• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Probabilistic analysis of ultimate seismic bearing capacity of strip foundations

    2018-08-30 09:21:26AdmHmrouniBdreddineSbrtiDnielDis

    Adm Hmrouni,Bdreddine Sbrti,Dniel Dis

    aLaboratory InfraRes,Mohammed Cherif Messaadia University,Souk-Ahras,Algeria

    bDepartment of Civil Engineering,Badji Mokhtar-Annaba University,Annaba,Algeria

    cLaboratory LMGHU,Skikda University,Skikda,Algeria

    dSchool of Automotive and Transportation Engineering,Hefei University of Technology,Hefei,230009,China

    eGrenoble Alpes University,Laboratory 3SR,Grenoble,France

    Keywords:Strip foundations Seismic bearing capacity First-order reliability method(FORM)Response surface methodology(RSM)Reliability Genetic algorithm(GA)

    ABSTRACT This paper presents a reliability analysis of the pseudo-static seismic bearing capacity of a strip foundation using the limit equilibrium theory.The first-order reliability method(FORM)is employed to calculate the reliability index.The response surface methodology(RSM)is used to assess the Hasofer-Lind reliability index and then it is optimized using a genetic algorithm(GA).The random variables used are the soil shear strength parameters and the seismic coefficients(khand kv).Two assumptions(normal and non-normal distribution)are used for the random variables.The assumption of uncorrelated variables was found to be conservative in comparison to that of negatively correlated soil shear strength parameters.The assumption of non-normal distribution for the random variables can induce a negative effect on the reliability index of the practical range of the seismic bearing capacity.

    1.Introduction

    Uncertainty is an important issue in engineering design as geotechnical engineers can basically introduce uncertainty in the design when using a global safety factor.Reliability methods have therefore become promising when assessing the effect of uncertainty on geotechnical structure design.The designs using reliability assessment were applied to many geotechnical engineering projects(e.g.Mollon et al.,2009a,b,2011,2013;Grif fiths and Fenton,2001;Grif fiths et al.,2002;Kulhawy and Phoon,2002).

    Many theories have also been used to study the seismic bearing capacity of a strip foundation(e.g.Budhu and AlKarni,1993;Dormieux and Pecker,1995;Soubra,1997).Their results indicated that the value of the bearing capacity decreased with the increase of the seismic acceleration coefficient.Inertia forces in the soil mass decrease the bearing capacity of the soil and,as a result,the bearing capacity of the foundation decreases.In recent years,some researchers such as Zeng and Steedman(1998),Garnier and Pecker(1999),Askari and Farzaneh(2003),Gajan et al.(2005),Knappett et al.(2006),and Merlos and Romo(2006)have drawn the same conclusions by using the dynamic centrifuge tests.Using the characteristics method,Cascone and Casablanca(2016)evaluated the static and seismic bearing capacity factors for a shallow strip foundation by the pseudo-static approach.Other researchers such as Pane et al.(2016)numerically obtained the bearing capacity of soils under dynamic conditions.Sha fiee and Jahanandish(2010)employed the finite element method to determine the seismic bearing capacity of strip foundations with various seismic coefficients and friction angles.They also presented curves relating the seismic bearing capacity factors to the seismic acceleration coefficient.

    In this context,the homogeneous soils and seismic properties are used to analyze the seismic bearing capacity of strip foundations.The bearing capacity is calculated using a single deterministic set of parameters.Reliability analysis is then used to assess the combined effects of uncertainties and provide a logical framework for selecting the bearing capacity that is appropriate for a degree of uncertainty and the failure consequences.Thus,the reliability assessment useful for providing better engineering decisions is performed as an alternative to the deterministic assessment.

    Over the last fifteen years,the reliability analysis of shallow foundations subjected to a centered static vertical load has been studied by Fenton and Grif fiths(2002,2003),Sivakumar Babu et al.(2006),and Youssef Abdel Massih et al.(2008).However,the reliability analyses of shallow foundations subjected to inclined,eccentric or complex loads are rarely investigated(Ahmed and Soubra,2014).Probabilistic approaches for seismic bearing capacity of shallow foundation are seldom elaborated in the literature(Youssef Abdel Massih et al.,2008;Baroth et al.,2011).Johari et al.(2017)used the slip lines method coupled with the random field theory to estimate the seismic bearing capacity of strip foundations.The bearing capacity factors Ni(Nc,Nqand Nγ)are assessed stochastically,with the values depending on friction angle.

    In previous researches,different types of simulation approaches were used to assess the reliability of geotechnical systems,inwhich the response surface methodology(RSM)is basically used.Monte Carlo simulation(MCS)(Wang et al.,2010)and importance sampling(IS)(Mollon et al.,2009a)offered the implied estimates of the system failure probability(Pf).However,they are rather timeconsuming (e.g. finiteelementmethod or finitedifference method).Different types of RSMs such as classic RSM,artificial neural network(ANN)based RSM(Cho,2009)and Kriging-based RSM(Zhang et al.,2013)have been proposed to overcome this disadvantage.However,they are all approximate methods which cannot provide precise estimates.

    This paper presents a reliability analysis of the seismic bearing capacity of a strip foundation under pseudo-static seismic loading.The uncertain parameters are modeled by random variables.These variables are the soil shear strength parameters and the seismic coefficients(khand kv).Only the punching failure mode of the ultimate limit states is studied.The deterministic model is based on the limit equilibrium theory(Budhu and Al-Karni,1993).The Hasofer-Lind reliability index(βHL)was adopted to calculate the reliability of the seismic bearing capacity.The RSM optimized by the genetic algorithm(GA)have been used to find the approximate performance function and deriveβHL.The RSM optimized by GA saves computation time compared with the conventional RSM methods(Hamrouni et al.,2017a,b,2018).The in fluence of normal and non-normal parameters distribution as well as the correlation between soil shear strength parameters on the failure probability is studied.

    2.Ellipsoid approach in reliability theory

    The safety of geotechnical structures can be represented by itsβHLvalue which takes the inherent uncertainties as input parameters.TheβHL(Hasofer and Lind,1974)is the most widely used indicator in the literature.Its matrix formulation is(Ditlevsen,1981)

    whereμis a vector of mean values,x is a vector representing the n random variables and C is a matrix covariance.

    The minimization of Eq.(1)is performed using the constraint G(x)≤0 where the n-dimensional domain of the random variables is separated by the limit state performance(G(x)=0)into two regions:an unsafe region F represented by G(x)≤0 and a safe region given by G(x)>0.Eq.(1)is used in a form of the classical method to calculateβHL,which is based on the transformation of the performance limit state initially defined in the space of the physical variables.This state must be shown in the space of the normal random variables,centered,reduced and uncorrelated,which is also called standard space.TheβHLis the shortest distance between the origin of the space and the state boundary surface.

    Low and Tang(2004)proposed an interpretation ofβHL.The concept of iso-probability ellipsoid leads to a simpler calculation method forβHLin the original physical variables(see Fig.1).Low and Tang(2004),Mollon et al.(2009b),Lü et al.(2011),Low(2014)and Hamrouni et al.(2017a,b,2018)demonstrated that the ellipticity(ratio between the axes)of the critical dispersion ellipsoid corresponds to the value ofβHL,which is the smallest ellipsoid dispersion that just touches the limit state surface to the unit dispersion ellipsoid,i.e.the one obtained forβHL=1 in Eq.(1)without minimization.

    They also stated that the intersection point between the critical dispersion ellipsoid and the equivalent performance limit state surface is called the design point(see Fig.1).In the case of nonnormal random variables,the Hasofer-Lind method can be extended.A transformation of each non-normal random variable into an equivalent normal random variable with an averageμN(yùn)and a standard deviationσNwas proposed by Rackwitz and Flessler(1978).Using the above-mentioned procedure,the transformation makes it possible to estimate a solution in a reduced space.The equivalent parameters evaluated at the design pointare given by

    whereΦandφare the cumulative density function(CDF)and the probability density function(PDF)of the standard variables,respectively;FXiand fXiare the CDF and PDF of the original nonnormal random variables,respectively.The CDFs and PDFs of the real variables and the equivalent normal variables identified at the design point on the performance state surface are assimilated after derivation of Eqs.(2)and(3).

    Low and Tang(1997,2004)implemented an inclined ellipsoid and an optimization algorithm tominimize the dispersion ellipsoid.Eq.(1)can then be rewritten as

    where R-1is the inverse of the correlation matrix R.The configuration of the ellipsoid can be presented by this equation.

    Fig.1.Design point and equivalent normal dispersion ellipses in the space of two random variables.

    The probability of failure is approximated using the first-order reliability method(FORM)as follows:

    2.1.RSM optimized by GA

    If the objective function has a known analytical form,βHLmaybe easily calculated.When using numerical calculations,it is impossible to obtain an explicit analytical form of the objective function.The RSM can then be used to approach this function by successive iterations to calculateβHLand the design point.An algorithm based on the RSM proposed by Tandjiria et al.(2000)was used in this work consequently.This method approximates the function of performance by an explicit function of the random variables using an iterative process.The quadratic form(see Eq.(6))of the approximate performance function is the most widely used form in the literature(second-order polynomial with squared terms):

    where aiand biare the coefficients to be determined,and xirepresents the random variable.

    For a higher accuracy purpose,a more complex performance function(Eq.(7))can be used which contains quadratic and crossed terms:

    The parameters aiand bijin Eq.(7)can be determined using the iterative method,but it seems to be rather time-consuming(Youssef Abdel Massih and Soubra,2008;Mollon et al.,2009b).This method is used for a specific point of the limit state,thus it has to repeat this calculation for determination of other reliability index values.In this paper,the parameters aiand bijwill be calculated by an optimization using GA(Bouacha et al.,2014;Hamrouni et al.,2017a,b,2018).The coefficients aiand bijare determined from a number of deterministic calculations using values of the variables xi,by the least-squares regression analysis.

    In this study,the parameters of the optimization problem for parameters aiand biare translated into chromosomes with a data string.To begin with the procedure of GA,an initial population is needed.The size of the initial population depends on the nature of the problem,and it usually contains several hundreds and thousands of possible solutions(in our study,a number of 50 was chosen).This population is generated randomly,covering the whole range of possible solutions,i.e.the research space(Tang et al.,1996).

    The minimum square error(MSE)is represented by the fitness function in the GA approach to compare the results obtained with Eq.(7)and the deterministic results.This permits to determine the values of aiand bij,on which no constraints occur.

    Several possible solutions are obtained from the variables space and the physical conditions of these solutions are compared.If no solution is reached,a new population is created from the original(parent)chromosomes using “crossover”and “mutation”operations.From two random solutions(parents),the crossover forms a child(new solution)by the exchange of genes.Mutation is used to maintain population diversity by randomly switching a single variable into a chromosome,as the process converges towards a solution.The operation of the GA process is detailed in the flowchart shown in Fig.2.The key advantages of GA are described as follows:

    (1)It is a population-based approach and thus considers a wide range of possible solutions;and

    (2)The mutation process restricts the solution to local minima that can occur in alternative solution techniques.

    ThestopcriteriaforGAsearchoperationarecrucialandprobably difficult.Since GA is a stochastic global optimization technique,it is rather difficult to know when the algorithm has reached its optimum.Withthe measures of convergence anddiversity,itis possible to compare the performances of the GA during operation state.

    3.Deterministic model

    Budhu and Al-Karni(1993)assumed the logarithmic failure surfaces as shown in Fig.3 for determination of the seismic bearing capacity of soils.They modified the commonly used static bearing capacity equations of Meyerhof(1963)to obtain the dynamic bearing capacity as follows:

    The bearing capacity factors in Eq.(8)are computed by the following equations:

    where B is the width of the foundation,Dfis the depth of the foundation,φ is the friction angle,c is the cohesion of soil,γ is the unit weight,s is the shape factor,d is the depth factors,i is the inclination factor,andHisthedepthof thefailure zonefromthegroundsurface.

    The parameters ec,eqand eγare the seismic factors that are estimated using the following equations:

    where khand kvare the horizontal and vertical seismic coefficients,respectively;and D is given by the following equation:

    4.Reliability analysis of seismic bearing capacity

    For the failure mechanisms of Budhu and Al-Karni(1993),in this paper,the deterministic results presented consider the case of a shallow strip foundation with a width of 2.5 m and a depth of 1 m.The unit weight of the soil is 18 kN/m3.The values of the internal friction angle and cohesion are 30°and 20 kPa,respectively.By using Eq.(8),the ultimate seismic bearing capacity reaches only 729.51 kPa with khand kvvalues of 0.2 and 0.06,respectively.

    Fig.2.Principle of optimization with GA.

    Fig.3.Soil failure mechanism under static and seismic conditions assumed in the theory of Budhu and Al-Karni(1993).

    The Algerian seismic regulation(RPA,2003)recommended that,in Algeria,kvequals±0.3khfor several types of structures such as foundations,retaining walls and slopes.Our study takes this linear relationship between the two seismic coefficients,and will be discussed only with the parameter kh.

    4.1.Performance function

    Three random variables used in this study are the soil shear strength parameters(c and φ)and the seismic coefficient(kh).The values of the mean and the variation coefficient are chosen and presented in Table 1.Two cases are studied:random variables with normal and non-normal distribution,respectively.The parameters c and khare assumed to follow a lognormal distribution and φ is considered to follow a Beta distribution to better represent the friction angle(Fenton and Grif fiths,2003).The parameters of the Beta distribution are determined fromthe meanvalue and standard deviations of φ.A negative correlation between the variables c and φ (ρc,φ)are considered equal to-0.5.

    The performance function used in this study is given by

    (a)In this text,100 sample points taken from the direct Monte Carlo method were used to calculate qudusing the random variables.

    (b)Coefficients(ai)of the performance equation G(φ,c,kh)are optimized by GA using 100 sample points.

    Table 1 Probabilistic model.

    (c)The Matlab optimization tool(fmincon)is utilized to determine the minimum value ofβHLand the corresponding design point(φ*,c*,k*h)using the condition G(x)≤ 0(G(x)is presented in step b).

    The advantage of GA is that it moves in the search space with more possible solutions.The successful use of GA depends on how accurately and quickly it converges to the optimal solution,avoiding local minima to reduce the computation time.However,the major disadvantage of GA in case of a large number of variables is that it requires a significant computation time before the optimal solution is finally reached.In our case study,the number of variables is 11 and the computation time is less than 1 min,which makes it reasonable to choose this optimization method.

    4.2.Numerical results

    Eq.(11)is proposed to approximate the performance limit state.The case with normal uncorrelated variables is used to present the efficiency of GA approach.After 100 running of the GA,the best results are selected to illustrate the best combination that satisfies Eq.(11).The MSE is 0.19 with a1=710.48405,a2=-12.1999,a3=0.37112,a4=-18.54146,a5=-0.1532,a6=184.02496,a7=1575.78991,a8=3.78538,a9=-103.37221,a10=132.45428 and a11=-14.90744.

    For the case with normal uncorrelated variables,theβHLvalues obtained after convergence are 3.981,2.691 and 1.795 for qu,minvalues of 200 kPa,300 kPa and 400 kPa,respectively.These indices correspond to the failure probabilities of 0.003%,0.357%and 3.629%,respectively,using the FORM.

    A good way to validate the convergence of the GA optimization approach is to consider the value provided by the model at the design point.In case of normal uncorrelated variables,qudvalues provided by the deterministic model and the quadratic polynomial are 200.02 kPa and 198.31 kPa,301.5 kPa and 298.42 kPa,and 399.2 kPa and 399.9 kPa,respectively,which can be compared with the acceptable maximum efficacy of 200 kPa,300 kPa and 400 kPa.In this paper,the use of a GA is very effective to optimize the unknown parametersoftheperformancefunction.Thus,a quadratic polynomial with crossed terms between parameters is used as the function of response surface that permits to obtain a good approximation of the performance limit state in previous analyses.

    5.Reliability index,design point and partial safety factors

    Table 2 shows the results ofβHL,design points(φ*,c*and k*h),and partial factors for different bearing capacity limit values.The calculations were performed for several cases:normal variables,non-normal variables,variables correlated or not.Note that the values ofβHLand partial factors increase with the decrease of the bearing capacity limit value.The results ofβHLare also shown in Fig.4,with a negative correlation between the shear strength variables.It is the same as a lower extent when considering nonnormal variables.

    And when Gerda was warmed and had had something to eat and drink, the Lapland woman wrote on a dried stock-fish, and begged Gerda to take care of it, tied Gerda securely on the reindeer s back, and away they went again

    For example,for a bearing capacity limit value equal to 300 kPa,the comparison of the results between the correlated or uncorrelated variables shows that the value ofβHLcorresponding to the negatively correlated variables is greater than that of the uncorrelated variables case.For the same bearing capacity limit values,the value ofβHLdecreases by about 10%if one considers non-normal variables.Wecan concludethatthesimplifiedassumption considering the uncorrelated normal variables is safer compared tomore complex probabilistic models.This can therefore lead to uneconomic designs.

    Table 2 Indices of reliability,design points,and partial safety factors.

    Fig.4.Reliability index related to the performance limit.

    Engineers are interested in reliability index values of 2<βHL<4,suggesting that taking into account the non-normal variables has an in fluence onβHL.This observation is related to the fact that the distribution functions of normal and non-normal variables differ in the zones of different design points obtained.The randomvariables(φ,c)and khhave reverse effects on the behavior of the model.For example,a low bearing capacity is induced by the reduction of(φ,c)and the increase of(kh).

    The coordinates(φ*,c*and k*h)of the design points obtained for bearing capacity limit values can be used to calculate the partial factors Fφ,Fcand Fkhas follows:

    where μφ,μcand μkhrepresent the mean values of friction angle,cohesion of soil and horizontal seismic coefficient,respectively.

    Factors for each bearing capacity limit value are also provided in Table 2.For uncorrelated variables,with the increase of the bearing capacity limit values,the partial factors are even lower,and almost are equal to 1 for the limiting case.In the case of negatively correlated variables,it is sometimes observed that the value of the design point c*slightly exceeds the average value of c,which gives Fcless than 1 and large values of Fφand Fkh.This is due to the negative correlation between c and φ.This correlation implies that if the value of c is smaller than its mean,then the values of φ and khwill probably be high.For this reason,a case with Fcless than 1 does not necessarily indicate failure,as long as the value of Fφis high.This conclusion is similar to those of Youssef Abdel Massih and Soubra(2008),Mollon et al.(2009b),and Hamrouni et al.(2017a,b,2018).

    Fig.5.Failure probability in relation to the performance limit.

    From theβHLvalues obtained by RSM optimized by GA,the failure probability values are provided directly by the FORM approximation,as shown in Fig.5.Taking into account a negative correlation between c and φ and the use of bounded laws instead of the normal laws can significantly reduce the failure probability,when other parameters remain unchanged.The assumptions of normal and uncorrelated laws are quite acceptable.It is also observed that the failure probability is much more sensitive to the variations of φ and khthan c.

    6.Conclusions

    An analysisbased on the reliability of seismic bearing capacityof strip foundation subjected to a vertical load with pseudo-static seismic loading is presented in this paper.The main conclusions are drawn as follows:

    (1)The use of GA is very effective in optimizing the unknown parameters of the performance limit function.A quadratic polynomial function with crossed terms between the parameters makes it possible to obtain a satisfactory approximation of the limit performance state in the previous analyses.

    (2)Assumption of negatively correlated shear strength parameters(c,φ)was found conservative with respect to uncorrelated variables.For uncorrelated shear strength parameters values,the design point value c*slightly exceeds the average value of c,which gives partial safetycoefficients Fcless than 1 and large values of Fφand Fkh.For this reason,a case with Fcless than 1 does not necessarily indicatefailure,as long as the value of Fφis high.

    (3)For the higher values of the minimum seismic bearing capacity,the reliability indexβHLis lowand induces a very high failure probability value,indicating the vulnerability of this structure.

    (4)The simplified assumption considering a normal variable is safer compared to more complex probabilistic models(nonnormal variables).This can lead to uneconomical designs.

    Conflicts of interest

    The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have in fluenced its outcome.

    Acknowledgments

    The authors are grateful to the Ministry of Higher Education and Scientific Research of Algeria for supporting this work by offering an 11-month scholarship to the first author at the 3SR laboratory of Grenoble Alpes University,France.

    亚洲狠狠婷婷综合久久图片| 赤兔流量卡办理| 老司机午夜福利在线观看视频| 欧美高清性xxxxhd video| 男女那种视频在线观看| 少妇高潮的动态图| 国产极品精品免费视频能看的| 在线观看av片永久免费下载| 丰满人妻一区二区三区视频av| 99国产精品一区二区蜜桃av| 日韩欧美在线二视频| 亚洲性久久影院| 老女人水多毛片| 黄色欧美视频在线观看| 亚洲性久久影院| 51国产日韩欧美| 亚洲成人久久爱视频| 国产成人aa在线观看| 在线看三级毛片| 国产久久久一区二区三区| 亚洲av成人精品一区久久| 日韩欧美在线二视频| 亚洲精品久久国产高清桃花| 精品欧美国产一区二区三| 少妇人妻精品综合一区二区 | 成年女人永久免费观看视频| 欧美日韩中文字幕国产精品一区二区三区| 亚洲精品日韩av片在线观看| 啦啦啦啦在线视频资源| 俺也久久电影网| 亚洲七黄色美女视频| 午夜免费成人在线视频| 国产三级在线视频| 国产精品一区二区三区四区久久| 少妇的逼好多水| 我要看日韩黄色一级片| 亚洲欧美日韩卡通动漫| 夜夜爽天天搞| 日本a在线网址| 人人妻,人人澡人人爽秒播| 黄片wwwwww| 一级a爱片免费观看的视频| 99久久精品热视频| 亚洲国产欧洲综合997久久,| 亚洲av日韩精品久久久久久密| 亚洲性夜色夜夜综合| 久久久久九九精品影院| 非洲黑人性xxxx精品又粗又长| 简卡轻食公司| 成人国产一区最新在线观看| 91av网一区二区| 久久久久久伊人网av| 国产熟女欧美一区二区| 亚洲电影在线观看av| 成人高潮视频无遮挡免费网站| 不卡一级毛片| 97碰自拍视频| www日本黄色视频网| 国产蜜桃级精品一区二区三区| 国产一区二区在线av高清观看| 成人午夜高清在线视频| 噜噜噜噜噜久久久久久91| 久久久久久九九精品二区国产| 国产精品无大码| 久久久久久久午夜电影| 欧美成人性av电影在线观看| 美女xxoo啪啪120秒动态图| 中国美女看黄片| 淫秽高清视频在线观看| 夜夜爽天天搞| 别揉我奶头~嗯~啊~动态视频| 国产视频内射| 国产综合懂色| 欧美日本视频| 中文亚洲av片在线观看爽| 亚洲国产精品sss在线观看| 精品久久国产蜜桃| xxxwww97欧美| 亚洲国产精品合色在线| 美女黄网站色视频| 久久久色成人| 亚洲午夜理论影院| 深夜a级毛片| 欧美性猛交╳xxx乱大交人| 日本欧美国产在线视频| 欧美极品一区二区三区四区| 中文字幕久久专区| 国产精品1区2区在线观看.| av福利片在线观看| 欧美又色又爽又黄视频| 精品久久久久久久久亚洲 | a级毛片a级免费在线| 色哟哟·www| 在线观看午夜福利视频| 久久久久久久精品吃奶| 午夜精品在线福利| 三级毛片av免费| 狂野欧美白嫩少妇大欣赏| 97超级碰碰碰精品色视频在线观看| 国内精品久久久久久久电影| 亚洲av电影不卡..在线观看| 国产精品野战在线观看| 99久久九九国产精品国产免费| 国内精品美女久久久久久| 欧美日韩精品成人综合77777| 人人妻人人澡欧美一区二区| 国产亚洲精品av在线| 神马国产精品三级电影在线观看| 哪里可以看免费的av片| 午夜亚洲福利在线播放| 免费看av在线观看网站| 小蜜桃在线观看免费完整版高清| 免费av不卡在线播放| 搡老熟女国产l中国老女人| 午夜老司机福利剧场| 欧美成人a在线观看| 在线免费十八禁| 免费看日本二区| 亚洲中文日韩欧美视频| 精品一区二区三区视频在线观看免费| 五月伊人婷婷丁香| 久久久久久大精品| 国产蜜桃级精品一区二区三区| 欧美又色又爽又黄视频| 少妇的逼好多水| 欧美成人一区二区免费高清观看| 久久99热这里只有精品18| 国产主播在线观看一区二区| 天堂动漫精品| 精品久久久久久久末码| 女的被弄到高潮叫床怎么办 | 久久精品夜夜夜夜夜久久蜜豆| 69av精品久久久久久| 又爽又黄无遮挡网站| 午夜视频国产福利| 又紧又爽又黄一区二区| 自拍偷自拍亚洲精品老妇| 欧美精品国产亚洲| 69av精品久久久久久| 美女高潮的动态| 中文字幕久久专区| 国产午夜福利久久久久久| 亚洲自偷自拍三级| 69av精品久久久久久| 中出人妻视频一区二区| 国产色婷婷99| 欧美日韩综合久久久久久 | 国产一区二区亚洲精品在线观看| 高清毛片免费观看视频网站| 成人鲁丝片一二三区免费| 美女被艹到高潮喷水动态| 免费无遮挡裸体视频| 此物有八面人人有两片| 国产精品国产三级国产av玫瑰| 久久亚洲真实| 成年女人毛片免费观看观看9| 麻豆一二三区av精品| 神马国产精品三级电影在线观看| 免费看美女性在线毛片视频| 欧美3d第一页| 十八禁国产超污无遮挡网站| 日韩欧美国产一区二区入口| 91在线精品国自产拍蜜月| bbb黄色大片| 亚洲,欧美,日韩| 他把我摸到了高潮在线观看| 免费在线观看成人毛片| 在线观看免费视频日本深夜| 日韩强制内射视频| 一卡2卡三卡四卡精品乱码亚洲| 国产老妇女一区| 国产精品三级大全| 国产精品伦人一区二区| 看免费成人av毛片| 亚洲av美国av| 少妇人妻精品综合一区二区 | 成人二区视频| 我的老师免费观看完整版| 舔av片在线| 九九爱精品视频在线观看| 身体一侧抽搐| 日韩av在线大香蕉| 午夜视频国产福利| 99久久精品热视频| 色视频www国产| 国语自产精品视频在线第100页| 亚洲自偷自拍三级| 久久草成人影院| 动漫黄色视频在线观看| 久久6这里有精品| 日本一本二区三区精品| 97人妻精品一区二区三区麻豆| 一边摸一边抽搐一进一小说| 搡老熟女国产l中国老女人| 久久精品国产自在天天线| 综合色av麻豆| 美女 人体艺术 gogo| 午夜视频国产福利| 97碰自拍视频| 久久精品综合一区二区三区| a在线观看视频网站| 欧美极品一区二区三区四区| 熟妇人妻久久中文字幕3abv| 久久人人精品亚洲av| 亚洲最大成人av| aaaaa片日本免费| 少妇的逼水好多| av天堂在线播放| 日韩欧美免费精品| 99热6这里只有精品| 久久久精品大字幕| 动漫黄色视频在线观看| 精品乱码久久久久久99久播| 嫁个100分男人电影在线观看| 级片在线观看| 12—13女人毛片做爰片一| 国产欧美日韩精品亚洲av| 成人二区视频| 97碰自拍视频| 麻豆国产av国片精品| 不卡视频在线观看欧美| 欧美日韩中文字幕国产精品一区二区三区| av在线老鸭窝| 久久亚洲精品不卡| 日韩欧美精品免费久久| 国模一区二区三区四区视频| 色综合站精品国产| 亚洲一区高清亚洲精品| 麻豆成人av在线观看| 88av欧美| 午夜激情福利司机影院| 亚洲欧美日韩东京热| 国产主播在线观看一区二区| 69av精品久久久久久| 精品久久久久久久久久久久久| 一区二区三区高清视频在线| 免费看美女性在线毛片视频| 黄色丝袜av网址大全| ponron亚洲| 制服丝袜大香蕉在线| 免费黄网站久久成人精品| 国产视频一区二区在线看| 成年女人永久免费观看视频| 蜜桃亚洲精品一区二区三区| 日本黄色视频三级网站网址| 狂野欧美激情性xxxx在线观看| 免费在线观看成人毛片| 老熟妇乱子伦视频在线观看| 精品乱码久久久久久99久播| 一级黄片播放器| 欧美精品啪啪一区二区三区| 波多野结衣高清作品| 嫩草影院新地址| 国内精品久久久久久久电影| 老师上课跳d突然被开到最大视频| 国产一区二区三区视频了| 欧美黑人欧美精品刺激| 国产精品美女特级片免费视频播放器| 日韩欧美在线乱码| 国产主播在线观看一区二区| 久久久精品欧美日韩精品| 九九爱精品视频在线观看| 动漫黄色视频在线观看| 国产精品日韩av在线免费观看| 成年女人毛片免费观看观看9| 一个人看的www免费观看视频| 欧美精品国产亚洲| 成人二区视频| 麻豆成人av在线观看| 变态另类丝袜制服| 成人二区视频| 亚洲国产高清在线一区二区三| 中文字幕熟女人妻在线| 亚洲图色成人| 午夜福利高清视频| 一区二区三区四区激情视频 | h日本视频在线播放| 麻豆国产97在线/欧美| 一级av片app| 色综合色国产| 欧美精品国产亚洲| 成人鲁丝片一二三区免费| 国产精品99久久久久久久久| 草草在线视频免费看| 日韩强制内射视频| 一级av片app| 国内精品美女久久久久久| 久久久久久久午夜电影| 成年免费大片在线观看| 欧美精品啪啪一区二区三区| 国产av不卡久久| 国产精品伦人一区二区| 亚洲成人免费电影在线观看| 国产国拍精品亚洲av在线观看| 一级黄片播放器| 日韩,欧美,国产一区二区三区 | 深夜精品福利| 最近在线观看免费完整版| 国产在视频线在精品| 国产高潮美女av| 国产精品女同一区二区软件 | 久久精品国产清高在天天线| 人妻丰满熟妇av一区二区三区| 3wmmmm亚洲av在线观看| 成年女人毛片免费观看观看9| 波多野结衣高清无吗| 麻豆国产av国片精品| 国产亚洲精品久久久久久毛片| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜添av毛片 | 国产精品乱码一区二三区的特点| 国产黄色小视频在线观看| 成人精品一区二区免费| 九九热线精品视视频播放| 国产色婷婷99| 床上黄色一级片| 国产又黄又爽又无遮挡在线| 一a级毛片在线观看| 欧美丝袜亚洲另类 | 欧美xxxx性猛交bbbb| 欧美三级亚洲精品| 亚洲精品影视一区二区三区av| 欧美精品啪啪一区二区三区| 久久6这里有精品| 一个人看视频在线观看www免费| 最近视频中文字幕2019在线8| 国内精品久久久久精免费| 亚洲av.av天堂| 亚洲人成网站在线播| 亚洲乱码一区二区免费版| 成人av在线播放网站| 成年女人看的毛片在线观看| www.www免费av| 看十八女毛片水多多多| 久久亚洲真实| 黄色日韩在线| 国产精品久久视频播放| 麻豆成人av在线观看| 色播亚洲综合网| 欧美激情国产日韩精品一区| 制服丝袜大香蕉在线| 国产精品不卡视频一区二区| av在线天堂中文字幕| 小蜜桃在线观看免费完整版高清| 丰满乱子伦码专区| 看黄色毛片网站| 国产国拍精品亚洲av在线观看| 观看免费一级毛片| 97超视频在线观看视频| av在线老鸭窝| 天堂√8在线中文| 久久久精品大字幕| 天堂√8在线中文| 亚洲av成人精品一区久久| 国产精品,欧美在线| 国产中年淑女户外野战色| 看十八女毛片水多多多| 成人无遮挡网站| 91在线观看av| 国产精品一区二区三区四区久久| 亚洲人成网站高清观看| 变态另类丝袜制服| 久久久久久久久中文| АⅤ资源中文在线天堂| 亚洲精品乱码久久久v下载方式| 久久久久久九九精品二区国产| 狠狠狠狠99中文字幕| 窝窝影院91人妻| 国产主播在线观看一区二区| 欧美色欧美亚洲另类二区| 婷婷亚洲欧美| 亚洲av成人av| 亚洲男人的天堂狠狠| 国产精品久久久久久亚洲av鲁大| 国产成人影院久久av| 成人永久免费在线观看视频| 香蕉av资源在线| 久久久久性生活片| 免费无遮挡裸体视频| 国产黄a三级三级三级人| 国产精品美女特级片免费视频播放器| 国产精品野战在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲欧美清纯卡通| 日韩在线高清观看一区二区三区 | 18禁在线播放成人免费| 又爽又黄a免费视频| 老熟妇仑乱视频hdxx| 天美传媒精品一区二区| 如何舔出高潮| av天堂中文字幕网| 国产精品日韩av在线免费观看| 免费看av在线观看网站| h日本视频在线播放| 国产亚洲91精品色在线| 午夜爱爱视频在线播放| 伦理电影大哥的女人| 亚洲熟妇熟女久久| 成人亚洲精品av一区二区| 国产一区二区三区视频了| 一夜夜www| 精品一区二区三区av网在线观看| 日韩欧美精品v在线| 禁无遮挡网站| 亚洲美女搞黄在线观看 | 久久久久国内视频| 国产大屁股一区二区在线视频| 亚洲真实伦在线观看| 1024手机看黄色片| 在线观看免费视频日本深夜| 观看美女的网站| a级一级毛片免费在线观看| 国产免费av片在线观看野外av| 亚洲精品456在线播放app | 精品无人区乱码1区二区| 亚洲电影在线观看av| 免费人成视频x8x8入口观看| 日韩欧美在线乱码| 亚洲av中文字字幕乱码综合| 欧美+亚洲+日韩+国产| 久久久国产成人免费| 看十八女毛片水多多多| 亚洲最大成人av| 欧美日韩亚洲国产一区二区在线观看| 一进一出抽搐gif免费好疼| 日韩欧美精品免费久久| 中文字幕av在线有码专区| 香蕉av资源在线| 亚洲一区高清亚洲精品| 1000部很黄的大片| 日本一二三区视频观看| 亚洲在线自拍视频| 色在线成人网| 久久精品国产亚洲网站| 日本三级黄在线观看| 亚洲欧美日韩东京热| 最近视频中文字幕2019在线8| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产自在天天线| 国产精品美女特级片免费视频播放器| 女同久久另类99精品国产91| 两个人视频免费观看高清| 在线国产一区二区在线| 免费高清视频大片| 国产在视频线在精品| 在线观看一区二区三区| 成年免费大片在线观看| 日韩一本色道免费dvd| 1024手机看黄色片| 日韩中文字幕欧美一区二区| 亚洲精品影视一区二区三区av| 日韩精品中文字幕看吧| 我要搜黄色片| 色综合婷婷激情| 美女被艹到高潮喷水动态| 亚洲成人中文字幕在线播放| bbb黄色大片| 国产免费一级a男人的天堂| 国产亚洲av嫩草精品影院| 成年女人看的毛片在线观看| 国产爱豆传媒在线观看| 在线观看一区二区三区| 中国美女看黄片| 韩国av一区二区三区四区| 久久精品国产自在天天线| 一级黄片播放器| 中文字幕av成人在线电影| 国产亚洲av嫩草精品影院| 国产毛片a区久久久久| 69人妻影院| 日韩欧美在线乱码| 久久久精品欧美日韩精品| 国产精品电影一区二区三区| 国产精品免费一区二区三区在线| 国产精品永久免费网站| 日韩中字成人| 亚洲成人久久爱视频| 12—13女人毛片做爰片一| 亚洲av免费高清在线观看| 99久久久亚洲精品蜜臀av| 一本一本综合久久| 国产免费一级a男人的天堂| 久久午夜福利片| 黄色一级大片看看| 极品教师在线免费播放| 99久久成人亚洲精品观看| 免费在线观看日本一区| 在线免费观看的www视频| 99久久成人亚洲精品观看| 男女做爰动态图高潮gif福利片| 一级av片app| 97人妻精品一区二区三区麻豆| 久久久国产成人精品二区| 精品人妻1区二区| 狠狠狠狠99中文字幕| 国产探花极品一区二区| 国产精品自产拍在线观看55亚洲| 人妻丰满熟妇av一区二区三区| 国产91精品成人一区二区三区| 婷婷丁香在线五月| 国产真实伦视频高清在线观看 | 一个人看视频在线观看www免费| 亚洲性夜色夜夜综合| 欧美高清成人免费视频www| 欧美一区二区国产精品久久精品| 免费人成在线观看视频色| 国产一区二区在线av高清观看| 国产探花在线观看一区二区| 免费不卡的大黄色大毛片视频在线观看 | 欧美另类亚洲清纯唯美| 美女大奶头视频| 久久久国产成人精品二区| 精品久久久久久,| 国产日本99.免费观看| 97碰自拍视频| 嫁个100分男人电影在线观看| aaaaa片日本免费| 自拍偷自拍亚洲精品老妇| 日韩 亚洲 欧美在线| 精品人妻1区二区| 精品午夜福利视频在线观看一区| 久久精品国产自在天天线| 亚洲av电影不卡..在线观看| www日本黄色视频网| 欧美极品一区二区三区四区| 男女下面进入的视频免费午夜| 一卡2卡三卡四卡精品乱码亚洲| 美女大奶头视频| 亚洲美女搞黄在线观看 | 亚洲综合色惰| 国产综合懂色| 99热只有精品国产| 亚洲在线自拍视频| 搡女人真爽免费视频火全软件 | 最好的美女福利视频网| 久久午夜亚洲精品久久| 悠悠久久av| 无人区码免费观看不卡| 我的老师免费观看完整版| 精品无人区乱码1区二区| 精品久久久久久成人av| 久久99热这里只有精品18| 国产又黄又爽又无遮挡在线| 久久精品影院6| 久9热在线精品视频| av在线蜜桃| 午夜免费激情av| 成年女人看的毛片在线观看| 熟女人妻精品中文字幕| 日韩一本色道免费dvd| 日韩 亚洲 欧美在线| 婷婷精品国产亚洲av在线| 最新在线观看一区二区三区| 亚洲精品在线观看二区| 少妇被粗大猛烈的视频| 日本一二三区视频观看| 国产精品一区www在线观看 | 国产精品野战在线观看| 国产精品爽爽va在线观看网站| 久久久久免费精品人妻一区二区| 日韩欧美免费精品| 天天一区二区日本电影三级| 天天躁日日操中文字幕| 欧美色欧美亚洲另类二区| 免费看光身美女| 中国美女看黄片| av在线蜜桃| 美女 人体艺术 gogo| 少妇丰满av| 十八禁国产超污无遮挡网站| 色综合站精品国产| 亚洲欧美日韩东京热| 久久国内精品自在自线图片| 成人国产一区最新在线观看| 极品教师在线视频| 久久久成人免费电影| 日韩一区二区视频免费看| 精品免费久久久久久久清纯| 熟妇人妻久久中文字幕3abv| 欧美激情在线99| 永久网站在线| 一进一出抽搐动态| 亚洲成人中文字幕在线播放| 日本一本二区三区精品| 久久精品影院6| 日韩国内少妇激情av| 亚洲精品久久国产高清桃花| 久久久久久九九精品二区国产| 久久九九热精品免费| 免费看a级黄色片| av黄色大香蕉| 国产一区二区在线av高清观看| 国产免费男女视频| 国产成人影院久久av| 亚洲av中文av极速乱 | 亚洲中文字幕日韩| 午夜激情福利司机影院| 成人三级黄色视频| 天堂影院成人在线观看| 成人特级av手机在线观看| 国产成人一区二区在线| 亚洲av熟女| 白带黄色成豆腐渣| 亚洲aⅴ乱码一区二区在线播放| 欧美最新免费一区二区三区| 给我免费播放毛片高清在线观看| 国产老妇女一区| 国模一区二区三区四区视频| 久久久久久久亚洲中文字幕| 淫秽高清视频在线观看| 内射极品少妇av片p| 久久久久久大精品| 中亚洲国语对白在线视频| 麻豆精品久久久久久蜜桃| 国产精品无大码|