• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of interannual variations of spring sea ice in the Barents Sea on East Asian rainfall in June

    2018-08-30 06:59:02LINZhongndLIFng

    LIN Zhong-D nd LI Fng

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China; bInternational Center for Climate and Environment Sciences, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China

    ABSTRACT This study reveals a significant relationship, on the interannual timescale, between a dipole mode,the second leading mode, of spring sea-ice anomalies in the Barents Sea and the following-summer rainfall in East Asia. Related to the dipole mode, with the heavier sea ice in the north and lighter sea ice in the southeast Barents Sea in spring, the East Asian summer subtropical rainy belt tends to move northward. The significant relationship is established through a wave train over northern Eurasia in the lower troposphere in June. The wave train enhances the northern East Asian low, which induces more rainfall to the north of the East Asian subtropical rainy belt and then attracts the subtropical rainy belt to move northward. This study suggests that the dipole mode of spring sea-ice anomalies in the Barents Sea may be a good precursor for the prediction of East Asian summer rainfall.

    KEYWORDS Spring sea ice; Barents Sea;East Asian summer rainfall;northern East Asian low;subtropical rainy belt

    1. Introduction

    The Barents Sea is a marginal sea of the Arctic Ocean, where the frozen Arctic interfaces with open water of the North Atlantic. The advance and retreat of the sea-ice edge in the Barents Sea causes strong year-to-year variability in this region. Many earlier studies have highlighted the impact of winter sea-ice loss over this region on midlatitude circulation and climate over Eurasia (Deser, Tomas, and Peng 2007; Gao and Wu 1998; Han and Li 2013; Inoue, Hori, and Takaya 2012; Kug et al. 2015; Li and Wang 2012; Liptak and Strong 2013; Mori et al. 2014; Ruggieri et al. 2017; Screen 2017; Sorokina et al. 2015; Wu, Huang, and Gao 2001; Wu et al. 2013). Mori et al. (2014), for example, revealed a robust winter surface air cooling in midlatitude Asia in response to a lighter sea-ice cover in the Barents Sea. In addition,reduced winter sea ice in the Barents Sea tends to enhance the Siberian high (Wu, Su, and Zhang 2011) and cause a cold surge in East Asia (Song and Wu 2017; Takaya and Nakamura 2005). Wu et al. (2016) also revealed a significant relationship between winter Arctic sea ice in the Barents Sea and East Asian spring precipitation.

    Similarly, in spring, sea ice still covers the Barents Sea with strong interannual variability (Figure 1; Wang and Yang 2002; Wu, Gao, and Huang 2000). Several studies have pointed out the possible relationship between spring sea ice in the Barents Sea and East Asian summer rainfall (Li and Zeng 2008; Wang and Guo 2004;Wu, Zhang, and Wang 2009; Zheng and Wang 1996).Wang and Guo (2004) noticed an anomalous early-summer rainfall response in eastern China to spring sea-ice change in the Barents Sea. The spring sea-ice anomaly in the Barents Sea has been used as a precursory signal for the statistical prediction of East Asian summer rainfall (Li and Zeng 2008). However, most of these studies used raw data and focused mainly on the influence of the decreasing trend in sea-ice extent in the Barents Sea since 1979(Wang and Guo 2004) or the decadal changes around 1978 and 1992 (Wu, Zhang, and Wang 2009). Whether there is a significant relationship, on the interannual timescale, between spring sea ice in the Barents Sea and East Asian summer climate is unclear. In this study, we try to answer the following questions: What are the main features of the interannual variability of spring sea ice in the Barents Sea? And what is its possible impact on East Asian summer rainfall?

    Figure 1. (a) Climatology, (b) interannual standard deviation, and the (c) first and (d) second EOF modes of spring sea-ice concentration in the Barents Sea during the period 1979–2015.

    2. Data and method

    The monthly data used in this study include: (1) sea-ice concentration data from HadISST, version 1.1, with a resolution of 1° × 1° (Rayner et al. 2003); (2) atmospheric circulation data from ERA-Interim (Dee et al. 2011); and (3) CMAP data on 2.5° × 2.5° global grids (Xie and Arkin 1997). The data in their common period of 1979–2015 are employed in this study. In addition, we used the atmospheric circulation data from the NCEP–NCAR reanalysis data-set (Kalnay et al. 1996) and obtained similar results to those using ERAInterim. For brevity, only the results based on ERA-Interim are presented here.

    To focus on interannual variations, trend and decadal signals with periods beyond eight years are excluded using a low-pass filter based on Fourier harmonics analysis. The data used in this study therefore refer to their interannual components unless otherwise stated. Spring is defined as the mean of March, April, and May; and summer as the mean of June, July, and August. The Student’s t-test is used to test the significance of the correlation coefficients and regressions.

    3. Results

    In this section, we first examine the dominant modes of the interannual variability of spring sea ice in the Barents Sea(Section 3.1), and then investigate their possible impacts on East Asian summer rainfall (Section 3.2) and related circulation (Section 3.3).

    3.1. Dominant modes of interannual variability of spring sea-ice concentration in the Barents Sea

    To investigate the interannual variability of spring sea ice,Figure 1(b) shows interannual standard deviation of the spring sea-ice concentration for 1979–2015. Large interannual variability is shown in the eastern and northern Barents Sea (Figure 1(b)), where the climatological sea-ice concentration is relatively low (Figure 1(a)). The interannual variations of spring sea-ice concentration are dominated by two major modes, based on the empirical orthogonal function (EOF) analysis. The first mode shows a coherent decline in sea-ice concentration in the Barents Sea, with its center along the eastern coast (Figure 1(c)), which is referred to here as the ‘basin mode’. The basin mode of sea ice in the Barents Sea has also been identified in the first EOF mode of spring sea ice in the whole Arctic region by Wang and Yang (2002). The second mode exhibits a dipole pattern, with out-of-phase change between the southeastern and northern Barents Sea (Figure 1(d)). The basin mode and dipole mode explain about 39% and 18% of the total interannual variance, respectively, and are significantly separable from the third one, which explains about 8%of the total variance, based on the criterion of North et al.(1982). Both modes exhibit strong interannual variations(Figure 1(e)).

    3.2. Impact of the dipole mode of spring sea ice on East Asian summer rainfall

    Section 3.1, above, identifies two major modes, i.e. the basin mode and dipole mode, of interannual variations of spring sea-ice concentration in the Barents Sea. In this section, their possible relationship to East Asian summer rainfall is investigated.

    Figure 2 shows the summer rainfall anomalies over East Asia in response to the basin mode (Figure 2(a)) and dipole mode (Figure 2(b)). Related to the basin mode, there is no significant large-scale rainfall signal over East Asia in summer (Figure 2(a)). However, strong rainfall anomalies are apparent in East Asia in relation to the dipole mode (Figure 2(b)). Associated with the lighter sea ice in the southeastern Barents Sea and heavier sea ice in the north, summer rainfall increases in the Huai River valley, South Korea, and west Japan, to the north of the climatological East Asian subtropical rainy belt. Meanwhile, rainfall also decreases in southern China and Taiwan, and the subtropical western North Pacific, to the south of the climatological subtropical rainy belt. Consequently, the subtropical rainy belt tends to shift northward. To quantify this relationship, we depict the northward shift of the East Asian subtropical rainy belt by the difference in summer rainfall averaged over the northern region (30°–40°N, 115°E–140°E) and southern region (20°–30°N, 115°–140°E). The correlation coefficient between the northward shift of the subtropical rainy belt and the dipole mode of spring sea ice is 0.56, significant at the 99% confidence level.

    Figure 2. Regressed anomalies of summer (June–July–August,JJA) rainfall in East Asia against the (a) PC1 and (b) PC2. (c) As in (b) but for regressed June rainfall anomalies. Shading depicts statistically significant rainfall anomalies at the 95% confidence level.

    We further analyze the sub-seasonal change in East Asian summer rainfall in response to the dipole mode of spring sea ice in the Barents Sea. Significant rainfall responses are obtained in June (early summer) (Figure 2(c)), with a similar pattern to those in summer (Figure 2(b)), while no significant rainfall anomaly is found in July and August (figures not shown). The correlation coefficient between the dipole mode of spring sea ice and the northward shift of the subtropical rainy belt in June is 0.52, significant at the 99% confidence level; and 0.25 in July and 0.26 in August, non-significant at the 90% confidence level.

    In addition, previous studies have reported significant responses of East Asian summer rainfall to an El Ni?o event in the preceding winter (e.g. Lin and Lu 2009; Wu et al.2009) and the Arctic Oscillation (AO) in the preceding winter and spring (e.g. Gong et al. 2011; He et al. 2017; Qiao et al. 2017). To exclude the possible impact of ENSO and AO, we further calculate the partial correlation coefficient between the northward shift of the subtropical rainy belt in June and the dipole mode of spring sea ice. The significant relationship remains stable, with partial correlation coefficients of 0.54, 0.52, and 0.49, after removing the effects of winter and spring AO index and winter Ni?o3.4 sea surface temperature (SST) index, respectively, highlighting the impact of spring sea ice in the Barents Sea on East Asian early-summer rainfall. The Ni?o3.4 SST index and AO index used here are obtained from the CPC website: http://www.cpc.ncep.noaa.gov/.

    In short, the dipole mode of spring sea ice in the Barents Sea plays a crucial role in East Asian rainfall in the following June, but not in July and August. In contrast, the summer rainfall response in East Asia is weak in response to the basin mode of spring sea ice in the Barents Sea. In the next section, the possible physical processes linking the spring sea-ice dipole mode and East Asian summer rainfall is explored, with a focus on early summer.

    3.3. Circulation anomalies linking the dipole mode of spring sea ice in the Barents Sea and East Asian early-summer rainfall

    Figure 3 shows the atmospheric circulation responses in June to the dipole mode of spring sea ice in the Barents Sea.In the mid troposphere, there is a wave train in mid-to-high latitudes of the Eurasian continent (Figure 3(a)). This wave train can be seen more clearly in the lower troposphere in the regressed anomalies of geopotential height at 850 hPa(Figure 3(b)) and sea level pressure (Figure 3(c)). A significant, positive anomaly is observed over northern Siberia and a downstream negative anomaly over northern East Asia (Figure 3(b)). The negative anomaly then enhances the climatological northern East Asian low (NEAL) (Du,Lin, and Lu 2016; Lin and Wang 2016). To illustrate the three-dimensional structure of the wave train, a vertical section of the geopotential height anomalies along the red line linking the two centers is drawn (Figure 3(d)). The out-of-phase change in northern Siberia and northern East Asia is clearly identifiable, with significant signals confined to the lower troposphere below 700 hPa.

    Figure 3. Regressed anomalies of geopotential height (units:gpm) at (a) 500 hPa and (b) 850 hPa and (c) sea level pressure(units: hPa) in June against PC2. (d) Regressed anomalies of June geopotential height along the vertical section (red line) displayed in (b), with units of hPa on the y-axis.

    Lin and Wang (2016) highlighted the important role of NEAL in East Asian summer rainfall. An intensified NEAL not only increases the local rainfall, but also tends to shift the East Asian subtropical rainy belt northward, with a similar pattern related to the dipole mode of spring sea ice in the Barents Sea (Figure 2(b)). As shown in Figure 3(b), the dipole mode of spring sea ice is related to an enhanced NEAL, suggesting a bridging role played by NEAL in linking the spring sea ice in the Barents Sea and summer rainfall in East Asia. To confirm this hypothesis, we regress the June rainfall and horizontal wind vectors at 850 hPa against the dipole mode of spring sea ice in the Barents Sea (Figure 4(a)), the northward shift of the East Asian subtropical rainy belt in June (Figure 4(b)), and the June NEAL’s intensity(Figure 4(c)), defined as the geopotential height at 850 hPa,with a reversed sign, averaged over the region (40°–60°N,110°–140°E), similar to Lin and Wang (2016). The reversed sign is added to the NEAL’s intensity so that a positive index means a stronger NEAL and vice versa.

    Related to the dipole mode of spring sea ice in the Barents Sea, rainfall increases to the north of 30°N in June,which is attributable to a cyclonic anomaly over northern East Asia (Figure 4(a)) corresponding to an enhanced NEAL (Figure 3(b)). The positive vorticity in the lower troposphere may enhance ascending motion to the north of the climatological East Asian rainy belt (Figure 2(c)) through Ekman pumping (Lin and Wang 2016). In addition, a stronger NEAL can also suppress rainfall to the south of 30°N through shifting the East Asian subtropical rainy belt northward (Figure 4(c); Lin and Wang 2016), which can also be inferred from the cyclonic anomaly over northern East Asia associated with the northward shift of the subtropical rainy belt (Figure 4(b)). Figure 4(b) also shows a significant anticyclonic anomaly in the subtropical western North Pacific, which is probably related to reduced rainfall to the south of 30°N accompanying the northward shift of the subtropical rainy belt (Lin, Su, and Lu 2016).

    4. Summary and discussion

    This study investigates the main features of spring sea ice in the Barents Sea on the interannual timescale. Two major modes are identified: the first, the basin mode, has coherent variations over the whole Barents Sea; and the second, the dipole mode, corresponds to out-of-phase change between the southwestern and northern Barents Sea. The two modes explain 39% and 18% of the total interannual variance, respectively.

    Furthermore, the impacts of the two modes on following-summer rainfall in East Asia are investigated. Related to the dipole mode, with heavier spring sea ice in the northern Barents Sea and lighter sea ice in the southwest, the East Asian subtropical rainy belt tends to shift northward in the following summer. The significant summer rainfall response mainly occurs in early summer (June) through a wave train in the lower troposphere over the northern Eurasian continent, which enhances the NEAL. The enhanced NEAL increases the rainfall to the north of the East Asian subtropical rainy belt through Ekman pumping,leading to the northward shift of the subtropical rainy belt.Our results show that there is no significant signal in East Asian rainfall in July and August related to the dipole mode of spring sea ice and in summer related to the basin mode.

    Figure 4. Regressed anomalies of rainfall (contours) and horizontal winds at 850 hPa (vectors) in June upon the (a) PC2, (b) meridional location index (MLI) of the East Asian subtropical rainy belt, which is defined as the difference in June rainfall averaged over the regions (30°–40°N,110°–145°E) and (20°–30°N, 110°–145°E) in Figure 2(c), and (c) intensity of the northern East Asian low (NEALI), calculated as the normalized geopotential height at 850 hPa in June, with a reversed sign, averaged over the region (40°–60°N, 110°–140°E), similar to Lin and Wang (2016)Notes: Shading depicts statistically significant rainfall anomalies at the 90%confidence level. The scale of winds is plotted at the bottom, and wind anomalies of either zonal or meridional wind significant at the 90% confidence level are highlighted by the thick vectors.

    The present study highlights the role of a wave train in the lower troposphere over northern Eurasia in June in linking spring sea ice and following-summer rainfall in East Asia. The formation of the wave train is likely induced by a persistent positive sea-ice anomaly in the northern Barents Sea in June(figure not shown). As proposed by He et al. (2018), the persistent positive sea-ice anomaly in June may absorb heat from the atmosphere through surface turbulence heat flux (sensible plus latent heat flux) and induce anomalous descent over the Barents Sea, triggering a southeastward-propagating Rossby wave train. However, more evidence based on observational analysis and model simulations is needed.

    Li and Zeng (2008) suggested that spring sea ice in the Barents Sea (the basin mode) can be used as a precursory signal for the statistical prediction of East Asian summer rainfall. The statistical relationship has also been used in real seasonal forecasts of summer rainfall in China by the National Climate Center (e.g. Chen et al. 2016; Ke, Wang,and Gong 2014). This study reveals that a significant relationship, on the interannual timescale, exists between East Asian summer rainfall and the dipole mode, rather than the basin mode, of spring sea ice in the Barents Sea. The correlation coefficient between the dipole mode and the meridional location of the East Asian subtropical rainy belt is 0.56, which indicates an explainable variance more than 30% of the latter by the former. The result suggests that the dipole mode of spring sea ice in the Barents Sea would be a better precursor of East Asian summer rainfall, especially for the meridional location of the subtropical rainy belt.

    In this study we focus on the impact of spring sea ice in the Barents Sea on East Asian rainfall in June. This does not, however, mean that sea-ice change over the other Arctic seas is unimportant for East Asian summer climate.Indeed, Zhao et al. (2004) revealed a significant impact of the spring sea-ice extent anomaly in the North Pacific on East Asian summer monsoon rainfall. A decline in sea-ice extent over the Bering Sea and Sea of Okhotsk may lead to enhanced summer monsoon rainfall in southeastern China. A comprehensive understanding of the impact of Arctic sea ice on East Asian climate may include all impacts of regional sea-ice changes in the whole Arctic Ocean.

    Disclosure statement

    No potential conflict of interest was reported by the author.

    Funding

    LIN Zhong-Da was supported by the National Natural Science Foundation of China [grant numbers 41375086 and 41775062]and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS). LI Fang was supported by the Youth Innovation Promotion Association of CAS and the National Natural Science Foundation of China [grant number 41630530].

    99国产极品粉嫩在线观看| 少妇的逼水好多| 校园春色视频在线观看| 久久精品国产亚洲网站| 麻豆乱淫一区二区| 午夜福利成人在线免费观看| 免费看av在线观看网站| 男人狂女人下面高潮的视频| 一进一出抽搐动态| 51国产日韩欧美| 99在线视频只有这里精品首页| 国产精品嫩草影院av在线观看| 夜夜爽天天搞| 99久久九九国产精品国产免费| 搞女人的毛片| 久久精品国产亚洲av涩爱 | 十八禁网站免费在线| 亚洲无线在线观看| 男女之事视频高清在线观看| 岛国在线免费视频观看| 丰满的人妻完整版| eeuss影院久久| 五月伊人婷婷丁香| 精品国产三级普通话版| 国产真实伦视频高清在线观看| 日韩欧美精品v在线| 在线观看一区二区三区| 亚洲精品日韩av片在线观看| 神马国产精品三级电影在线观看| 免费看a级黄色片| 黄色一级大片看看| 日韩精品有码人妻一区| 熟女电影av网| 亚洲av五月六月丁香网| 欧美激情国产日韩精品一区| 国产真实伦视频高清在线观看| 乱人视频在线观看| 性欧美人与动物交配| 免费av观看视频| 国产精品综合久久久久久久免费| 综合色av麻豆| 日韩欧美精品免费久久| 国产一区二区激情短视频| 国内久久婷婷六月综合欲色啪| 久久久色成人| 国产精品野战在线观看| 日本五十路高清| 久久久久久国产a免费观看| 男人的好看免费观看在线视频| 别揉我奶头 嗯啊视频| 国语自产精品视频在线第100页| 婷婷色综合大香蕉| 国产高清有码在线观看视频| 秋霞在线观看毛片| av在线亚洲专区| 日日啪夜夜撸| 天美传媒精品一区二区| 欧美另类亚洲清纯唯美| 欧美日韩综合久久久久久| 久久这里只有精品中国| 亚洲欧美清纯卡通| 国产大屁股一区二区在线视频| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产自在天天线| 亚洲七黄色美女视频| 一级av片app| 成人永久免费在线观看视频| 在线观看一区二区三区| 给我免费播放毛片高清在线观看| 欧美潮喷喷水| 少妇人妻一区二区三区视频| 六月丁香七月| 亚洲在线自拍视频| 久久精品人妻少妇| 欧美性猛交黑人性爽| 亚洲成人久久爱视频| 成人精品一区二区免费| 久久欧美精品欧美久久欧美| 一夜夜www| 午夜福利成人在线免费观看| 欧美三级亚洲精品| 麻豆国产97在线/欧美| 99在线视频只有这里精品首页| 美女被艹到高潮喷水动态| 日韩欧美 国产精品| 久久精品综合一区二区三区| 午夜激情福利司机影院| 日韩,欧美,国产一区二区三区 | 日本撒尿小便嘘嘘汇集6| 国产精品美女特级片免费视频播放器| 久久精品国产亚洲av天美| 国产国拍精品亚洲av在线观看| 此物有八面人人有两片| 丝袜喷水一区| 欧洲精品卡2卡3卡4卡5卡区| 国产色爽女视频免费观看| 黄色欧美视频在线观看| 久久精品国产亚洲网站| 亚洲不卡免费看| 亚洲国产精品合色在线| 久久久成人免费电影| 成人午夜高清在线视频| 国产aⅴ精品一区二区三区波| 国产成人精品久久久久久| 国产男人的电影天堂91| 久久午夜亚洲精品久久| 在线播放无遮挡| av在线观看视频网站免费| 一级毛片久久久久久久久女| 免费看日本二区| 亚洲最大成人中文| 国产精品一区二区三区四区久久| 成人av在线播放网站| 国产在线男女| 日韩中字成人| 日本欧美国产在线视频| 亚洲国产日韩欧美精品在线观看| 3wmmmm亚洲av在线观看| 99riav亚洲国产免费| 国产 一区 欧美 日韩| 精品一区二区三区视频在线观看免费| 长腿黑丝高跟| 女人被狂操c到高潮| 国产精品乱码一区二三区的特点| 精品乱码久久久久久99久播| 国产片特级美女逼逼视频| 99热6这里只有精品| 老司机福利观看| 看片在线看免费视频| 人人妻,人人澡人人爽秒播| 日韩欧美免费精品| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩一区二区视频在线观看视频在线 | 中国美女看黄片| 国产大屁股一区二区在线视频| 亚洲成人久久性| 亚洲内射少妇av| 国产真实乱freesex| 人人妻人人看人人澡| 午夜福利18| 男女视频在线观看网站免费| 欧美潮喷喷水| 亚洲欧美成人综合另类久久久 | 欧美性猛交╳xxx乱大交人| 成人鲁丝片一二三区免费| 少妇高潮的动态图| 少妇的逼好多水| 久久人人爽人人片av| 欧美激情国产日韩精品一区| 日本精品一区二区三区蜜桃| 如何舔出高潮| 国产午夜福利久久久久久| 噜噜噜噜噜久久久久久91| 久久精品国产99精品国产亚洲性色| 99久久九九国产精品国产免费| 久久久久久久久久黄片| 精品无人区乱码1区二区| 熟妇人妻久久中文字幕3abv| 亚洲精品色激情综合| 国产中年淑女户外野战色| 伊人久久精品亚洲午夜| 色综合亚洲欧美另类图片| 99riav亚洲国产免费| 国产单亲对白刺激| 精品无人区乱码1区二区| 亚洲av成人av| 国产一区亚洲一区在线观看| 国模一区二区三区四区视频| 久久精品国产鲁丝片午夜精品| 全区人妻精品视频| 亚洲综合色惰| 人妻少妇偷人精品九色| 白带黄色成豆腐渣| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久久久免| 1000部很黄的大片| av卡一久久| 中文字幕久久专区| 一a级毛片在线观看| 国产精华一区二区三区| 亚洲性久久影院| 亚洲美女视频黄频| 乱系列少妇在线播放| 欧美+日韩+精品| 色综合亚洲欧美另类图片| 最近2019中文字幕mv第一页| 亚洲经典国产精华液单| or卡值多少钱| 国产色婷婷99| 精华霜和精华液先用哪个| 18禁裸乳无遮挡免费网站照片| 99精品在免费线老司机午夜| 搡老岳熟女国产| 18禁裸乳无遮挡免费网站照片| 久久久欧美国产精品| 九九久久精品国产亚洲av麻豆| 男人和女人高潮做爰伦理| 国产精品99久久久久久久久| 日韩中字成人| 久久精品国产亚洲网站| 色哟哟哟哟哟哟| 最近中文字幕高清免费大全6| 亚洲天堂国产精品一区在线| 国产真实伦视频高清在线观看| 插阴视频在线观看视频| 欧美绝顶高潮抽搐喷水| 欧美一区二区国产精品久久精品| 色尼玛亚洲综合影院| 男人舔奶头视频| 一个人观看的视频www高清免费观看| 亚洲在线自拍视频| 九九久久精品国产亚洲av麻豆| 欧美xxxx性猛交bbbb| 人妻制服诱惑在线中文字幕| 国产黄a三级三级三级人| 99久国产av精品| 亚洲欧美精品自产自拍| 久久6这里有精品| 亚洲欧美日韩高清在线视频| 国内揄拍国产精品人妻在线| 国产日本99.免费观看| 在线天堂最新版资源| 中文字幕熟女人妻在线| 欧美一级a爱片免费观看看| 色在线成人网| 可以在线观看的亚洲视频| 大香蕉久久网| 欧美性猛交╳xxx乱大交人| 最近最新中文字幕大全电影3| 午夜福利在线在线| 日韩亚洲欧美综合| 国产黄片美女视频| 精品免费久久久久久久清纯| 成人欧美大片| 色吧在线观看| 人妻久久中文字幕网| 人妻夜夜爽99麻豆av| 国产 一区精品| 男女边吃奶边做爰视频| 一本精品99久久精品77| 国产一区二区在线观看日韩| 成年免费大片在线观看| 国产免费一级a男人的天堂| 丝袜美腿在线中文| 色5月婷婷丁香| 亚洲av免费在线观看| 特大巨黑吊av在线直播| 村上凉子中文字幕在线| 麻豆成人午夜福利视频| 亚洲成人av在线免费| 欧美性猛交╳xxx乱大交人| 精品久久久噜噜| 美女免费视频网站| 一级黄片播放器| 精品熟女少妇av免费看| 夜夜爽天天搞| 亚洲国产精品合色在线| 激情 狠狠 欧美| 最近最新中文字幕大全电影3| 美女免费视频网站| 欧美丝袜亚洲另类| 91午夜精品亚洲一区二区三区| 美女内射精品一级片tv| 日本熟妇午夜| 国产精品精品国产色婷婷| 十八禁国产超污无遮挡网站| 亚洲美女视频黄频| 色av中文字幕| 久久人人精品亚洲av| 久久国内精品自在自线图片| 免费av不卡在线播放| 综合色丁香网| 国产亚洲精品综合一区在线观看| 国产一区亚洲一区在线观看| 国产大屁股一区二区在线视频| 五月伊人婷婷丁香| 成人二区视频| 婷婷精品国产亚洲av在线| 日本一二三区视频观看| 大香蕉久久网| 亚洲七黄色美女视频| 18+在线观看网站| 久久中文看片网| 校园春色视频在线观看| 久久精品国产自在天天线| 欧美色欧美亚洲另类二区| 成年女人看的毛片在线观看| videossex国产| 日韩成人伦理影院| 亚洲国产欧美人成| 丝袜喷水一区| 在线免费观看的www视频| 免费看日本二区| 男人舔奶头视频| 麻豆国产av国片精品| 女同久久另类99精品国产91| 欧美成人一区二区免费高清观看| 国产精品99久久久久久久久| 一级毛片久久久久久久久女| 国产午夜精品论理片| 色综合站精品国产| 国产探花在线观看一区二区| 国产精品国产三级国产av玫瑰| 精品99又大又爽又粗少妇毛片| 日产精品乱码卡一卡2卡三| 男人和女人高潮做爰伦理| 小说图片视频综合网站| 成人无遮挡网站| 免费看光身美女| 欧美性猛交╳xxx乱大交人| 99久久精品一区二区三区| 我的女老师完整版在线观看| 色尼玛亚洲综合影院| 3wmmmm亚洲av在线观看| 亚洲av电影不卡..在线观看| 婷婷精品国产亚洲av在线| 国产人妻一区二区三区在| 午夜福利在线观看免费完整高清在 | 国产国拍精品亚洲av在线观看| 国产aⅴ精品一区二区三区波| 久久精品夜夜夜夜夜久久蜜豆| a级毛色黄片| 男女啪啪激烈高潮av片| 国产精品一区www在线观看| 熟女电影av网| 免费观看的影片在线观看| 亚洲色图av天堂| 亚洲最大成人av| 久久精品国产亚洲av天美| 又粗又爽又猛毛片免费看| 国产高清视频在线观看网站| 最后的刺客免费高清国语| 久久久久久伊人网av| 欧美日韩综合久久久久久| 亚洲精品色激情综合| 老司机影院成人| 久久久久久久久中文| 搡女人真爽免费视频火全软件 | 啦啦啦观看免费观看视频高清| 亚洲自拍偷在线| 一本久久中文字幕| 看片在线看免费视频| avwww免费| 久久久色成人| 久久久久国产网址| 国产精品一区二区三区四区久久| 成年女人毛片免费观看观看9| 夜夜看夜夜爽夜夜摸| 久久久久久大精品| 内地一区二区视频在线| 国内少妇人妻偷人精品xxx网站| 深爱激情五月婷婷| 中文资源天堂在线| 俄罗斯特黄特色一大片| 亚洲性久久影院| 国产精品精品国产色婷婷| 久久久欧美国产精品| 成人特级av手机在线观看| 99精品在免费线老司机午夜| 色综合站精品国产| 亚洲国产日韩欧美精品在线观看| 欧美日韩乱码在线| 久久精品国产亚洲av涩爱 | 久久精品国产99精品国产亚洲性色| 亚洲精品一区av在线观看| 热99re8久久精品国产| 国产高潮美女av| 亚洲四区av| 国产一级毛片七仙女欲春2| 插阴视频在线观看视频| 日本黄大片高清| 久久午夜亚洲精品久久| 欧美最新免费一区二区三区| 亚洲自偷自拍三级| 国产日本99.免费观看| 久久欧美精品欧美久久欧美| 亚洲一区高清亚洲精品| eeuss影院久久| 一卡2卡三卡四卡精品乱码亚洲| 一a级毛片在线观看| 亚洲人成网站在线播| 亚洲精品成人久久久久久| 国产亚洲欧美98| 国产av在哪里看| 一级黄片播放器| 国产av在哪里看| 成年免费大片在线观看| 少妇被粗大猛烈的视频| 亚洲不卡免费看| 免费av毛片视频| 乱码一卡2卡4卡精品| 国产精品久久久久久精品电影| 天堂影院成人在线观看| 亚洲av成人av| 18+在线观看网站| 国产精品精品国产色婷婷| 国产精品亚洲美女久久久| 欧美日韩乱码在线| 国语自产精品视频在线第100页| 欧美xxxx黑人xx丫x性爽| 亚洲av二区三区四区| 少妇猛男粗大的猛烈进出视频 | 一a级毛片在线观看| 高清毛片免费看| 久久久久久久久大av| 亚洲天堂国产精品一区在线| 久久精品影院6| 国产激情偷乱视频一区二区| 综合色av麻豆| 亚洲av免费高清在线观看| 身体一侧抽搐| 非洲黑人性xxxx精品又粗又长| 男人舔奶头视频| 国产亚洲欧美98| 美女免费视频网站| 尤物成人国产欧美一区二区三区| 国产精品一区二区三区四区久久| 午夜免费男女啪啪视频观看 | 久久久久国产精品人妻aⅴ院| 欧美激情在线99| 三级经典国产精品| 国产亚洲精品久久久com| 国产女主播在线喷水免费视频网站 | 赤兔流量卡办理| 成人特级av手机在线观看| 国产午夜精品论理片| 两个人视频免费观看高清| 久久久久国产网址| 国产成人影院久久av| 三级国产精品欧美在线观看| 国产麻豆成人av免费视频| 亚洲乱码一区二区免费版| 日本撒尿小便嘘嘘汇集6| 97人妻精品一区二区三区麻豆| 国产v大片淫在线免费观看| 国产精品无大码| 内地一区二区视频在线| 精品午夜福利在线看| 真人做人爱边吃奶动态| 一夜夜www| .国产精品久久| 亚洲最大成人手机在线| 成人毛片a级毛片在线播放| 欧美xxxx性猛交bbbb| 日韩欧美精品v在线| 蜜桃久久精品国产亚洲av| 色吧在线观看| 亚洲人成网站在线观看播放| av在线播放精品| 欧美日韩综合久久久久久| 国产片特级美女逼逼视频| 狂野欧美白嫩少妇大欣赏| 蜜臀久久99精品久久宅男| 能在线免费观看的黄片| 一个人看的www免费观看视频| 欧美不卡视频在线免费观看| АⅤ资源中文在线天堂| 蜜桃久久精品国产亚洲av| 亚洲精品日韩在线中文字幕 | 成年女人永久免费观看视频| 国产综合懂色| 亚洲欧美成人综合另类久久久 | 搡女人真爽免费视频火全软件 | 两性午夜刺激爽爽歪歪视频在线观看| 久久精品影院6| 69av精品久久久久久| 国产精品野战在线观看| 亚洲av成人av| 日本一本二区三区精品| 亚洲综合色惰| 亚洲不卡免费看| www日本黄色视频网| 桃色一区二区三区在线观看| 寂寞人妻少妇视频99o| 六月丁香七月| 色综合色国产| 欧美最新免费一区二区三区| 色吧在线观看| 国产久久久一区二区三区| 神马国产精品三级电影在线观看| 国产淫片久久久久久久久| 欧美区成人在线视频| 少妇裸体淫交视频免费看高清| 99久久精品一区二区三区| 日韩三级伦理在线观看| 久久精品国产亚洲av天美| 高清日韩中文字幕在线| 级片在线观看| 男女做爰动态图高潮gif福利片| 成熟少妇高潮喷水视频| 神马国产精品三级电影在线观看| 久久久色成人| 色哟哟哟哟哟哟| 精品欧美国产一区二区三| 女同久久另类99精品国产91| 国模一区二区三区四区视频| .国产精品久久| 欧美成人一区二区免费高清观看| 免费av不卡在线播放| 六月丁香七月| av福利片在线观看| 欧美xxxx黑人xx丫x性爽| 变态另类成人亚洲欧美熟女| 精品免费久久久久久久清纯| 内射极品少妇av片p| 欧美一区二区亚洲| 国产av麻豆久久久久久久| 国产男人的电影天堂91| 成人一区二区视频在线观看| 亚洲av.av天堂| 十八禁国产超污无遮挡网站| 亚洲自偷自拍三级| 成人欧美大片| 露出奶头的视频| 麻豆一二三区av精品| a级毛片a级免费在线| 亚洲欧美清纯卡通| 久久人妻av系列| 精品一区二区免费观看| 欧美高清性xxxxhd video| eeuss影院久久| 色av中文字幕| 国产不卡一卡二| 日本黄色片子视频| 国产一区二区三区av在线 | 亚洲欧美中文字幕日韩二区| 精品一区二区三区人妻视频| 美女cb高潮喷水在线观看| 国产成人精品久久久久久| 国产欧美日韩一区二区精品| 亚洲中文字幕一区二区三区有码在线看| 给我免费播放毛片高清在线观看| 国内精品美女久久久久久| 别揉我奶头~嗯~啊~动态视频| 久久热精品热| 韩国av在线不卡| 亚洲精品亚洲一区二区| 麻豆精品久久久久久蜜桃| 久久国产乱子免费精品| 国产91av在线免费观看| 日韩制服骚丝袜av| 丝袜喷水一区| 波多野结衣高清作品| 大又大粗又爽又黄少妇毛片口| 国产欧美日韩精品亚洲av| 赤兔流量卡办理| 国产精品女同一区二区软件| 欧美高清成人免费视频www| 九九热线精品视视频播放| 日日摸夜夜添夜夜添av毛片| 国产一区二区激情短视频| 国产成人freesex在线 | 少妇人妻一区二区三区视频| 黄色欧美视频在线观看| 丝袜美腿在线中文| 又粗又爽又猛毛片免费看| 久久久久精品国产欧美久久久| 中文字幕熟女人妻在线| av.在线天堂| 成人鲁丝片一二三区免费| 天堂动漫精品| 伦理电影大哥的女人| 人妻少妇偷人精品九色| 国产蜜桃级精品一区二区三区| 日韩在线高清观看一区二区三区| 最近手机中文字幕大全| 国产av在哪里看| 国产在线精品亚洲第一网站| 91在线精品国自产拍蜜月| 午夜福利高清视频| 高清毛片免费看| 舔av片在线| 日本-黄色视频高清免费观看| 亚洲欧美精品综合久久99| 国产精品一区二区三区四区久久| 日韩精品中文字幕看吧| 在线免费观看不下载黄p国产| 91麻豆精品激情在线观看国产| 精品久久久久久久人妻蜜臀av| 久久久久国内视频| 国产 一区精品| 日日摸夜夜添夜夜添小说| 中国美女看黄片| 亚洲成人精品中文字幕电影| 精品国内亚洲2022精品成人| 18禁在线无遮挡免费观看视频 | 亚洲精品乱码久久久v下载方式| 亚洲最大成人av| 午夜福利在线观看免费完整高清在 | 春色校园在线视频观看| 在线观看av片永久免费下载| 伊人久久精品亚洲午夜| 简卡轻食公司| 日日撸夜夜添| 免费看光身美女| 国产美女午夜福利| 丰满的人妻完整版| 久久精品国产亚洲av涩爱 | 波多野结衣巨乳人妻| 高清毛片免费观看视频网站| 亚洲精品成人久久久久久| 小蜜桃在线观看免费完整版高清| 男插女下体视频免费在线播放| 欧美日韩精品成人综合77777| 看黄色毛片网站| 日韩高清综合在线| 欧美日韩在线观看h| 大又大粗又爽又黄少妇毛片口| 18禁在线无遮挡免费观看视频 | 国产 一区 欧美 日韩| 狠狠狠狠99中文字幕| 22中文网久久字幕| 观看免费一级毛片| 色播亚洲综合网| 亚洲乱码一区二区免费版|