• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the four-dimensional lattice spring model for geomechanics

    2018-08-30 09:20:56GoFengZhoXiodongHuQinLiJijinLinGuowei

    Go-Feng Zho,Xiodong Hu,Qin Li,Jijin Lin,Guowei M

    aState Key Laboratory of Hydraulic Engineering Simulation and Safety,School of Civil Engineering,Tianjin University,Tianjin,300072,China

    bSchool of Civil Engineering,Hebei University of Technology,Tianjin,300401,China

    Keywords:Lattice spring model(LSM)Fourth-dimensional spatial interaction Fracturing Geomechanics

    ABSTRACT Recently,a four-dimensional lattice spring model(4D-LSM)was developed to overcome the Poisson’s ratio limitation of the classical LSM by introducing the fourth-dimensional spatial interaction.In this work,some aspects of the 4D-LSM on solving problems in geomechanics are investigated,such as the ability to reproduce elastic properties of geomaterials,the capability of solving heterogeneous problems,the accuracy on modelling stress wave propagation,the ability to solve dynamic fracturing and the parallel computational efficiency.Our results indicate that the 4D-LSM is promising to deal with problems in geomechanics.

    1.Introduction

    Rock,concrete and soil are the main research subjects in geomechanics,which are commonly involved in various engineering activities,such as mining,tunnelling and underground engineering.Mechanical responses of these materials are the most concerns for researchers(Dai et al.,2010;Brown,2015;Feng et al.,2016).For decades,the predecessors,e.g.Dr.K.Terzaghi,Dr.E.Hoek and Dr.E.T.Brown,have made fruitful works.However,some fundamental problems are still unclear.For example,an accurate constitutive model for deformation and a rational model(Liu and Carter,2002)for three-dimensional(3D)crack propagation(Ingraffea,1987;Yang et al.,2017)are still under exploring.These fundamental questions are directly related to major engineering safety issues,e.g.tunnel collapse,slope instability,rockburst,and nuclear waste leakage.Geomaterials are usually heterogeneous and their mechanical responses are highly nonlinear,which made them too difficult to be described through pure analytical study.With the development of the computer science,especially the rapid advance of high-performance computing,numerical modelling provides a promising alternative solution for geomechanical researchers.Compared with the theoretical analysis,it is able to consider the complex geometries,the dynamic processes and the nonlinear constitutive responses involved in the related geotechnical phenomena.Compared with the experimental methods,numerical modelling is capable of performing a large number of parameter analyses with reasonable time and relatively low cost.Although many researchers still have doubts on the ability of the numerical modelling to solve practical engineering problems,the numerical simulation seems to be the only feasible solution to understand the complex geotechnical problems.For example,when a geotechnical hazard occurs,the numerical modelling is helpful to find the actual reason through reproducing the observed results with parametric analysis.Actually,Dr.E.T.Brown said that a breakthrough of computational methods for geomechanics is the most promising way to solve various hard problems faced in the actual geotechnical engineering.

    Since the 1950s,many computational methods have been developed(Jing,2003;Zhu and Tang,2006;He et al.,2014;Lisjak and Grasselli,2014).The finite element method(FEM)is a typical technology that was firstly developed in the engineering application and then theoretically completed by mathematicians.Its development has experienced the initial popular,the middle trough,and the final mature(a typical growth curve of science and technology).Success of the commercial software of the FEM makes its usagequiteconvenient.Forexample,the ANSYSand ABAQUS are widely used in the geomechanics and geotechnical engineering.In addition to the FEM,the discrete element model(DEM)is another well-known computational method in the geomechanics,which was originally developed to solve the progressive failure and movement of rock masses(Cundall,1971).Now,it has been widely used in many disciplines such as material science and chemical engineering(Zhao,2015).In recent years,the scientific communities are interested in the DEM due to its ability to simulate high complex phenomena.Besides,due to its bottom-up philosophy,the basic principle of the DEM is very intuitive and easy to understand(Chen and Zhao,1998).Similar to the DEM,the lattice spring model(LSM)is a bottom-up computational method as well.However,its intrinsic limitation on representing the full range of Poisson’s ratios(Hrennikoff,1941)restricts the development of this method.In order to solve this problem,researchers have proposed many solutions,e.g.the multi-body shear spring(Zhao et al.,2011)and the nonlocal potential(Chen et al.,2014).In a recent work,this limitation was further solved by introducing the fourth-dimensional spatial interaction(Zhao,2017).

    In this paper,we explore the ability of the four-dimensional LSM(4D-LSM)on solving specific geomechanical problems.We focus on applying some aspects related to problems in geotechnical mechanics,e.g.the Poisson’s ratio,material inhomogeneity,wave propagation,3D failure,as well as computational efficiency and parallelism.Its ability to naturally model heterogeneous problems is demonstrated through a numerical simulation on a two-phase bar compression problem.Capabilities of the 4D-LSM on stress wave propagation are verified against an analytical solution for the P-waveand S-wave propagations in one-dimensionalbar problems.Following this,the parallel computing efficiency and ability on handling 3D fracturing of the 4D-LSM are compared with the parallel distinct LSM(DLSM)(Zhao et al.,2013).Finally,we summarise and discuss the advantages and disadvantages of the 4D-LSM and further possible development.

    2.Four-dimensional lattice spring model(4D-LSM)

    The original LSM developed by Hrennikoff(1941)is intrinsically limited to solve elastic problems with a fixed Poisson’s ratio of 1/3.Its 3D version is onlyable to handle problems with a fixed Poisson’s ratio of 1/4.There are a number of solutions developed and a consensus is reached that noncentral/nonlocal interaction has to be introduced to solve the Poisson’s limitation of classical LSM.Nevertheless,recently,it has been shown that it is possible to overcome the Poisson’s limitationwith only central interaction,but we have to consider the fourth-dimensional interaction.Because our experience is based on the perception of the 3D space,it is hard to directly image the 4D space.The concept of parallel world,a common concept used in science fiction movies,is a straightforward way to explain the idea of the 4D-LSM.In the 4D-LSM,our world is assumed as a hyper-membrane made up from our visual 3D world and an invisible parallel world.Fig.1 illustrates the process of building a 4D computational model.First,build up a 3D lattice model and assign one additional dimension for each particle.Then,make a copy of this 3D model with an offset along the fourthdimensional direction(4D thickness).For regular cubic lattice,the lattice configuration can be viewed through a tesseract(a 4D cube).The interaction between two particles is given as

    where k is the spring stiffness,unis the deformation of the spring and nijis the normal vector from particle i to particle j.Compared with classical 3D-LSM,the only difference is that the force and normal vectors have four components.In 4D-LSM,all springs representing the 3D interaction share the same stiffness(k3D),whereas differentspring stiffnesses were assigned for the fourthdimensional interaction,which is characterised by a ratioλ4D.To reproduce the isotropic elasticity,spring stiffnesses of the 4D-LSM have to be assigned through the following equation:

    Fig.1.A regular packed 4D-LSM for the uniaxial compression test to extract the elastic properties.

    where kα,kβ and kγare the specific fourth-dimensional stiffnesses.In the 4D-LSM,the central finite difference method is used to solve the system equation,which can be simply written as

    where V3Dis the volume of the corresponding represented 3D model,l3D,iis the length of the 3D springs,E is the elastic modulus,and νis the Poisson’s ratio.More details of the 4D-LSM can be found in the work of Zhao(2017).

    3.Numerical examples

    3.1.In fluence of 4D thickness on the elastic prosperities

    For the construction of 4D-LSM,we can consider that there is a parallel version of 3D-LSM in the fourth dimension using a parallel world concept.The distance between the 3D model and its parallel version is defined as 4D thickness ratio,which is a ratio of the distance between two models to the lattice length of 3D lattice(regular lattice).As shown in Fig.1,the model has 8000 particles,whose diameter is 1 mm and its elastic modulus is taken as 10 GPa.Auniaxial compression test is conducted for the model inwhichthe bottom surface is fixed in y direction and a loading velocity of 10 mm/s is applied on the upper surface.The calculation of elastic modulus is expressed as

    where f is the force applied on the upper surface,Uyis the displacement of upper surface,and L is the length of the cube.

    The corresponding Poisson’s ratio can be calculated by the following formula:

    where Ux1and Ux2correspond to the displacements of two lateral surfaces,respectively.It is important to pointout that werecord the convergence values of the above parameters during the simulation as the corresponding numerically reproduced elastic modulus and Poisson’s ratio.The results of numerical simulation are shown in Figs.2 and 3.

    The elastic modulus increase ratio is defined as the ratio of the elastic modulus obtained from current simulation to that of the corresponding lattice model with 3D interaction only(λ4D=0).Fig.2 shows the results of elastic modulus increase ratio calculated from the numerical simulation.As the 4D stiffness ratio increases,the elastic modulus increase ratio also increases.However,with the increase of the 4D thickness ratio,the increment of elastic modulus increase ratio becomes smaller and smaller.For any 4D stiffness ratio,as the 4D thickness ratio increases,the corresponding elastic modulus increase ratio decreases.When the 4D thickness ratio approaches in finity,the elastic modulus increase ratio approaches 1,which means that the 4D model degenerates into a 3D one.

    Fig.2.In fluence of the 4D thickness ratio on the elastic modulus increase ratio.

    Fig.3.In fluence of the 4D thickness ratio on the Poisson’s ratio.

    Fig.3 shows the results of Poisson’s ratio from numerical simulation.As the 4D stiffness ratio increases,the Poisson’s ratio decreases.However,when the 4D thickness ratio is small,the decrement of Poisson’s ratio is not obvious.With the increase of 4D thickness ratio,the decrementof Poisson’s ratio becomes largerand larger.When the 4D thickness ratio is around 1,the decrement of Poisson’s ratio reaches its maximum.After this,with the increase of 4D thickness ratio,the decrement of Poisson’s ratio becomes smaller and smaller.

    Fig.4.A random packed 4D-LSM for the uniaxial compression test to extract the Poisson’s ratio.

    Fig.5.In fluence of the lattice number on the Poisson’s ratio.

    Fig.6.In fluence of the 4D stiffness ratio on the Poisson’s ratio with different LNs.

    Fig.7.Computational model of a two-phase bar under compression.

    Fig.8.Comparison between displacement results along the two-phase bar predicted using the FEM and 4D-LSM.

    Fig.9.Computational model for the P-and S-wave propagation in an intact bar.

    Based on the above research,it can be concluded that the 4D thickness ratio has a great in fluence on the elastic properties.When the 4D thickness is small,the system stiffness increment is large(see Fig.2),and the in fluence of Poisson’s ratio is small.The system with large stiffness needs smaller time step,which is not recommended to use.When the 4D thickness ratio is large,the change of Poisson’s ratiois alsoverysmall.To have a flexiblerange of Poisson’s ratio,the recommended value of the 4D thickness ratio is around 1.

    3.2.In fluence of lattice number on the Poisson’s ratio

    Fig.10.Analytical solution and numerical prediction of the stress wave propagation problem.

    Fig.11.Computational model of a pre-cracked Brazilian disk.

    Fig.12.Computational time and speedup of the parallel 4D-LSM and DLSM codes.

    In contrast with the regular packed 4D-LSM,a random packed lattice can also be used.As shown in Fig.4,the left one is a random packed particle model and the rightone is the corresponding lattice model.By setting different threshold values for spring bond formation between two particles,models with different lattice numbers(LNs)(the total lattice bonds divided by the total number of particles)can be generated.Through the numerical simulation,it can be seen that the Poisson’s ratio of the 4D model is affected by the LN(see Fig.5).With the increase of the LN,the Poisson’s ratio decreases conversely.The increase of the LN of the model makes the connection tighter.Consequently,the lateral deformation becomes smaller and the Poisson’s ratio becomes smaller correspondingly.When the LN is around 13,the Poisson’s ratio reaches its minimum.After this,as the LN continues to increase,the Poisson’s ratio no longer decreases and remains constant(around 0.25).Other important parameter that in fluences the Poisson’s ratio is the 4D stiffness ratio,as shown in Fig.6.As the LN increases,the Poisson’s ratio decreases.Furthermore,as the 4D stiffness ratio increases,the Poisson’s ratio also decreases,also due to the enhancement of the connections.

    Based on the above simulation,it can be concluded that the LN and 4D stiffness ratio have great in fluences on the Poisson’s ratio.When the LN and 4D stiffness ratio are small,the Poisson’s ratio is relatively large.The increases of the parameters all make the decreasing Poisson’s ratio.From Fig.6,we can conclude that the 4D-LSM could cover a wide range of Poisson’s ratio of geomaterials.

    Fig.13.Displacement contours along the x direction of the disk predicted by the 4D-LSM and the DLSM(unit:mm).

    3.3.Deformation of a two-phase bar

    For the strong meshless methods,heterogeneous simulation is a typical problem(Fang et al.,2009).Special processing methods are required to solve the case of two materials;however,there is no need of any special processing for the 4D-LSM.Here,the 4D-LSM is used to solve the deformation problem of a two-phase bar under compression(see Fig.7).The results of 4D-LSM will be compared with FEM to verify the ability of 4D-LSM to deal with heterogeneous model.The computational model is shown in Fig.7.The lengths of the model along y and z axes are 10 mm and the length along x axis is 40 mm.Following the x axis in the negative direction,there is a load on the right surface as 1.21 MPa.The left surface of the model is fixed in all directions(see Fig.7).The resultsare shown in Fig.8.The numerical results of the FEM and 4D-LSM are in good agreement except a little deviation for the condition of E1/E2=10.It should be caused by the different representations of mesh-and particle-based numerical methods,i.e.the material interface cannot be presented precisely as a zero thickness plane in a particle-based model.

    Fig.14.Failure patterns of the pre-cracked Brazilian disk predicted by the 4D-LSM and DLSM.

    3.4.Stress wave propagation through an intact bar

    Fig.9 shows the computational model for the P-and S-wave propagation in an intact bar to analyse the relationship between the Poisson’s ratio and the wave velocity.There are two measuring points A(z=20 mm)and B(z=190 mm)along the z axis of the bar whose length is 200 mm.The lengthsof the barin x andy directions are both 50 mm.The right surface perpendicular to the z axis is non-reflection boundary,and the top and bottom surfaces are fixed in y direction.

    We input the P-and S-waves at the left surface along the z axis,respectively,and the computational results are shown in Fig.10.The analytical solution shows that with the increase of Poisson’s ratio,the P-wave velocity increases slowly and the S-wave velocity decreases slowly.The numerical prediction of P-wave velocity by the 4D-LSM is very close to the analytical solution and the average deviation of S-wave velocity is about 3.3%.It can be concluded that the 4D-LSM could be used to deal with the stress wave propagation in geomechanics.

    3.5.Crack propagation of a pre-cracked Brazilian disk

    The computational model to study the crack propagation of a pre-cracked Brazilian disk is shown in Fig.11.The diameter of the disk is 50 mm and the thickness of the specimen along z axis is 10 mm.In the middle of the disk,there is a crack with length of 20 mm and width of 2 mm.The angle between the crack and the x axis is 30°.The bottom surface boundary of the disk is fixed in y direction and a loading velocity of 500 mm/s is applied at the top surface.The computational model established in 4D-LSM consists of particleswith finite size.The boundaryconditions(the upperand bottom surfaces)are applied to a single layer of particles(see Fig.11).In the model of a pre-cracked Brazilian disk,the numbers of particles assigned to the upper and bottom boundary conditions both are 14,which means that the corresponding width is 7 mm(see Fig.11).

    The computer used to analyse this problem has 64 GB memory and its CPU is Intel Xeon E5-2630 v4@2.20 GHz with 20 cores and 40 threads.The DLSM and 4D-LSM are used to analyse the influences of threads number on the computational time and speedup of the computation,respectively.As shown in Fig.12,compared with the DLSM,the 4D-LSM has a shorter computational time and higher efficiency.However,the parallel computation efficiency of the 4D-LSM is lower than that of the DLSM,especially when the number of threads is relativelylarge.The probable reason should be that the efficiency of multi-core parallel computation for inverse matrix(the core computing task of the DLSM)is high.

    Crack propagation and fracture of rock are represented as a series of breakage of spring bonds.The bond failure criterion is that deformation between two particles exceeds a given limit value.Fig.13 shows the displacement contour of the disk predicted by the 4D-LSM and the DLSM in steps 160 and 200,respectively.Comparing Fig.13a and b,we can find that the crack begins propagating at the tip of pre-crack at step 160 and the complete coalescence of crack occurs at step 200,both in the DLSM and 4D-LSM.The crack distribution of DLSM and 4D-LSM are very close to each other;however,the displacement value along the x direction is slightly different.

    The failure patterns of the pre-cracked Brazilian disk predicted by the 4D-LSM and the DLSM are shown in Fig.14.The overall cracks of 4D-LSM are similar to those of DLSM.The crack paths are both from the tip of pre-crack to the loading end,which are similar to the experimental results of rock and gypsum materials.Nevertheless,both the methods are slightly different from the microscopic view.Generally,the crack surfaces of 4D-LSM are more smooth,which can be verified by 3D views of Fig.14a and b,respectively.In 3D view,the red particles represent the damaged particles that are still in a tension state(corresponding to the macroscopic cracks that naked eyes can see),while the green particles represent the damaged particles that are in a status of closure(corresponding to the macroscopic cracks that are not easy to observe).

    4.Conclusions

    This paper mainly focused on abilities of the 4D-LSM to recover the proper Poisson’s ratio,consider the material inhomogeneity,solve the wave propagation problem,and handle the dynamic fracturing.From numerical simulation,the suitable 4D thickness is suggested as the average spring length of the 3D lattice.Using irregular lattice model with various LNs,the 4D-LSM can reproduce a proper range of Poisson’s ratios for geomaterials.Capabilities of the 4D-LSM on solving stress wave propagation and progressive fracturing are also demonstrated.Our results also show that,compared with the DLSM,the 4D-LSM has a higher computational efficiency.However,to solve actual problems in geotechnical engineering,the 4D-LSM still needs to be incorporated with specific constitutive models that can consider the nonlinear deformation and failure characteristics of various geomaterials.

    Conflicts of interest

    We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have in fluenced its outcome.

    Acknowledgments

    This research was financially supported by the National Natural Science Foundation of China(Grant No.1177020290).

    亚洲人成电影观看| 亚洲成a人片在线一区二区| 日韩一卡2卡3卡4卡2021年| xxxhd国产人妻xxx| 在线观看www视频免费| 欧美黑人精品巨大| 狠狠狠狠99中文字幕| 一区二区av电影网| 少妇猛男粗大的猛烈进出视频| 欧美精品亚洲一区二区| 欧美午夜高清在线| 一边摸一边抽搐一进一小说 | 啦啦啦视频在线资源免费观看| 中文亚洲av片在线观看爽 | 国产精品 国内视频| 久久精品国产99精品国产亚洲性色 | 在线 av 中文字幕| 一区福利在线观看| 啪啪无遮挡十八禁网站| 中文字幕色久视频| 黄色视频在线播放观看不卡| 一区二区日韩欧美中文字幕| 这个男人来自地球电影免费观看| 久久国产精品人妻蜜桃| 一二三四在线观看免费中文在| 男女无遮挡免费网站观看| 国产在线免费精品| 国产成人影院久久av| 老司机福利观看| 我要看黄色一级片免费的| 亚洲精品在线观看二区| 国产三级黄色录像| 性少妇av在线| www日本在线高清视频| 午夜两性在线视频| 欧美性长视频在线观看| 午夜免费鲁丝| 久久人妻av系列| 91精品国产国语对白视频| 亚洲av成人一区二区三| 亚洲免费av在线视频| 国产欧美日韩综合在线一区二区| 亚洲成国产人片在线观看| 久久ye,这里只有精品| 国产在线精品亚洲第一网站| 91大片在线观看| 久久久精品94久久精品| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看黄色视频的| 日本wwww免费看| 高清毛片免费观看视频网站 | 久久久久久久精品吃奶| 亚洲欧美一区二区三区黑人| 欧美日韩亚洲综合一区二区三区_| 国产欧美日韩一区二区精品| 亚洲精品国产一区二区精华液| 国产成人啪精品午夜网站| 日本av手机在线免费观看| 91老司机精品| 亚洲国产欧美网| 两性午夜刺激爽爽歪歪视频在线观看 | www.999成人在线观看| 欧美乱妇无乱码| 成人18禁在线播放| 亚洲精品中文字幕在线视频| 人人妻人人澡人人爽人人夜夜| 视频区图区小说| 男男h啪啪无遮挡| 国产在线一区二区三区精| 黑丝袜美女国产一区| 女人精品久久久久毛片| 女性被躁到高潮视频| 日本欧美视频一区| 久久久久国内视频| xxxhd国产人妻xxx| 91成人精品电影| 国产亚洲精品久久久久5区| 国产精品亚洲av一区麻豆| 一本久久精品| 日韩成人在线观看一区二区三区| 大陆偷拍与自拍| 欧美精品人与动牲交sv欧美| a级片在线免费高清观看视频| 日韩视频在线欧美| 欧美日韩亚洲高清精品| 欧美+亚洲+日韩+国产| 丝瓜视频免费看黄片| 日本五十路高清| 久久国产精品男人的天堂亚洲| 女人被躁到高潮嗷嗷叫费观| 动漫黄色视频在线观看| 建设人人有责人人尽责人人享有的| 黑人巨大精品欧美一区二区mp4| 久久国产精品影院| 黄网站色视频无遮挡免费观看| 悠悠久久av| 国产不卡一卡二| 日韩熟女老妇一区二区性免费视频| 国产精品.久久久| 日韩大码丰满熟妇| 亚洲精品乱久久久久久| av网站在线播放免费| 一级毛片精品| 国产视频一区二区在线看| 少妇 在线观看| 亚洲专区中文字幕在线| 精品视频人人做人人爽| 五月开心婷婷网| 黄色视频,在线免费观看| 免费高清在线观看日韩| 丝袜美腿诱惑在线| 欧美日韩成人在线一区二区| 黄色片一级片一级黄色片| 美女扒开内裤让男人捅视频| 久久热在线av| 亚洲专区字幕在线| 在线观看www视频免费| 新久久久久国产一级毛片| 1024香蕉在线观看| 极品教师在线免费播放| 亚洲一卡2卡3卡4卡5卡精品中文| 精品高清国产在线一区| 亚洲第一av免费看| 日本av免费视频播放| 啦啦啦在线免费观看视频4| 精品人妻1区二区| 狠狠狠狠99中文字幕| www.熟女人妻精品国产| 亚洲国产欧美日韩在线播放| 欧美日韩亚洲综合一区二区三区_| 成人三级做爰电影| 黑人巨大精品欧美一区二区mp4| 十八禁网站网址无遮挡| 777米奇影视久久| 国产精品一区二区精品视频观看| 女人久久www免费人成看片| 成人影院久久| 亚洲五月色婷婷综合| 高清视频免费观看一区二区| 桃花免费在线播放| 日韩中文字幕欧美一区二区| 亚洲九九香蕉| 久久人人爽av亚洲精品天堂| 亚洲美女黄片视频| 国产精品偷伦视频观看了| 精品少妇久久久久久888优播| 国产深夜福利视频在线观看| 久久精品91无色码中文字幕| 美女福利国产在线| 80岁老熟妇乱子伦牲交| 亚洲人成伊人成综合网2020| 在线观看66精品国产| 99国产精品免费福利视频| av超薄肉色丝袜交足视频| 亚洲人成伊人成综合网2020| 亚洲精品一卡2卡三卡4卡5卡| 亚洲伊人色综图| 老司机影院毛片| 婷婷丁香在线五月| 悠悠久久av| 少妇裸体淫交视频免费看高清 | 日本欧美视频一区| 最黄视频免费看| 香蕉久久夜色| 亚洲av美国av| 婷婷丁香在线五月| 久久人人97超碰香蕉20202| 免费观看人在逋| 丰满人妻熟妇乱又伦精品不卡| 国产高清视频在线播放一区| 老鸭窝网址在线观看| 精品少妇久久久久久888优播| 国产男靠女视频免费网站| 电影成人av| 99精品在免费线老司机午夜| 久久久精品免费免费高清| 最黄视频免费看| 热99国产精品久久久久久7| 一进一出好大好爽视频| 国产区一区二久久| 999精品在线视频| 国产男女超爽视频在线观看| 成人18禁高潮啪啪吃奶动态图| 日韩欧美国产一区二区入口| 成人手机av| 天天躁日日躁夜夜躁夜夜| 免费少妇av软件| 黄片大片在线免费观看| 在线十欧美十亚洲十日本专区| 免费在线观看完整版高清| 日本vs欧美在线观看视频| 变态另类成人亚洲欧美熟女 | 国产精品久久久久久精品电影小说| 人人妻人人爽人人添夜夜欢视频| 成人三级做爰电影| 国产在线一区二区三区精| 久久天躁狠狠躁夜夜2o2o| 亚洲 欧美一区二区三区| 少妇精品久久久久久久| 日本一区二区免费在线视频| 国产视频一区二区在线看| 国产成人精品在线电影| 91老司机精品| 80岁老熟妇乱子伦牲交| 久久精品国产99精品国产亚洲性色 | 日韩欧美一区二区三区在线观看 | 老司机福利观看| 蜜桃国产av成人99| 亚洲综合色网址| 精品一区二区三区视频在线观看免费 | 岛国在线观看网站| 露出奶头的视频| 免费av中文字幕在线| 亚洲三区欧美一区| 欧美老熟妇乱子伦牲交| 女人久久www免费人成看片| 男女边摸边吃奶| 在线av久久热| 精品卡一卡二卡四卡免费| 欧美国产精品va在线观看不卡| 亚洲 国产 在线| 91成年电影在线观看| 日本av免费视频播放| 欧美中文综合在线视频| 国产成人av激情在线播放| 午夜两性在线视频| 人妻 亚洲 视频| 夜夜爽天天搞| 欧美国产精品一级二级三级| 咕卡用的链子| 12—13女人毛片做爰片一| 精品乱码久久久久久99久播| 国产亚洲欧美精品永久| av线在线观看网站| 香蕉国产在线看| 咕卡用的链子| 亚洲av日韩精品久久久久久密| 成人18禁在线播放| tube8黄色片| 麻豆国产av国片精品| 在线十欧美十亚洲十日本专区| 国产欧美亚洲国产| 亚洲欧洲日产国产| 黑人巨大精品欧美一区二区蜜桃| 久9热在线精品视频| a级毛片黄视频| 五月开心婷婷网| 国产高清videossex| 精品亚洲成a人片在线观看| 免费人妻精品一区二区三区视频| 国产精品98久久久久久宅男小说| 久久99一区二区三区| 国产成人免费无遮挡视频| av视频免费观看在线观看| 老司机午夜十八禁免费视频| 中文字幕制服av| 一边摸一边抽搐一进一小说 | 亚洲 国产 在线| 汤姆久久久久久久影院中文字幕| 99国产精品一区二区三区| 五月开心婷婷网| 久久午夜综合久久蜜桃| 亚洲精品久久成人aⅴ小说| 日本wwww免费看| 久久久精品区二区三区| 老鸭窝网址在线观看| 搡老熟女国产l中国老女人| 捣出白浆h1v1| 欧美久久黑人一区二区| 国产免费av片在线观看野外av| 女人精品久久久久毛片| 国产精品影院久久| 精品熟女少妇八av免费久了| 亚洲精品一卡2卡三卡4卡5卡| 久久中文字幕一级| 精品国产国语对白av| 亚洲久久久国产精品| 国产日韩欧美在线精品| 69精品国产乱码久久久| 久久久久久免费高清国产稀缺| 高清黄色对白视频在线免费看| 亚洲中文日韩欧美视频| 天堂动漫精品| 国产日韩一区二区三区精品不卡| 他把我摸到了高潮在线观看 | 亚洲,欧美精品.| 首页视频小说图片口味搜索| 国产精品影院久久| 久久久精品国产亚洲av高清涩受| 三上悠亚av全集在线观看| 桃红色精品国产亚洲av| 亚洲精品成人av观看孕妇| 51午夜福利影视在线观看| 国产1区2区3区精品| 国产伦理片在线播放av一区| 欧美大码av| 午夜福利欧美成人| 少妇的丰满在线观看| 嫩草影视91久久| 成年人黄色毛片网站| 亚洲专区国产一区二区| 亚洲av欧美aⅴ国产| 我要看黄色一级片免费的| 黄色视频不卡| 黄片播放在线免费| 国产精品麻豆人妻色哟哟久久| 一级,二级,三级黄色视频| 又黄又粗又硬又大视频| 蜜桃在线观看..| 老司机午夜十八禁免费视频| 午夜免费成人在线视频| 亚洲人成电影免费在线| 18禁观看日本| 三级毛片av免费| 少妇粗大呻吟视频| 99精品久久久久人妻精品| 精品国产超薄肉色丝袜足j| 中国美女看黄片| a级毛片黄视频| 叶爱在线成人免费视频播放| 法律面前人人平等表现在哪些方面| 日韩大码丰满熟妇| 亚洲中文日韩欧美视频| 午夜福利乱码中文字幕| 亚洲一区二区三区欧美精品| 中文字幕av电影在线播放| 亚洲全国av大片| 国产精品自产拍在线观看55亚洲 | 俄罗斯特黄特色一大片| 麻豆av在线久日| 色尼玛亚洲综合影院| 黑人巨大精品欧美一区二区mp4| 十八禁网站免费在线| av片东京热男人的天堂| 变态另类成人亚洲欧美熟女 | av福利片在线| 老司机深夜福利视频在线观看| 蜜桃在线观看..| av片东京热男人的天堂| 国产视频一区二区在线看| 一个人免费在线观看的高清视频| 国产精品免费大片| 纯流量卡能插随身wifi吗| 亚洲七黄色美女视频| 免费在线观看日本一区| 日韩视频在线欧美| 精品欧美一区二区三区在线| 婷婷成人精品国产| 国产精品自产拍在线观看55亚洲 | 狂野欧美激情性xxxx| 成人特级黄色片久久久久久久 | 精品午夜福利视频在线观看一区 | 日韩欧美一区二区三区在线观看 | av超薄肉色丝袜交足视频| 一级毛片精品| 日韩精品免费视频一区二区三区| 日本一区二区免费在线视频| 黄色视频在线播放观看不卡| 亚洲中文av在线| 高清av免费在线| 亚洲 国产 在线| a级毛片在线看网站| 日韩大片免费观看网站| 手机成人av网站| 亚洲一码二码三码区别大吗| 国产精品1区2区在线观看. | 无人区码免费观看不卡 | 亚洲avbb在线观看| 久久久精品免费免费高清| 夫妻午夜视频| 黄片小视频在线播放| 中文字幕最新亚洲高清| 亚洲av美国av| 日日爽夜夜爽网站| 黑丝袜美女国产一区| 91九色精品人成在线观看| 极品教师在线免费播放| 欧美国产精品va在线观看不卡| 51午夜福利影视在线观看| 久久精品亚洲熟妇少妇任你| 亚洲av欧美aⅴ国产| 国产精品99久久99久久久不卡| 母亲3免费完整高清在线观看| 成年版毛片免费区| 欧美精品亚洲一区二区| 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 亚洲av日韩在线播放| 五月天丁香电影| 国产精品久久久久久人妻精品电影 | 中文字幕人妻丝袜一区二区| 黄色毛片三级朝国网站| 亚洲av电影在线进入| 大片免费播放器 马上看| 大陆偷拍与自拍| 成人精品一区二区免费| 中文字幕人妻丝袜制服| 精品福利观看| 国产视频一区二区在线看| 90打野战视频偷拍视频| 久久久精品94久久精品| 免费少妇av软件| 午夜精品久久久久久毛片777| 少妇 在线观看| 99国产精品一区二区蜜桃av | 国产av国产精品国产| 一进一出好大好爽视频| 久久久久国产一级毛片高清牌| 欧美+亚洲+日韩+国产| 国产黄频视频在线观看| 在线十欧美十亚洲十日本专区| 久久精品国产亚洲av香蕉五月 | 中国美女看黄片| 国产精品熟女久久久久浪| 99精国产麻豆久久婷婷| 日日爽夜夜爽网站| 99精品欧美一区二区三区四区| 久久ye,这里只有精品| 女人高潮潮喷娇喘18禁视频| 狠狠婷婷综合久久久久久88av| 精品国产乱子伦一区二区三区| 蜜桃在线观看..| av又黄又爽大尺度在线免费看| 国产亚洲一区二区精品| 日韩熟女老妇一区二区性免费视频| 国产区一区二久久| 亚洲色图av天堂| 一本一本久久a久久精品综合妖精| 久久久国产成人免费| 香蕉久久夜色| 露出奶头的视频| 日本av手机在线免费观看| 国产一卡二卡三卡精品| 人妻久久中文字幕网| 日韩欧美国产一区二区入口| 国产免费现黄频在线看| 如日韩欧美国产精品一区二区三区| svipshipincom国产片| 高清欧美精品videossex| 丝瓜视频免费看黄片| 一本一本久久a久久精品综合妖精| 啦啦啦 在线观看视频| 久久久久国内视频| 欧美中文综合在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 91av网站免费观看| 亚洲人成伊人成综合网2020| 国产在线精品亚洲第一网站| 久热爱精品视频在线9| 日韩视频在线欧美| 肉色欧美久久久久久久蜜桃| 国产精品秋霞免费鲁丝片| av国产精品久久久久影院| 建设人人有责人人尽责人人享有的| 一区二区日韩欧美中文字幕| 日韩欧美免费精品| 国产麻豆69| 精品少妇内射三级| 狠狠精品人妻久久久久久综合| 午夜福利,免费看| 免费看十八禁软件| 夫妻午夜视频| 国产精品一区二区精品视频观看| 日韩视频在线欧美| 亚洲国产精品一区二区三区在线| 成人国产av品久久久| 999久久久精品免费观看国产| 久久中文看片网| 一级,二级,三级黄色视频| 免费久久久久久久精品成人欧美视频| 两性午夜刺激爽爽歪歪视频在线观看 | 电影成人av| 国产精品 欧美亚洲| 黄色视频在线播放观看不卡| 一区二区日韩欧美中文字幕| 亚洲精华国产精华精| 亚洲综合色网址| 欧美激情久久久久久爽电影 | 一区二区av电影网| 欧美+亚洲+日韩+国产| 香蕉国产在线看| 国产99久久九九免费精品| 不卡一级毛片| 国产欧美日韩精品亚洲av| 久9热在线精品视频| 免费一级毛片在线播放高清视频 | 高清av免费在线| 美女国产高潮福利片在线看| 成年动漫av网址| 欧美精品人与动牲交sv欧美| 久久久精品94久久精品| 日韩一区二区三区影片| 国产精品免费一区二区三区在线 | 免费在线观看视频国产中文字幕亚洲| 男人舔女人的私密视频| 成人国产一区最新在线观看| 久久精品人人爽人人爽视色| 亚洲欧美一区二区三区黑人| 亚洲精品乱久久久久久| a级毛片黄视频| av视频免费观看在线观看| 精品第一国产精品| 欧美成人午夜精品| www.999成人在线观看| 久久香蕉激情| 黑人操中国人逼视频| 国产精品久久久av美女十八| 母亲3免费完整高清在线观看| 国产精品一区二区在线不卡| 悠悠久久av| 国产精品自产拍在线观看55亚洲 | 啪啪无遮挡十八禁网站| 亚洲第一欧美日韩一区二区三区 | 亚洲国产欧美日韩在线播放| 国产三级黄色录像| 国产成人免费观看mmmm| 手机成人av网站| 99re6热这里在线精品视频| 日本wwww免费看| 久久久久网色| 蜜桃在线观看..| 欧美人与性动交α欧美精品济南到| 亚洲av成人一区二区三| 午夜福利欧美成人| 超色免费av| 亚洲中文日韩欧美视频| 日韩视频在线欧美| 超色免费av| 久久精品国产综合久久久| 久久99一区二区三区| 搡老乐熟女国产| 自线自在国产av| 天天操日日干夜夜撸| 天堂8中文在线网| 精品人妻1区二区| 男女边摸边吃奶| 国产免费视频播放在线视频| 国产日韩欧美在线精品| 中文欧美无线码| 午夜福利影视在线免费观看| 国产精品久久久人人做人人爽| 亚洲人成电影免费在线| 在线 av 中文字幕| 91精品三级在线观看| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三卡| www.精华液| 精品人妻在线不人妻| 久久人人爽av亚洲精品天堂| 国产高清激情床上av| 老司机午夜福利在线观看视频 | 日本精品一区二区三区蜜桃| svipshipincom国产片| 亚洲国产看品久久| 成人国语在线视频| 少妇精品久久久久久久| 日韩中文字幕视频在线看片| 黄色 视频免费看| 欧美激情高清一区二区三区| 国产成人欧美在线观看 | 天天躁日日躁夜夜躁夜夜| 国产伦理片在线播放av一区| 18禁裸乳无遮挡动漫免费视频| 妹子高潮喷水视频| 久久人妻福利社区极品人妻图片| 久久人人爽av亚洲精品天堂| 国产在线观看jvid| 美女主播在线视频| 久久av网站| 两人在一起打扑克的视频| 亚洲精品成人av观看孕妇| 90打野战视频偷拍视频| 精品第一国产精品| 日韩 欧美 亚洲 中文字幕| 欧美日韩一级在线毛片| 久久国产精品影院| 黄片大片在线免费观看| 美女视频免费永久观看网站| 欧美日韩福利视频一区二区| 纯流量卡能插随身wifi吗| 亚洲国产av影院在线观看| 久久人人97超碰香蕉20202| 黄色片一级片一级黄色片| 大型黄色视频在线免费观看| 一进一出抽搐动态| 伊人久久大香线蕉亚洲五| 视频区图区小说| 国产深夜福利视频在线观看| 无人区码免费观看不卡 | 亚洲九九香蕉| 下体分泌物呈黄色| 亚洲精品自拍成人| 两性午夜刺激爽爽歪歪视频在线观看 | 在线播放国产精品三级| 男女午夜视频在线观看| 免费在线观看黄色视频的| 精品国产超薄肉色丝袜足j| 老鸭窝网址在线观看| av不卡在线播放| 国产成人精品在线电影| 看免费av毛片| 欧美黄色片欧美黄色片| 亚洲国产中文字幕在线视频| 国产野战对白在线观看| 欧美日韩福利视频一区二区| 动漫黄色视频在线观看| 电影成人av| 岛国在线观看网站| 性色av乱码一区二区三区2| 午夜91福利影院| 国产免费现黄频在线看| 国产av国产精品国产| 天堂动漫精品| 天堂8中文在线网| 日韩欧美三级三区|