• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cross validations of radio-frequency interference signature in AMSR-E data using two detection methods

    2018-08-30 06:58:58ZHAOJuanandYUXiaoDing

    ZHAO Juan and YU Xiao-Ding

    China Meteorological Administration Training Centre, Beijing, China

    ABSTRACT Radio-frequency interference (RFI) detection for low-frequency microwave measurements is an important step before these data are applied to geophysical parameter retrieval or data assimilation.There are several robust techniques to identify the RFI signals, such as the mean/standard deviation method and the normalized principal component analysis method. However, verification of these existing detection methods remains an open issue in the absence of a reliable validation data-set of the ‘true’ RFI signals. In this paper, a cross-validation scheme using two independent RFI detection methods is proposed to derive the thresholds for identifying the RFI-contaminated data for the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). It is shown that the new scheme is effective in the quantitative classification of the RFI signals in the AMSR-E C- and X-band channels over the continents. Strong RFI signals are found to be populated over cities of the United States at AMSR-E C-band, while RFIs at X-band are mainly observed over Europe and Japan.

    KEYWORDS Radio-frequency interference; classification threshold; AMSR-E

    1. Introduction

    The Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) is a passive remote sensing radiation imager instrument onboard NASA’s Aqua satellite, which was launched on 4 May 2002. The AMSR-E instrument was developed by the Japan Aerospace Exploration Agency (JAXA) for observing water-related geophysical parameters applied to global change science and monitoring (JAXA 2006; Kawanishi et al. 2003). The lower frequency channels from AMSR-E are sensitive to surface emissivity and designed to enhance surface sensing capabilities,providing soil moisture, surface temperature, sea surface wind speed, vegetation water content, and snow cover(Kawanishi et al. 2003; Weng and Grody 1994; Wentz et al. 2000). AMSR-E has similar frequencies to the WindSat radiometer onboard the Coriolis satellite, except for the 89-GHz channel. In addition, it has all the frequencies of the MicroWave Radiation Imager (MWRI) onboard the FengYun (FY)-3B/C satellite, besides a 6.925-GHz channel.FY-3B and FY-3C were launched on 5 November 2010 and 23 September 2013, respectively. AMSR-2, onboard the Global Change Observation Mission 1st -Water satellite,was successfully launched on 18 May 2012. The channels of AMSR-2 are the same as those of AMSR-E, except for the channels at 7.3 GHz.

    Similar to WindSat and MWRI, the AMSR-E C- and X-band channels operate in unprotected bands since many active commercial services employ the microwave spectrum, such as weather radar, air traffic control, cell phones, garage door remote control, defense tracking,vehicle speed detection, etc. These C- and X-band channel measurements from the Earth’s relatively weak thermal emissions may suffer from interference from signals originating from manmade microwave transmitters, collectively referred to as radio-frequency interference (RFI). RFI signals are often directional, narrow-banded, isolated in space,and persistent in time. The RFI signatures in brightness temperature measurements, if not identified and removed,introduce errors in AMSR-E retrievals. It is therefore important to identify RFI-contaminated data prior to carrying out geophysical parameter retrieval and data assimilation.

    Currently, several robust RFI detection methods exist for various microwave imagers, including the spectral difference method (Li et al. 2004; McKague, Puckett, and Ruf 2010; Njoku et al. 2005; Wu and Weng 2011), the mean/standard deviation method (Njoku et al. 2005), and the principle component analysis (PCA) method (Li et al. 2006).There are also some extended PCA techniques, including normalized PCA (NPCA) (Zou et al. 2012; Zou, Tian, and Weng 2014) and double PCA (DPCA) (Feng, Zou, and Zhao 2016; Guan, Xia, and Zhang 2015; Zhao, Zou, and Weng 2013). However, the verification of all RFI detection methods remains unresolved, since there is no reliable validation data-set of the ‘true’ RFI signals. Also, how to determine the exact RFI detection threshold by using each method is still an open issue. In this study, a cross-validation scheme is developed to obtain the thresholds for classifying the RFI-contaminated AMSR-E data over the continents.

    The paper is organized as follows: Section 2 provides a description of the Aqua AMSR-E data characteristics. Two RFI identification methods are briefly described in section 3. The cross-validation scheme and numerical results are presented in section 4. Section 5 gives a summary and some conclusions.

    2. AMSR-E data description

    The AMSR-E instrument onboard Aqua flies in an afternoon-configured (1330 UTC) sun-synchronous orbit at an altitude of 705 km, with an observation swath width of 1445 km (JAXA 2006). The antenna beams view the Earth at a constant earth incidence angle of 55° in the conically scanning mode. The six frequency channels at 6.925, 10.65, 18.7, 24.8, 36.5, and 89.0 GHz are dual polarimetric, providing the horizontal and vertical polarizations simultaneously. The field of view (FOV) size and the location of each frequency’s pixels differ from one another. The higher the frequency, the smaller the FOV. Table 1 provides the channel characteristics of AMSR-E.

    The level 2A AMSR-E brightness temperatures for a onemonth period in February 2011 are used in this study and binned onto a 1/3° × 1/3° grid over the globe. A coastline mask from the level 2A AMSR-E data is applied to remove data over ocean and large inland water regions.

    3. RFI detection methods

    3.1. Mean/standard deviation method

    Earlier studies indicate that the brightness temperature spectral differences (i.e.are usually negative at frequencies below 30 GHz over most land surfaces, as scattering effect is significantly weaker than emission (Li et al. 2004). The subscripts refer to the frequency and polarization. An RFI signal at C-band(X-band) produces a positive spectral gradient by increasing the brightness temperature at C-band (X-band). Thus,the spectral difference index is widely employed as an RFI discriminator (Li et al. 2004; McKague, Puckett, and Ruf 2010; Wu and Weng 2011). However, the scattering effect from snow and ice can also reverse the spectral difference gradient by decreasing the brightness temperatures at higher frequencies (Zou et al. 2012). As RFI signals originated from manmade transmitters are often pulsed or intermittent, the standard deviation of spectral difference can be chosen as an additional discriminator. Njoku et al.(2005) combined the mean and standard deviation of the RFI-sensitive spectral difference indices to detect RFIs at AMSR-E C- and X-band channels over the global continents. Also, the thresholds for classifying RFI signatures were determined subjectively according to the temporal variations of means and standard deviations.

    3.2. NPCA method

    In order to distinguish RFI signatures from the scattering effect over frozen grounds, the NPCA method waspresented to detect RFIs over land (Zou et al. 2012; Zou,Tian, and Weng 2014). It utilizes the multi-channel correlation differences between natural thermal radiation and RFI-contaminated data, as well as the normalized RFI indices mitigating the disparities between non-scattering and scattering surfaces. Zou et al. (2012) concluded that this detection method works well in identifying MWRI X-band RFI signals during both summer and winter. The second RFI detection method used in this paper is the same as that employed in Zou et al. (2012). To identify RFIs by using NPCA, the normalized RFI indices matrix is reconstructed from five principle component (PC) modes. The high values of the PC coefficient for the first PC mode indicate the high probabilities of the presence of RFI.

    Table 1. AMSR-E channel characteristics.

    4. Numerical results

    The existing RFI detection methods, including the mean/standard deviation method, the NPCA method and the DPCA method, appear to be robust in detecting moderate and strong RFI signals for microwave imagers. Nevertheless,none of these methods can objectively obtain the threshold for classifying RFIs, which is desired in operational data processing and data assimilation systems. In this study,the RFI results from the mean/standard deviation method and NPCA are compared to explore an exact threshold for quantitatively classifying the RFI-contaminated AMSR-E data over land.

    Figure 1(a)–(d) present the regional distributions of the monthly means and standard deviations of the spectral indices between 6.925 and 10.65 GHz horizontal and vertical polarization for the AMSR-E ascending data over the United States in February 2011. Large positive mean and standard deviation values indicate the presence of strong RFI at 6.925 GHz, most remarkable from Boston along the eastern corridor to New York, Washington D.C.,Richmond, Atlanta. The other places with high values are scattered in the central and western regions (e.g. Denver,La Crosse, etc.). Some areas show high positive standard deviations but low mean values (even negative mean values), such as the tongue-shaped region over (37°–50°N,100°–90°W). This feature is related to the time-varying weather phenomena with snowfall, which leads to high standard deviations at the monthly time scale (Figure 1(c)).However, this will not be confused with RFI signals, as the dual criteria of mean and standard deviation is employed.The NPCA-based RFI distributions over the United States at 6.925 GHz for horizontal and vertical polarization during February 2011 are shown in Figure 1(e) and (f). The ‘RFI signal’ is actually the PC coefficient for the first PC mode of the data matrix constructed in NPCA (Zou et al. 2012).Overall, similar results for strong RFIs are obtained by using NPCA. However, the mean/standard deviation method is more sensitive to the snow scattering effect, especially for the horizontal polarization, which leads to remarkably high standard deviations in the northwest of the United States.In addition, NPCA identifies a wider range of ‘RFI signals’than the former method does along the eastern corridor.It is also seen that the NPCA-based RFIs at 6.925 GHz are evidently stronger for horizontal polarization than vertical polarization, while the intensities of RFIs detected by the mean/standard deviation method are quite similar for these two polarizations.

    Figure 1. (a, b) Monthly mean and (c, d) standard deviation of TB6H ? TB10H (left panels) and TB6 V ? TB10 V (right panels) from Aqua AMSR-E ascending data over the United States in February 2011. (e, f) The 1st PC coefficient of NPCA for horizontal (left panel) and vertical (right panel) polarization indices over the United States in February 2011.

    The similarity in the results obtained by using the two independent RFI detection methods gives confidence in the RFIs identified over the United States. Therefore, the RFI results from the mean/standard deviation method and NPCA are compared point-by-point to find out the thresholds for the mean, standard deviation and 1st PC coefficient (marked as μ, σ, and α, respectively), when the number of RFI signals classified simultaneously by these two methods reaches the maximum value. Figure 1(c) and(d) show that over the non-scattering surfaces (snow-free and ice-free surfaces) the distribution range varies relatively little with respect to the monthly standard deviation value when the inequality σ ≥ 3 K holds true. Njoku et al. (2005) also concluded that the standard deviations are more temporally stable than the means. Therefore, only the variations of the temporal mean of spectral differences(μ) and the 1st PC coefficient (α) are taken into account while the threshold of standard deviation remains the constant of 3 K. Figure 2 illustrates the variations of the percentages of ‘RFI-contaminated’ data points classified simultaneously by both detection methods with respect to μ and α. As the value of μ increases, the ‘RFI-contaminated’data points increase initially, and then decrease rapidly with the maximum value at μ = 5 K (μ = 8 K) for horizontal(vertical) polarization. With regard to α, the percentages reach the maximum when α is equal to ?0.4 and ?0.2 for horizontal and vertical polarization, respectively. As a result, the thresholds of μ = 5 K and σ = 3 K for horizontal polarization, and μ = 8 K and σ = 3 K for vertical polarization, are chosen to classify RFI at 6.925 GHz over the United States by using the mean/standard deviation method. On the other hand, the thresholds of α = ?0.4 for horizontal polarization and α = ?0.2 for vertical polarization are applied in the NPCA method. These thresholds are selected by objective cross-validation of the RFI results, rather than subjective inspection.

    To examine the appropriateness of the thresholds obtained by the cross-validation scheme, 2D histograms are constructed for the standard deviations (σ) and means(μ) with the 1st PC coefficient (α) satisfying α ≥ ?0.4 or α ≥ ?0.2 indicated in color, and α < ?0.4 or α < ?0.2 indicated in black (Figure 3). The thresholds of μ and σ are displayed as horizontal and vertical dashed lines, respectively. The majority of black points are clustered within the range of ?20 K ≤ μ ≤ 10 K and 0 K ≤ σ ≤ 10 K. Basically, the points of color have positive mean values and high standard deviations. Color points far from the axes are indicative of strong RFI contamination. However, some color points with small means of spectral differences (horizontal polarization) or standard deviations (vertical polarization) exist,which will be classified as RFI signals by using the thresholds of μ and σ. Also noticeable is that some black points with large positive means and standard deviations are not identified as RFI-contaminated by NPCA.

    Figure 2. (a) Variation of the percentages of ‘RFI-contaminated’data points (contours) at 6.925-GHz horizontal polarization with respect to μ (x axis) and α (y axis) over the United States in February 2011. (b) As in (a) but for vertical polarization. The crosses indicate the maximum values.

    Figure 3. Scatterplots of σ and μ for (a) horizontal and (b) vertical polarization over the United States in February 2011. Data points satisfying α ≥ ?0.4 (left panel) and α ≥ ?0.2 (right panel) are indicated in colors, and those satisfying α < ?0.4 (left panel) and α < ?0.2(righ panel) are indicated in black. Horizontal and vertical dashed lines represent the thresholds of μ ≥ 5 K and σ ≥ 3 K for horizontal polarization, and μ ≥ 8 K and σ ≥ 3 K for vertical polarization.

    Figure 4. Distributions of RFI-contaminated data at 6.925 GHz identified by NPCA with (a) α ≥ ?0.4 for horizontal polarization and (b)α ≥ ?0.2 for vertical polarization over the United States in February 2011. (c, d) RFI distributions at 6.925 GHz classified by using the mean/standard deviation method with (c) μ ≥ 5 K and σ ≥ 3 K for horizontal polarization, and (d) μ ≥ 8 K and σ ≥ 3 K for vertical polarization.

    By applying the thresholds of α = ?0.4 and α = ?0.2 to NPCA, we obtain the RFI distributions at 6.925 GHz for horizontal and vertical polarization over the United States in February 2011 (Figure 4(a) and (b)). The intensities of RFI signals, expressed by the 1st PC coefficients, are indicated using the same color convention as in Figure 3. The RFI signals are found mostly near the big cities or populated areas. The RFI signatures for horizontal polarization are obviously stronger than the vertical polarization. Similar results are obtained by using the mean/standard deviation method with the aforementioned threshold values (Figure 4(c) and (d)). Compared to the NPCA-based RFI maps, the RFI signals detected by the latter method are more widely distributed in the northwest of the United States, while slightly fewer RFIs are classified along the eastern corridor.The RFI increase in the northwestern region is mainly due to the time-varying snow features, leading to both large positive spectral differences and high standard deviations,which is also shown in Figure 3.

    To test the performance of the proposed cross-validation scheme in other areas of the globe, it is further applied to AMSR-E data over eastern Asia (25°–45°N, 110°–145°E)and Europe, respectively. The RFIs at 6.925 GHz over Asia and Europe are much sparser than that at 10.65 GHz (figures omitted). For classifying RFI signals at 10.65 GHz, the thresholds of μ = 5.5 K, σ = 3 K, and α = ?0.1 for horizontal polarization, and μ = 7 K, σ = 3 K, and α = 0.4 for vertical polarization, are found in the eastern Asia region. The corresponding thresholds in Europe are μ = 10 K, σ = 3 K, and α = 0.5 for horizontal polarization, and μ = 6.5 K, σ = 3 K,and α = 0.3 for vertical polarization.

    Figure 5. Distributions of RFI-contaminated data at 10.65 GHz identified by NPCA with (a) α ≥ ?0.1 for horizontal polarization and (b)α ≥ 0.4 for vertical polarization over eastern Asia, and (c) α ≥ 0.5 for horizontal polarization and (d) α ≥ 0.3 for vertical polarization over Europe, in February 2011.

    The classification maps of NPCA-based RFI at 10.65 GHz over eastern Asia and Europe using these thresholds are provided in Figure 5. In the eastern Asia region, significant RFIs are found over Japan. Very few RFIs are found over China, except over Beijing and Shanghai cities for horizontal polarization (Figure 5(a) and (b)). The locations of RFI-contaminated AMSR-E data are close to those of FY-3B MWRI data for the 10.65-GHz channels over eastern Asia (Zou et al. 2012). In Europe the RFI signals are mainly located in the United Kingdom, Italy, and west of Turkey.The RFIs of horizontal polarization resemble those of vertical polarization, except that west of Turkey has a slightly wider distribution of RFI signals for vertical polarization.Njoku et al. (2005) showed similar 10.65-GHz RFI results for vertical polarization over Europe.

    5. Summary and conclusions

    This paper presents results of a cross-validation scheme to derive the thresholds for quantitatively classifying RFI-contaminated AMSR-E data over the continental United States, Asia and Europe by using the mean/standard deviation method and NPCA method. The mean/standard deviation method combines the spatial and temporal features of the spectral differences for RFI-contaminated brightness temperatures. NPCA takes advantage of the multi-channel correlation differences between natural thermal radiation and RFI-contaminated data, as well as a set of normalized RFI indices mitigating the disparities between non-scattering and scattering surfaces. Classifications using these two methods appear to be robust in identifying strong RFI over the continents. Therefore, the RFI results from these two methods are compared quantitatively to obtain the exact classification thresholds by maximizing the percentages of the ‘RFI-contaminated’ data identified by the two methods simultaneously.

    The RFI signals are populated over cities of the United States at the AMSR-E C-band horizontal polarization channel, while RFIs at the corresponding vertical polarization channel are clearly weaker. In Japan, strong RFI is found at both the C- and X-band channels. The RFI signals at X-band are mainly observed over Europe and Japan. In general, strong RFI signals are located in big cities or populated areas. Applications to AMSR-E RFI detection over various continents show the robustness of the proposed cross-validation scheme for deriving the RFI classification thresholds.

    Disclosure statement

    No potential conflict of interest was reported by the authors.

    Funding

    This work was jointly supported by the Special Fund for Meteorological Research in the Public Interest of China (Project No.GYHY201406008), and the National Natural Science Foundation of China [grant number 91337218].

    亚洲一卡2卡3卡4卡5卡精品中文| a级毛片黄视频| 国产亚洲av高清不卡| 欧美av亚洲av综合av国产av| 午夜福利在线免费观看网站| 一区在线观看完整版| √禁漫天堂资源中文www| 欧美乱码精品一区二区三区| 欧美日韩亚洲高清精品| 国产欧美日韩一区二区三 | 你懂的网址亚洲精品在线观看| av福利片在线| 两个人看的免费小视频| 国产视频一区二区在线看| avwww免费| 久久国产精品大桥未久av| 汤姆久久久久久久影院中文字幕| 91麻豆av在线| 色婷婷久久久亚洲欧美| 国产欧美日韩一区二区三 | 超色免费av| 亚洲综合色网址| 好男人视频免费观看在线| 韩国高清视频一区二区三区| 热99久久久久精品小说推荐| 欧美在线一区亚洲| 国产激情久久老熟女| 99国产精品一区二区三区| av线在线观看网站| 夫妻性生交免费视频一级片| 老司机午夜十八禁免费视频| netflix在线观看网站| 嫩草影视91久久| www.av在线官网国产| 国产精品一国产av| 9色porny在线观看| 欧美成人午夜精品| 久久亚洲国产成人精品v| 日韩人妻精品一区2区三区| 亚洲综合色网址| 女人爽到高潮嗷嗷叫在线视频| 自线自在国产av| 高清视频免费观看一区二区| 一级,二级,三级黄色视频| 成年女人毛片免费观看观看9 | 亚洲av在线观看美女高潮| 精品高清国产在线一区| 亚洲欧美成人综合另类久久久| 亚洲伊人久久精品综合| 欧美黄色淫秽网站| av又黄又爽大尺度在线免费看| 色综合欧美亚洲国产小说| 亚洲情色 制服丝袜| av一本久久久久| 高清不卡的av网站| 一本大道久久a久久精品| 亚洲国产精品成人久久小说| 在线观看www视频免费| 欧美+亚洲+日韩+国产| 男女无遮挡免费网站观看| 国产精品久久久人人做人人爽| 国产高清不卡午夜福利| 只有这里有精品99| 亚洲国产av新网站| 亚洲欧美清纯卡通| 国产免费又黄又爽又色| a级毛片在线看网站| 亚洲国产欧美在线一区| 老司机在亚洲福利影院| 久久久欧美国产精品| 色精品久久人妻99蜜桃| 成人18禁高潮啪啪吃奶动态图| 国产亚洲av高清不卡| a级片在线免费高清观看视频| 久久免费观看电影| 可以免费在线观看a视频的电影网站| 亚洲av片天天在线观看| 精品亚洲乱码少妇综合久久| 免费观看av网站的网址| 麻豆国产av国片精品| 国产精品 欧美亚洲| 极品人妻少妇av视频| 51午夜福利影视在线观看| 国产精品偷伦视频观看了| 一级片免费观看大全| 亚洲欧美成人综合另类久久久| 黄色片一级片一级黄色片| 男女国产视频网站| 国产精品熟女久久久久浪| 成年av动漫网址| 久久久久精品人妻al黑| 国产高清不卡午夜福利| 亚洲精品久久久久久婷婷小说| 婷婷色综合大香蕉| 国产成人啪精品午夜网站| 在线观看免费高清a一片| 亚洲欧美精品综合一区二区三区| videos熟女内射| 亚洲,欧美,日韩| 男女下面插进去视频免费观看| 中文字幕制服av| 婷婷色av中文字幕| avwww免费| 亚洲成人国产一区在线观看 | 99香蕉大伊视频| 亚洲av成人精品一二三区| 少妇人妻久久综合中文| 日本一区二区免费在线视频| av片东京热男人的天堂| 国产高清videossex| av国产久精品久网站免费入址| 另类精品久久| 午夜福利视频在线观看免费| 人妻一区二区av| 天天操日日干夜夜撸| 麻豆国产av国片精品| 免费av中文字幕在线| 99国产精品99久久久久| 欧美成人午夜精品| 亚洲第一av免费看| 岛国毛片在线播放| 麻豆av在线久日| 最新在线观看一区二区三区 | 午夜视频精品福利| 中文字幕另类日韩欧美亚洲嫩草| 成人三级做爰电影| 韩国高清视频一区二区三区| 国产高清不卡午夜福利| 国产精品 欧美亚洲| 久久久久久免费高清国产稀缺| 欧美日本中文国产一区发布| 国产精品秋霞免费鲁丝片| 99久久综合免费| 丁香六月天网| 黑丝袜美女国产一区| 国产麻豆69| 中文字幕精品免费在线观看视频| 国产91精品成人一区二区三区 | 亚洲精品日韩在线中文字幕| 亚洲情色 制服丝袜| 欧美 日韩 精品 国产| 精品国产一区二区三区久久久樱花| 亚洲免费av在线视频| 亚洲国产精品成人久久小说| 欧美日本中文国产一区发布| 女人精品久久久久毛片| 亚洲欧美中文字幕日韩二区| 99re6热这里在线精品视频| 午夜老司机福利片| 下体分泌物呈黄色| 两个人免费观看高清视频| 纵有疾风起免费观看全集完整版| 国产精品欧美亚洲77777| 一边摸一边做爽爽视频免费| 99国产精品免费福利视频| 女警被强在线播放| 老司机在亚洲福利影院| 美女高潮到喷水免费观看| 狂野欧美激情性xxxx| 99热全是精品| 成在线人永久免费视频| 精品一区在线观看国产| 嫩草影视91久久| 男女下面插进去视频免费观看| 黑人欧美特级aaaaaa片| 乱人伦中国视频| 你懂的网址亚洲精品在线观看| 男女国产视频网站| 亚洲精品一区蜜桃| 亚洲精品自拍成人| 国产免费一区二区三区四区乱码| 亚洲国产看品久久| 69精品国产乱码久久久| 高清欧美精品videossex| 考比视频在线观看| 操出白浆在线播放| 9热在线视频观看99| 精品少妇黑人巨大在线播放| 狂野欧美激情性xxxx| 黄网站色视频无遮挡免费观看| 国产三级黄色录像| 欧美国产精品一级二级三级| 亚洲国产欧美日韩在线播放| 狠狠婷婷综合久久久久久88av| 日韩av免费高清视频| 亚洲精品国产区一区二| 亚洲欧美一区二区三区黑人| 久久久久久久精品精品| 在线观看人妻少妇| 久久九九热精品免费| 精品国产国语对白av| 国产xxxxx性猛交| 免费看十八禁软件| 亚洲中文日韩欧美视频| 免费看不卡的av| 亚洲欧洲国产日韩| 精品少妇一区二区三区视频日本电影| 夫妻性生交免费视频一级片| 欧美久久黑人一区二区| 天天影视国产精品| 国产精品成人在线| 婷婷色综合www| 亚洲精品一二三| 精品久久久久久电影网| 日韩中文字幕欧美一区二区 | 久久久久国产精品人妻一区二区| 国产精品.久久久| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品日本国产第一区| 一本大道久久a久久精品| 亚洲中文字幕日韩| 国产在线观看jvid| 香蕉丝袜av| e午夜精品久久久久久久| 丝袜美足系列| 久久久久久人人人人人| 捣出白浆h1v1| 波多野结衣一区麻豆| 精品一区二区三区av网在线观看 | 男的添女的下面高潮视频| 免费久久久久久久精品成人欧美视频| 手机成人av网站| 蜜桃在线观看..| 中文欧美无线码| 久久午夜综合久久蜜桃| 亚洲图色成人| 亚洲熟女精品中文字幕| 老司机亚洲免费影院| 久久av网站| 少妇人妻久久综合中文| 激情视频va一区二区三区| 黄频高清免费视频| xxxhd国产人妻xxx| 免费少妇av软件| 美女主播在线视频| 丰满少妇做爰视频| 欧美精品高潮呻吟av久久| 男女边摸边吃奶| 国产精品一区二区在线不卡| 久久精品久久久久久久性| 欧美xxⅹ黑人| 精品卡一卡二卡四卡免费| 精品视频人人做人人爽| 18禁黄网站禁片午夜丰满| 日韩 亚洲 欧美在线| 国产精品一区二区在线观看99| 免费久久久久久久精品成人欧美视频| videos熟女内射| 欧美日韩视频精品一区| 亚洲自偷自拍图片 自拍| 亚洲精品美女久久久久99蜜臀 | 午夜福利,免费看| 性少妇av在线| 午夜视频精品福利| 亚洲精品日韩在线中文字幕| 一边摸一边抽搐一进一出视频| 国产亚洲欧美在线一区二区| 午夜免费鲁丝| 久久亚洲精品不卡| 亚洲精品乱久久久久久| 亚洲av在线观看美女高潮| 在线观看免费日韩欧美大片| 水蜜桃什么品种好| 狠狠婷婷综合久久久久久88av| 黄片播放在线免费| 日韩 欧美 亚洲 中文字幕| 日本一区二区免费在线视频| 亚洲av综合色区一区| 免费观看人在逋| 免费一级毛片在线播放高清视频 | 日韩 欧美 亚洲 中文字幕| 亚洲欧美成人综合另类久久久| 午夜两性在线视频| 老鸭窝网址在线观看| 久久国产精品大桥未久av| 国产精品三级大全| 国产真人三级小视频在线观看| 一区二区av电影网| 少妇 在线观看| 久久中文字幕一级| av国产久精品久网站免费入址| 十八禁网站网址无遮挡| 婷婷丁香在线五月| 十八禁高潮呻吟视频| 日韩大码丰满熟妇| 下体分泌物呈黄色| 国产伦人伦偷精品视频| 一级毛片电影观看| 国产在视频线精品| 高清不卡的av网站| 亚洲三区欧美一区| 美女高潮到喷水免费观看| 又粗又硬又长又爽又黄的视频| 欧美日韩黄片免| 丝袜美腿诱惑在线| 亚洲欧洲精品一区二区精品久久久| 三上悠亚av全集在线观看| 99国产精品免费福利视频| 午夜av观看不卡| 91精品伊人久久大香线蕉| 精品一区二区三卡| 国产精品久久久久久人妻精品电影 | 亚洲av电影在线观看一区二区三区| 亚洲精品在线美女| 大香蕉久久网| 欧美人与性动交α欧美精品济南到| 一级毛片女人18水好多 | 成人黄色视频免费在线看| 亚洲精品久久午夜乱码| 亚洲伊人色综图| 人体艺术视频欧美日本| 黑人猛操日本美女一级片| 一边摸一边做爽爽视频免费| 欧美人与善性xxx| 少妇人妻 视频| 欧美人与性动交α欧美软件| 1024香蕉在线观看| 久久久精品国产亚洲av高清涩受| 中文字幕精品免费在线观看视频| 免费看不卡的av| 亚洲国产av影院在线观看| 在线 av 中文字幕| 亚洲男人天堂网一区| 亚洲欧洲日产国产| 久久久精品免费免费高清| 中文字幕色久视频| 丝袜喷水一区| 爱豆传媒免费全集在线观看| 日本91视频免费播放| 99热国产这里只有精品6| 亚洲欧美日韩另类电影网站| 精品福利永久在线观看| 9热在线视频观看99| 大话2 男鬼变身卡| av不卡在线播放| 亚洲av电影在线进入| 日日爽夜夜爽网站| 99国产精品免费福利视频| 黑人猛操日本美女一级片| tube8黄色片| 久久这里只有精品19| 天天躁夜夜躁狠狠躁躁| 国产精品秋霞免费鲁丝片| 欧美亚洲日本最大视频资源| 只有这里有精品99| 另类精品久久| 两性夫妻黄色片| 久久精品久久久久久久性| 免费高清在线观看视频在线观看| 另类精品久久| 国产一区二区三区av在线| 亚洲成人免费电影在线观看 | 亚洲av成人不卡在线观看播放网 | 久久精品国产综合久久久| 成人亚洲精品一区在线观看| 国产1区2区3区精品| 捣出白浆h1v1| 91精品伊人久久大香线蕉| 国产亚洲欧美在线一区二区| 王馨瑶露胸无遮挡在线观看| 亚洲av电影在线进入| 中文字幕高清在线视频| 叶爱在线成人免费视频播放| 2021少妇久久久久久久久久久| 免费观看av网站的网址| 曰老女人黄片| 人成视频在线观看免费观看| 国产精品久久久久成人av| 成人亚洲欧美一区二区av| 热re99久久国产66热| 九草在线视频观看| 在线观看免费高清a一片| 看十八女毛片水多多多| 一区二区三区乱码不卡18| 亚洲九九香蕉| 久久久久网色| 麻豆av在线久日| 秋霞在线观看毛片| 亚洲色图 男人天堂 中文字幕| 激情视频va一区二区三区| 久久九九热精品免费| 亚洲av综合色区一区| 一区二区三区精品91| 狂野欧美激情性bbbbbb| 日韩av不卡免费在线播放| 欧美精品亚洲一区二区| 母亲3免费完整高清在线观看| 欧美精品亚洲一区二区| 中国美女看黄片| 日韩一区二区三区影片| 日本午夜av视频| 久久久久久人人人人人| 亚洲欧洲国产日韩| 国产野战对白在线观看| 国产亚洲欧美精品永久| h视频一区二区三区| 国产亚洲欧美精品永久| 亚洲精品久久成人aⅴ小说| √禁漫天堂资源中文www| 成年动漫av网址| 日本猛色少妇xxxxx猛交久久| 考比视频在线观看| 国产人伦9x9x在线观看| 捣出白浆h1v1| netflix在线观看网站| 一级毛片黄色毛片免费观看视频| 曰老女人黄片| 亚洲一区二区三区欧美精品| 天堂俺去俺来也www色官网| 只有这里有精品99| 18禁观看日本| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美亚洲二区| 亚洲精品乱久久久久久| 成人午夜精彩视频在线观看| 欧美日韩视频高清一区二区三区二| 久久久久精品人妻al黑| 好男人视频免费观看在线| 免费观看人在逋| 国产片特级美女逼逼视频| 一级,二级,三级黄色视频| 狂野欧美激情性bbbbbb| 久久99精品国语久久久| 欧美日韩亚洲高清精品| 十分钟在线观看高清视频www| 午夜福利视频在线观看免费| 啦啦啦在线观看免费高清www| 午夜影院在线不卡| √禁漫天堂资源中文www| 两个人免费观看高清视频| www.熟女人妻精品国产| 欧美人与善性xxx| 国产1区2区3区精品| 叶爱在线成人免费视频播放| 老司机在亚洲福利影院| 如日韩欧美国产精品一区二区三区| 午夜精品国产一区二区电影| 极品人妻少妇av视频| 丁香六月天网| 国产亚洲欧美精品永久| 亚洲视频免费观看视频| xxxhd国产人妻xxx| 久久女婷五月综合色啪小说| av电影中文网址| 国产免费福利视频在线观看| 一二三四在线观看免费中文在| 国产色视频综合| 自线自在国产av| 色婷婷av一区二区三区视频| 无遮挡黄片免费观看| 欧美中文综合在线视频| 久久精品国产亚洲av涩爱| 国产成人免费无遮挡视频| 日韩熟女老妇一区二区性免费视频| av视频免费观看在线观看| 国产成人啪精品午夜网站| 欧美黄色片欧美黄色片| 午夜福利视频精品| 国产免费福利视频在线观看| 建设人人有责人人尽责人人享有的| 欧美成狂野欧美在线观看| 韩国精品一区二区三区| 高清av免费在线| 欧美黄色片欧美黄色片| 精品国产国语对白av| 大陆偷拍与自拍| 国产精品久久久久久精品电影小说| 日韩人妻精品一区2区三区| 婷婷色av中文字幕| 最新在线观看一区二区三区 | 18禁裸乳无遮挡动漫免费视频| 亚洲欧美色中文字幕在线| 熟女少妇亚洲综合色aaa.| 亚洲第一青青草原| 男男h啪啪无遮挡| 亚洲九九香蕉| 亚洲五月色婷婷综合| 国产精品一国产av| 丝瓜视频免费看黄片| 成人三级做爰电影| 91精品三级在线观看| 91精品伊人久久大香线蕉| 亚洲av日韩在线播放| 精品少妇一区二区三区视频日本电影| 国产极品粉嫩免费观看在线| 午夜影院在线不卡| 国产高清国产精品国产三级| 在线天堂中文资源库| 国语对白做爰xxxⅹ性视频网站| cao死你这个sao货| 免费在线观看影片大全网站 | 伊人久久大香线蕉亚洲五| 精品欧美一区二区三区在线| 亚洲国产精品999| 国产99久久九九免费精品| 99国产综合亚洲精品| 国产老妇伦熟女老妇高清| 成年人黄色毛片网站| 国产日韩欧美亚洲二区| 亚洲欧洲日产国产| av有码第一页| 欧美性长视频在线观看| 成年人黄色毛片网站| 国产亚洲av片在线观看秒播厂| 成人三级做爰电影| 老汉色av国产亚洲站长工具| 日本欧美国产在线视频| 亚洲色图 男人天堂 中文字幕| 精品亚洲成国产av| 国产亚洲午夜精品一区二区久久| 亚洲成av片中文字幕在线观看| 美国免费a级毛片| 男女边摸边吃奶| 成人国产一区最新在线观看 | 黄色视频不卡| 国产精品熟女久久久久浪| 两性夫妻黄色片| 免费黄频网站在线观看国产| 两个人看的免费小视频| 国产熟女欧美一区二区| 亚洲成人免费电影在线观看 | 热99久久久久精品小说推荐| 丁香六月欧美| 欧美在线一区亚洲| 亚洲精品在线美女| 99香蕉大伊视频| 亚洲 国产 在线| 免费久久久久久久精品成人欧美视频| 国产欧美亚洲国产| 久久99热这里只频精品6学生| 亚洲国产精品999| 国产av国产精品国产| 在线看a的网站| 性色av一级| 日韩一卡2卡3卡4卡2021年| 午夜福利一区二区在线看| 精品少妇内射三级| 人成视频在线观看免费观看| 老司机靠b影院| 精品欧美一区二区三区在线| 欧美日本中文国产一区发布| av不卡在线播放| 大香蕉久久成人网| 国产日韩欧美亚洲二区| 亚洲精品国产色婷婷电影| 久久鲁丝午夜福利片| 五月天丁香电影| 国产成人影院久久av| 丁香六月天网| 制服人妻中文乱码| 成在线人永久免费视频| 丰满饥渴人妻一区二区三| 免费不卡黄色视频| 久久天堂一区二区三区四区| 国语对白做爰xxxⅹ性视频网站| 免费人妻精品一区二区三区视频| 亚洲av在线观看美女高潮| 国产高清国产精品国产三级| 夫妻性生交免费视频一级片| 亚洲熟女毛片儿| 亚洲免费av在线视频| 亚洲第一av免费看| 色综合欧美亚洲国产小说| 美女福利国产在线| 日本91视频免费播放| 国产极品粉嫩免费观看在线| 晚上一个人看的免费电影| 精品国产乱码久久久久久小说| 欧美亚洲日本最大视频资源| 一区在线观看完整版| 国产成人欧美| 中文字幕人妻熟女乱码| 丝瓜视频免费看黄片| 狂野欧美激情性xxxx| 日韩欧美一区视频在线观看| av一本久久久久| 精品人妻熟女毛片av久久网站| 久久久久久久精品精品| 日本黄色日本黄色录像| 黄色毛片三级朝国网站| 亚洲av电影在线进入| 免费日韩欧美在线观看| 亚洲欧美精品自产自拍| 老司机影院成人| 一级,二级,三级黄色视频| 亚洲三区欧美一区| 在线观看免费午夜福利视频| 亚洲 国产 在线| 各种免费的搞黄视频| 国产真人三级小视频在线观看| 成人影院久久| 亚洲av美国av| 亚洲国产欧美网| cao死你这个sao货| 久久久精品区二区三区| 69精品国产乱码久久久| 久久久久久久国产电影| √禁漫天堂资源中文www| 五月开心婷婷网| 国产精品免费视频内射| 欧美黄色淫秽网站| 亚洲精品美女久久av网站| 不卡av一区二区三区| 18禁黄网站禁片午夜丰满| 国产又色又爽无遮挡免| 精品久久久精品久久久| 免费观看a级毛片全部| 赤兔流量卡办理| av不卡在线播放| 99香蕉大伊视频| 1024香蕉在线观看| 在线 av 中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 久久精品国产亚洲av涩爱| 一级a爱视频在线免费观看|