and the commercial PP separator in air is clearly shown in Fig.5.The sponge-like PSA/SiO2composite separator demonstrates excellent flame retarding ability(self-extinguishing immediately after ignition),while the commercial PP separator shrinks and keeps combusting after ignited.The excellent flame retarding ability of the composite separator is mainly ascribed to the high limiting oxygen index(LOI)of PSA material(the LOI of PSA material is as high as 33%,while the LOI of PP material is only 18%)[39,40].In general,concerning the safety issues of LIBs,the sponge-like PSA/SiO2composite separator is a promising alternative to the commercial PP separator.

    Fig.3.(a)The thermal shrinkage of the sponge-like PSA/SiO2 composite separator and the commercial PP separator over temperatures ranging from 100 °C to 150 °C,for 0.5 h;(b)The photographs of the sponge-like PSA/SiO2 composite separator and the commercial PP separator before and after thermal treatment at 150°C for 0.5 h.

    Fig.4.DSC curves of the sponge-like PSA/SiO2 composite separator and the commercial PP separator.

    Fig.6.Nyquist plots of the liquid electrolyte soaked sponge-like PSA/SiO2 composite separator and commercial PP separator at room temperature,frequency range:100 mHz–1 MHz,amplitude:10 mV.

    The ionic conductivity(σ)of the liquid electrolyte soaked separator sandwiched between two stainless steel(SS)plate electrodes is calculated by the equation:σ =L/(A·R),where L and A is the thickness and geometric area of the separator,respectively,while R is the total bulk resistance,which is represented by the Z′-axis intercept in Nyquist plot(Fig.6).The ionic conductivity of the sponge-like PSA/SiO2composite separator and commercial PP separator is 0.748×10?3S·cm?1and 0.312× 10?3S·cm?1,respectively.The high conductivity of the composite separator is greatly associated with its high porosity(spongelike pore structure),low Gurley value,and high electrolyte uptake,and will contribute to the improvement of rate capability of LIBs.The electrochemical stability of liquid electrolyte soaked separators is normally measured by linear sweep voltammograms(LSV)of asymmetric stainless steel plate/Li cell.As clearly shown by Fig.7,the oxidation peak of the asymmetric SS/Li cell with the liquid electrolyte soaked sponge-like PSA/SiO2composite separator appears above 5.0 V,suggesting that this separator is suitable for most of LIB systems with different working potential window s.

    Fig.5.Combustion test of(a-before ignition,b-after ignition)the sponge-like PSA/SiO2 composite separator and(c-before ignition,d-after ignition)the commercial PP separator.

    Fig.7.Linear sweep voltammograms(LSV)of the liquid electrolyte soaked sponge-like PSA/SiO2 composite separator and commercial PP separator ranging from 2.5 V to 6.0 V at room temperature.

    For practical applications,in the follow ing,the sponge-like PSA/SiO2composite separator was preliminarily used for LiCoO2/Lihalf-cell ranging from 3 V to 4.2 V.The rate capability of the LiCoO2/Li half-cells using the sponge-like PSA/SiO2composite separator and commercial PP separator is demonstrated by Fig.8.Encouragingly,at high testing rates,the LiCoO2/Li half-cell with the composite separator has a significantly higher specific capacity than the cell with the commercial PP separator.Specifically,at the rate of 10 C,the specific capacity of the LiCoO2/Lihalfcell with the composite separator can be kept high at 72.1 m A·h·g?1,while that of the LiCoO2/Li half-cell with the commercial PP separator is only 45 m A·h·g?1.

    The cycle performance of the LiCoO2/Li half-cells using the spongelike PSA/SiO2composite separator and commercial PP separator is displayed(Fig.9a and b).After 200 cycles at 0.5 C rate,the capacity retention of the LiCoO2/Li half-cell using the sponge-like PSA/SiO2composite separator is 94.2%(decreasing from 130.5 m A·h·g?1to 122.9 m A·h·g?1),while the commercial PP separator is only 87.6%(decreasing from 130.9 m A·h·g?1to 115.4 m A·h·g?1)(Fig.9a).Furthermore,upon cycling,the Coulombic efficiency of the LiCoO2/Li half-cell using the sponge-like PSA/SiO2composite separator(99.6%on average)is slightly higher and more stable than that of the half-cell using commercial PP separator(99.4%on average)(Fig.9b),indicating that the parasitic reactions happened in the half-cells are possibly suppressed because of the usage of the composite separator.

    AC impedance measurement was carried out to investigate the variation of cell impedance during cycle performance test.It is well known that the high-medium frequency semicircle corresponds to the interfacial resistances(including the charge-transfer resistance at electrode/electrolyte interface)and the linear tail at low-frequency region is always called Warburg resistance(W)related to the solid-state diffusion of lithium ions in the electrode materials.As it is clearly shown(Fig.9c and d)that,at both the 1st cycle and the200th cycle,the LiCoO2/Li halfcell using the sponge-like PSA/SiO2composite separator demonstrates significantly lower interfacial resistance than the cell using commercial PP separator.The superior ratecapability and cyclability of the LiCoO2/Li half-cells using the sponge-like PSA/SiO2composite separator can be attributed to the high ionic conductivity and excellent interface compatibility of the composite separator.

    Fig.8.(a)The discharge capacity of LiCoO2/Li half-cells using the sponge-like PSA/SiO2 composite separator and commercial PP separator at various C-rates,and the corresponding discharge voltage curves of half cells with(b)composite separator and(c)and commercial PP separator,at room temperature with a voltage range of 3.0–4.2 V.

    Moreover,it is clearly demonstrated(Fig.10)that the sponge-like PSA/SiO2composite separator can ensure the normal operation of LiCoO2/Li half-cell at extremely high temperature testing condition(at 1 C rate at 90°C)because of its slight thermal shrinkage and high thermal stability.In summary of all the above mentioned encouraging results,the phase inversion based sponge-like PSA/SiO2composite separator is really a promising alternative to the commercial PP separator.

    Fig.9.(a)Capacity retention and(b)the corresponding Coulombic efficiency of the LiCoO2/Li half-cells using the sponge-like PSA/SiO2 composite separator and commercial PP separator,upon cycling at 0.5 C rate at room temperature with a voltage range of 3.0–4.2 V.Corresponding Nyquist plots for the LiCoO2/Li half-cells with different separators measured after(c)the 1st cycle and(d)the 200th cycle at room temperature.

    Fig.10.Cycle performance of the LiCoO2/Li half-cells using the sponge-like PSA/SiO2 composite separator and commercial PP separator,upon cycling at 1 C rate at 90°C with a voltage range of 3.0–4.2 V.

    4.Conclusions

    In this work,a sponge-like PSA/SiO2composite membrane is unprecedentedly prepared by phase inversion method,and successfully investigated as a novel separator of LIBs.Compared to the commercial PP separator,the sponge-like PSA/SiO2composite separator possesses better physical and electrochemical properties,such as higher porosity,ionic conductivity,thermal stability and flame retarding ability.The LiCoO2/Li half-cells using the sponge-like composite separator demonstrate superior rate capability and cyclability than those using the commercial PP separator.Moreover,the sponge-like composite separator can ensure the normal operation of LiCo O2/Li half-cell at an extreme high temperature of 90°C.All these encouraging results suggest that this phase inversion based sponge-like PSA/SiO2composite separator is really a promising separator for high performance LIBs.

    亚洲人成网站高清观看| 国产高清视频在线观看网站| 亚洲,欧美,日韩| 黄色欧美视频在线观看| 国产精品国产三级国产专区5o | 97超碰精品成人国产| 国产中年淑女户外野战色| 欧美色视频一区免费| 男人的好看免费观看在线视频| 中文精品一卡2卡3卡4更新| 男女下面进入的视频免费午夜| 午夜福利在线在线| 亚洲精品aⅴ在线观看| 久久精品91蜜桃| 亚洲,欧美,日韩| 国产午夜精品论理片| 小蜜桃在线观看免费完整版高清| 欧美另类亚洲清纯唯美| 国产亚洲一区二区精品| 麻豆乱淫一区二区| 亚洲人与动物交配视频| 久久久久性生活片| 在线免费观看不下载黄p国产| 狂野欧美白嫩少妇大欣赏| 老司机影院成人| 日韩亚洲欧美综合| 午夜精品在线福利| 一边摸一边抽搐一进一小说| 亚洲婷婷狠狠爱综合网| 天天躁日日操中文字幕| 国产黄色小视频在线观看| 日日干狠狠操夜夜爽| 观看美女的网站| 91精品伊人久久大香线蕉| 国产精品久久久久久av不卡| 色播亚洲综合网| 亚洲精品影视一区二区三区av| 国产精品久久视频播放| 丝袜美腿在线中文| 嫩草影院入口| 六月丁香七月| 搡老妇女老女人老熟妇| 99国产精品一区二区蜜桃av| 男女国产视频网站| 久久久精品欧美日韩精品| 深爱激情五月婷婷| 99九九线精品视频在线观看视频| 狂野欧美激情性xxxx在线观看| 国产精品爽爽va在线观看网站| 我要看日韩黄色一级片| 国产精品爽爽va在线观看网站| 深爱激情五月婷婷| 精品免费久久久久久久清纯| 日本爱情动作片www.在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲性久久影院| 色综合色国产| 欧美区成人在线视频| 夜夜看夜夜爽夜夜摸| 亚洲精品aⅴ在线观看| 日韩一本色道免费dvd| 婷婷色麻豆天堂久久 | 性色avwww在线观看| av国产久精品久网站免费入址| 99久久无色码亚洲精品果冻| 欧美成人a在线观看| 男女视频在线观看网站免费| 免费观看人在逋| 色综合站精品国产| 激情 狠狠 欧美| 国产视频首页在线观看| 欧美性猛交黑人性爽| 精品午夜福利在线看| 国产精品国产三级国产av玫瑰| 久久99热这里只有精品18| 亚洲欧美成人综合另类久久久 | 韩国高清视频一区二区三区| 久久久色成人| 禁无遮挡网站| 国产人妻一区二区三区在| 国产真实乱freesex| 能在线免费观看的黄片| 精品无人区乱码1区二区| 精品人妻熟女av久视频| 亚洲人与动物交配视频| 最近的中文字幕免费完整| 一级黄片播放器| av女优亚洲男人天堂| 国产淫片久久久久久久久| 人妻系列 视频| 人妻系列 视频| 欧美高清性xxxxhd video| 乱码一卡2卡4卡精品| 久久久久免费精品人妻一区二区| 大又大粗又爽又黄少妇毛片口| 日韩欧美国产在线观看| 欧美另类亚洲清纯唯美| 日韩欧美国产在线观看| 99热这里只有是精品50| 十八禁国产超污无遮挡网站| 美女被艹到高潮喷水动态| 看黄色毛片网站| 不卡视频在线观看欧美| 国产伦理片在线播放av一区| 国产熟女欧美一区二区| 91久久精品电影网| 亚洲精品乱码久久久久久按摩| 精品熟女少妇av免费看| 国产免费福利视频在线观看| 亚洲精品久久久久久婷婷小说 | 成年女人永久免费观看视频| 噜噜噜噜噜久久久久久91| 日本爱情动作片www.在线观看| 一本久久精品| 国产黄色视频一区二区在线观看 | 男人舔奶头视频| 国内揄拍国产精品人妻在线| 美女黄网站色视频| 久久久久久久久大av| 亚洲精品乱久久久久久| 噜噜噜噜噜久久久久久91| 两个人视频免费观看高清| 亚洲精品影视一区二区三区av| 亚洲国产色片| 非洲黑人性xxxx精品又粗又长| 色视频www国产| 尤物成人国产欧美一区二区三区| 中文字幕av在线有码专区| 国产精品一区二区三区四区免费观看| 亚洲欧美精品自产自拍| 久久久午夜欧美精品| 久久精品国产自在天天线| 欧美精品国产亚洲| 美女xxoo啪啪120秒动态图| 久久午夜福利片| 国产麻豆成人av免费视频| 干丝袜人妻中文字幕| 亚洲国产精品国产精品| 欧美97在线视频| 午夜视频国产福利| 亚洲国产精品合色在线| 免费观看在线日韩| 欧美日本亚洲视频在线播放| 亚洲伊人久久精品综合 | 插阴视频在线观看视频| 成人性生交大片免费视频hd| 免费看日本二区| 久久精品国产亚洲av天美| 日韩在线高清观看一区二区三区| 三级经典国产精品| 国产高潮美女av| 人人妻人人澡欧美一区二区| 草草在线视频免费看| АⅤ资源中文在线天堂| 久久99热这里只频精品6学生 | 亚洲人成网站在线播| 国产 一区 欧美 日韩| 欧美日本视频| 人人妻人人澡人人爽人人夜夜 | 成人欧美大片| 看黄色毛片网站| 日韩成人伦理影院| av天堂中文字幕网| 汤姆久久久久久久影院中文字幕 | 亚洲国产日韩欧美精品在线观看| 大香蕉久久网| 亚洲国产高清在线一区二区三| 亚洲精品,欧美精品| 久久精品久久久久久噜噜老黄 | videos熟女内射| 看黄色毛片网站| 免费av不卡在线播放| 精品人妻偷拍中文字幕| 色综合亚洲欧美另类图片| 国产精品三级大全| 搡老妇女老女人老熟妇| 2021少妇久久久久久久久久久| 水蜜桃什么品种好| 欧美极品一区二区三区四区| 亚洲精品乱码久久久v下载方式| 熟女电影av网| 一区二区三区高清视频在线| 哪个播放器可以免费观看大片| 欧美人与善性xxx| 午夜视频国产福利| 欧美最新免费一区二区三区| 91aial.com中文字幕在线观看| 免费av毛片视频| 亚洲精品国产成人久久av| 99久久无色码亚洲精品果冻| 乱系列少妇在线播放| 久久精品国产亚洲av天美| 欧美日本视频| 国产爱豆传媒在线观看| 色噜噜av男人的天堂激情| 亚洲熟妇中文字幕五十中出| av视频在线观看入口| 好男人在线观看高清免费视频| 欧美极品一区二区三区四区| a级一级毛片免费在线观看| 国产老妇女一区| 欧美日韩精品成人综合77777| 色哟哟·www| 最近手机中文字幕大全| 女的被弄到高潮叫床怎么办| 联通29元200g的流量卡| 欧美人与善性xxx| 全区人妻精品视频| 全区人妻精品视频| 哪个播放器可以免费观看大片| 国国产精品蜜臀av免费| 日本欧美国产在线视频| 国产91av在线免费观看| 在线播放无遮挡| 永久免费av网站大全| 久久久成人免费电影| 超碰av人人做人人爽久久| 久99久视频精品免费| 99久久成人亚洲精品观看| 欧美高清成人免费视频www| 欧美三级亚洲精品| 只有这里有精品99| 欧美一区二区国产精品久久精品| 日日摸夜夜添夜夜爱| 欧美3d第一页| 久久精品熟女亚洲av麻豆精品 | 国产精品一区www在线观看| 一卡2卡三卡四卡精品乱码亚洲| 午夜免费男女啪啪视频观看| 精品国产露脸久久av麻豆 | 久久精品91蜜桃| 日韩中字成人| 乱人视频在线观看| 国产精品久久久久久精品电影小说 | 成人综合一区亚洲| 天天一区二区日本电影三级| 国产乱人视频| 爱豆传媒免费全集在线观看| 久久精品久久精品一区二区三区| 精品人妻熟女av久视频| av黄色大香蕉| 黄色配什么色好看| 只有这里有精品99| 成人特级av手机在线观看| 午夜精品在线福利| 高清在线视频一区二区三区 | 只有这里有精品99| 丰满乱子伦码专区| 久久精品久久精品一区二区三区| 一个人免费在线观看电影| 久久国内精品自在自线图片| 婷婷色av中文字幕| 午夜福利成人在线免费观看| 一级毛片aaaaaa免费看小| 久久人妻av系列| 天天一区二区日本电影三级| 日本五十路高清| 亚洲国产欧美人成| 午夜精品在线福利| 99久久人妻综合| 日韩,欧美,国产一区二区三区 | 一级黄片播放器| 亚洲av中文字字幕乱码综合| 国产精品一区二区性色av| 精品一区二区免费观看| 色播亚洲综合网| 日本黄色片子视频| 久久亚洲国产成人精品v| 91午夜精品亚洲一区二区三区| 国产精品人妻久久久影院| videossex国产| 别揉我奶头 嗯啊视频| 免费看光身美女| 中文天堂在线官网| 久久久久久伊人网av| or卡值多少钱| 99热6这里只有精品| 91精品一卡2卡3卡4卡| 亚洲激情五月婷婷啪啪| 在线免费观看的www视频| 亚洲高清免费不卡视频| 别揉我奶头 嗯啊视频| 伦理电影大哥的女人| 成人国产麻豆网| 69av精品久久久久久| 在现免费观看毛片| 午夜福利视频1000在线观看| 亚洲精品日韩在线中文字幕| 国产精品嫩草影院av在线观看| 九草在线视频观看| 高清av免费在线| 91久久精品国产一区二区三区| 春色校园在线视频观看| 国产精品蜜桃在线观看| 精品酒店卫生间| 欧美日韩精品成人综合77777| or卡值多少钱| 韩国av在线不卡| 免费av观看视频| 日韩人妻高清精品专区| 床上黄色一级片| 最近手机中文字幕大全| 国产色爽女视频免费观看| 老司机影院毛片| 色综合亚洲欧美另类图片| 岛国在线免费视频观看| 中文字幕精品亚洲无线码一区| 国产色婷婷99| 边亲边吃奶的免费视频| 国产亚洲91精品色在线| 国产精华一区二区三区| 中文字幕久久专区| 我的老师免费观看完整版| 久久人人爽人人爽人人片va| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频 | 欧美高清性xxxxhd video| 精品酒店卫生间| 亚洲国产精品专区欧美| 美女内射精品一级片tv| 成人鲁丝片一二三区免费| 日韩欧美在线乱码| 亚洲欧美日韩无卡精品| 岛国在线免费视频观看| 晚上一个人看的免费电影| 精品酒店卫生间| 搡女人真爽免费视频火全软件| 99久久无色码亚洲精品果冻| 亚洲图色成人| 欧美日韩综合久久久久久| 国产精品久久久久久精品电影| 美女cb高潮喷水在线观看| 日韩视频在线欧美| 精品一区二区三区人妻视频| 精品久久久久久久久av| 亚洲国产色片| 少妇的逼水好多| 国产精品无大码| 少妇猛男粗大的猛烈进出视频 | 成人三级黄色视频| 校园人妻丝袜中文字幕| 成人二区视频| 国产伦在线观看视频一区| 欧美日本亚洲视频在线播放| 一级毛片久久久久久久久女| 午夜福利成人在线免费观看| 少妇熟女aⅴ在线视频| 久久久久精品久久久久真实原创| 美女内射精品一级片tv| 级片在线观看| 日本黄色视频三级网站网址| 国产亚洲91精品色在线| 成人av在线播放网站| 中国美白少妇内射xxxbb| 久久精品久久久久久噜噜老黄 | 日本熟妇午夜| 97人妻精品一区二区三区麻豆| av卡一久久| 亚洲图色成人| 国产一级毛片七仙女欲春2| 一边亲一边摸免费视频| 国产黄色视频一区二区在线观看 | av又黄又爽大尺度在线免费看 | 亚洲人成网站高清观看| 久久久亚洲精品成人影院| 校园人妻丝袜中文字幕| 内地一区二区视频在线| av.在线天堂| 久久久精品94久久精品| 成年免费大片在线观看| 看十八女毛片水多多多| 亚洲伊人久久精品综合 | 日本一本二区三区精品| 久久热精品热| 最近中文字幕高清免费大全6| 亚洲av不卡在线观看| 一个人看的www免费观看视频| 亚洲内射少妇av| 又爽又黄无遮挡网站| 小说图片视频综合网站| 国产亚洲91精品色在线| 桃色一区二区三区在线观看| 日韩国内少妇激情av| 97超视频在线观看视频| 日韩 亚洲 欧美在线| 免费看光身美女| 亚洲欧美成人综合另类久久久 | 99久久九九国产精品国产免费| 免费播放大片免费观看视频在线观看 | 亚洲欧洲日产国产| 久久精品久久久久久久性| 一个人看的www免费观看视频| 黑人高潮一二区| 三级国产精品片| 网址你懂的国产日韩在线| 日韩三级伦理在线观看| 乱系列少妇在线播放| 日日摸夜夜添夜夜添av毛片| 婷婷六月久久综合丁香| 99久久精品国产国产毛片| 亚洲av中文字字幕乱码综合| av播播在线观看一区| 丝袜美腿在线中文| 国产综合懂色| 日本免费一区二区三区高清不卡| 欧美性感艳星| 亚洲av电影不卡..在线观看| 亚洲中文字幕一区二区三区有码在线看| 97在线视频观看| 精品久久久久久成人av| av在线蜜桃| 激情 狠狠 欧美| 高清毛片免费看| 成年女人看的毛片在线观看| 97在线视频观看| 精品99又大又爽又粗少妇毛片| 欧美三级亚洲精品| 成人漫画全彩无遮挡| 欧美极品一区二区三区四区| 日本-黄色视频高清免费观看| 成人漫画全彩无遮挡| 国产av一区在线观看免费| 天天躁夜夜躁狠狠久久av| 日日摸夜夜添夜夜爱| 99热精品在线国产| 91午夜精品亚洲一区二区三区| av视频在线观看入口| 国产色婷婷99| 91aial.com中文字幕在线观看| 精品久久久久久久末码| 久久这里有精品视频免费| 亚洲欧美成人综合另类久久久 | 一个人看的www免费观看视频| 亚洲精品乱久久久久久| 国产v大片淫在线免费观看| 午夜福利网站1000一区二区三区| 久久人人爽人人爽人人片va| 久久久国产成人精品二区| 久久精品91蜜桃| 淫秽高清视频在线观看| 99热这里只有精品一区| av在线蜜桃| 久久精品久久精品一区二区三区| 啦啦啦观看免费观看视频高清| 国产三级在线视频| 美女内射精品一级片tv| 赤兔流量卡办理| 看非洲黑人一级黄片| 老司机影院成人| 亚洲最大成人中文| 九色成人免费人妻av| 少妇高潮的动态图| av又黄又爽大尺度在线免费看 | 高清视频免费观看一区二区 | 九九久久精品国产亚洲av麻豆| 波多野结衣巨乳人妻| 国产爱豆传媒在线观看| 天天躁日日操中文字幕| 国产在线男女| 国产精品久久久久久精品电影| 三级国产精品片| 你懂的网址亚洲精品在线观看 | 赤兔流量卡办理| 亚洲av男天堂| 国产乱来视频区| 日本-黄色视频高清免费观看| 亚洲av一区综合| 成人午夜精彩视频在线观看| 草草在线视频免费看| 韩国高清视频一区二区三区| 亚洲欧美精品自产自拍| 99国产精品一区二区蜜桃av| 午夜免费男女啪啪视频观看| 亚州av有码| 免费看av在线观看网站| 国产乱人视频| 插阴视频在线观看视频| 伊人久久精品亚洲午夜| 精品久久国产蜜桃| av黄色大香蕉| 国产一区二区在线观看日韩| 久99久视频精品免费| 最近中文字幕2019免费版| 免费大片18禁| 中文字幕久久专区| 亚洲av男天堂| 中文字幕制服av| 国产亚洲5aaaaa淫片| 美女cb高潮喷水在线观看| 黄色配什么色好看| 嫩草影院精品99| 精品国内亚洲2022精品成人| 久久久久久久久大av| 中文字幕亚洲精品专区| 欧美又色又爽又黄视频| 国产精品嫩草影院av在线观看| 国语自产精品视频在线第100页| 成人特级av手机在线观看| av在线老鸭窝| 日韩精品有码人妻一区| 国产亚洲一区二区精品| 欧美一区二区精品小视频在线| 成人无遮挡网站| 精品酒店卫生间| 免费观看人在逋| 少妇的逼水好多| 亚洲熟妇中文字幕五十中出| 国产av一区在线观看免费| www日本黄色视频网| 久久久久性生活片| 午夜福利网站1000一区二区三区| 午夜老司机福利剧场| 黄色配什么色好看| 深爱激情五月婷婷| 亚洲av中文字字幕乱码综合| 免费电影在线观看免费观看| 久久精品国产亚洲av天美| 国产午夜精品久久久久久一区二区三区| 久久久久网色| 国产高清不卡午夜福利| 少妇猛男粗大的猛烈进出视频 | 久久久久久大精品| 老女人水多毛片| 日韩精品青青久久久久久| 亚洲欧美日韩卡通动漫| 国产又色又爽无遮挡免| 有码 亚洲区| 日本一本二区三区精品| 亚洲国产精品sss在线观看| 亚洲aⅴ乱码一区二区在线播放| 人人妻人人看人人澡| 亚洲av福利一区| 国内精品宾馆在线| 亚洲国产精品合色在线| 亚洲av电影在线观看一区二区三区 | www.av在线官网国产| 校园人妻丝袜中文字幕| 久久久欧美国产精品| 九色成人免费人妻av| 丝袜喷水一区| 亚洲国产精品专区欧美| 高清毛片免费看| 久久亚洲精品不卡| 久久久久久久国产电影| 少妇人妻一区二区三区视频| 啦啦啦啦在线视频资源| 日本免费一区二区三区高清不卡| 久久久久网色| 身体一侧抽搐| 亚洲欧美清纯卡通| 最近中文字幕2019免费版| 天天躁日日操中文字幕| 成年版毛片免费区| 亚洲国产精品成人综合色| 少妇熟女aⅴ在线视频| 少妇裸体淫交视频免费看高清| 欧美高清成人免费视频www| 国产视频首页在线观看| 欧美变态另类bdsm刘玥| 久久久久久国产a免费观看| 国产欧美日韩精品一区二区| 有码 亚洲区| 国产伦精品一区二区三区四那| 床上黄色一级片| 成人欧美大片| 变态另类丝袜制服| 一级毛片aaaaaa免费看小| 亚洲av成人av| 夜夜爽夜夜爽视频| 国产国拍精品亚洲av在线观看| 国产免费又黄又爽又色| 亚洲18禁久久av| 男女那种视频在线观看| 亚州av有码| 99热这里只有是精品50| 长腿黑丝高跟| 麻豆一二三区av精品| 国产视频首页在线观看| av在线亚洲专区| 美女xxoo啪啪120秒动态图| 日日摸夜夜添夜夜添av毛片| 淫秽高清视频在线观看| kizo精华| 日韩成人av中文字幕在线观看| 色5月婷婷丁香| 听说在线观看完整版免费高清| 国产亚洲精品av在线| 国产黄色小视频在线观看| 伦理电影大哥的女人| 国产精品久久视频播放| 全区人妻精品视频| 国产精品嫩草影院av在线观看| 久久热精品热| 1024手机看黄色片| 日韩欧美 国产精品| 久久人人爽人人片av| 2021天堂中文幕一二区在线观| 国产一级毛片在线| 欧美日韩精品成人综合77777| 久久精品国产亚洲av天美| 亚洲综合色惰| 一级爰片在线观看| 国产精品日韩av在线免费观看| 国产精品人妻久久久久久| 一级毛片久久久久久久久女| 看免费成人av毛片| av视频在线观看入口| 久久久久久久久久久免费av| 97热精品久久久久久| 在线天堂最新版资源| 亚洲国产最新在线播放| 国产av码专区亚洲av| 欧美色视频一区免费| 波多野结衣高清无吗| 亚洲欧美精品自产自拍|