• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Linear trends in mean and extreme temperature in Xiongan New Area, China

    2018-08-30 06:58:56QIANChengandCAOLiJuan
    關(guān)鍵詞:低價(jià)大寶精華

    QIAN Cheng and CAO Li-Juan

    aCAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences,Beijing, China; bUniversity of Chinese Academy of Science, Beijing, China; cNational Meteorological Information Center, China Meteorological Administration, Beijing, China

    ABSTRACT On 1 April 2017 China established Xiongan New Area in Hebei Province, which was described as‘a(chǎn) strategy crucial for a millennium to come’. A point of interest for the public is to be aware of the historical climate change in this new area; however, results from previous global-scale or largerregional-scale averages provide relatively limited information because of the distinct regional differences in climate change. This study analyzes the changes in mean and extreme temperature in this area, based on homogenized daily temperature data for the period 1960–2016. The results show a significant warming in the indices of annual, summer, and winter mean temperature (Tmean),maximum temperature (Tmax), and minimum temperature (Tmin). The linear rate of annual Tmean is 0.34 °C/decade. Temperatures on the hottest day, the warmest night, the coldest day, and the coldest night, every year, all show increasing trends, with the trends in the two nighttime-related indices being significant. An increasing occurrence of warm days, warm nights, hot days, and tropical nights,but a decreasing occurrence of cold days, cold nights, icing days, and frost days, are found, all of which are significant, except for the occurrences of hot days and icing days. A significant extension of the length of the thermal growing season is also found. The magnitudes of change in most of the temperature indices in Xiongan New Area are larger than those of the adjacent Jing-Jin-Ji and North China regional mean. These results could provide valuable information for policymakers, city planners, engineers, and migrants to this new area.

    KEYWORDS Xiongan New Area; climate change; linear trend; mean temperature; extreme temperature

    1. Introduction

    On 1 April 2017 China established Xiongan New Area in Hebei Province, as part of measures to advance the coordinated development of the Beijing–Tianjin–Hebei region(otherwise commonly referred to as the Jing-Jin-Ji region).This ‘new area of national significance’ followed previous similar projects such as Shenzhen Special Economic Zone and Shanghai Pudong New Area, and was described as ‘a(chǎn) strategy crucial for a millennium to come’. The move will help phase out functions from Beijing that are not related to the capital, and explore a new model of optimized development in densely populated areas (http://www.chinadaily.com.cn/china/2017-04/01/content_28774796.htm). The new area, about 100 km southwest of downtown Beijing, includes the three counties of Xiongxian,Anxin, and Rongcheng (Figure 1(a)). One important point of interest for the public in establishing this new area and making it a success is an awareness of the historical climate changes that have taken place there.

    Figure 1. (a) Map of Xiongan New Area, including Xiongxian station (Code: 54636, blue marker), Anxin station (Code: 54605,red marker) and Rongcheng station (Code: 54503, purple marker).The inset map in the upper-right corner shows the location of Xiongan New Area in China. (b) Map of the North China region and its national stations (dots), with the red dots representing the national stations within the Jing-Jin-Ji region.

    Change in mean temperature is a globally important topic in climate science (IPCC 2013). Likewise, change in extreme temperature has also gained wide interest both abroad (e.g. Alexander et al. 2006; Donat et al. 2013) and in China (e.g. Yan et al. 2002; Zhai and Pan 2003; Qian and Lin 2004; Qian et al. 2011b; Zhou and Ren 2011; Xu et al. 2013; Sun et al. 2014; Yin et al. 2015; Zhou et al.2016). However, as climate change has distinct regional characteristics–especially at urban sites, where local urbanization effects play a noticeable role (e.g. Zhou and Ren 2011; Qian 2016b)–results from global or larger-region averages provide relatively limited information for the public and other stakeholders with an interest in this new area (especially the project’s planners), where the effect of urbanization is still relatively small at this stage.In addition, with the interference in recent years of the so-called ‘global warming hiatus’ as some researchers claimed, it is also necessary to investigate whether there is ‘warming hiatus’ phenomenon in this new area, i.e. in order to provide the project’s planners with the correct scientific information.

    Accordingly, this study focuses on the linear trends in mean and extreme temperature in this new area since modern meteorological observations began, based on a newly homogenized high-quality temperature dataset compiled from 2419 meteorological stations (Cao et al. 2016), including those in the three counties of Xiongan New Area which lets this study become possible. Continuous daily temperature series for Xiongan New Area starting from 1960 are also produced. The results are compared with those in the adjacent Jing-Jin-Ji region and North China region. The study could provide valuable scientific information for policymakers, planners, engineers,and migrants to the area.

    2. Data and methods

    2.1. Surface air temperature data

    A new homogenized temperature data-set called the China Homogenized Historical Temperature Data-set version 1.0 (Cao et al. 2016), including daily temperature series from 2419 meteorological stations distributed throughout mainland China for the period 1951–2016, is used in this study. The original daily mean, maximum, and minimum temperature data had already been quality-controlled and the outliers removed (Ren et al. 2012). The metadata,which are archived in text files by the China Meteorological Administration (CMA) for each station, include detailed information on changes in observational instrumentation,times, locations, and the evolution of the surrounding environment. The homogenized data-set applied the RHtests V3.0 software (Wang and Feng 2010) to detect inhomogeneities in individual station series with detailed metadata information and to adjust the discontinuities caused by non-climate changes such as changes to observing sites,instrumentation, and observation environments (Cao et al. 2016). The daily mean temperature (Tmean), maximum temperature (Tmax), and minimum temperature (Tmin) in the three counties of Xiongan New Area are available in this data-set, but for different periods. The station with the longest time series, beginning in 1960, is Anxin, while the other two stations (Rongcheng and Xiongxian) have observations available from 1968 and 1974, respectively(Table 1).

    2.2. Method

    2.2.1. Interpolation

    Since the data at Anxin and Rongcheng have missing values, we interpolate them as follows: (1) For Tmeanat Anxin,the missing value on 1 January 1960 is interpolated using the mean value of its Tmaxand Tmin, which are available.The missing values during 11–23 August 1963 are interpolated using those available from Xushui station (38.59°N,115.39°E, 13.1 m), which is very close to Anxin station and has similar elevation. The correlation coefficient between these two stations reaches 0.93. Therefore, it is reasonable to use Xushui station for interpolation. The missing valuesfrom 1 September 1968 to 8 May 1969 are interpolated using those available from Rongcheng station. (2) For Tmeanat Rongcheng, the missing value on 28 September 2012 is interpolated using the corresponding mean value of its Tmaxand Tmin, which are available. (3) For Tmaxand Tminat Anxin, the missing values from 11 August to 27 September 1963 are interpolated using those available from the adjacent Xushui station. The missing values from 1 September 1968 to 8 May 1969 are interpolated using those available from Rongcheng station. After interpolation, the Tmean,Tmax, and Tmindata at Anxin and Rongcheng are continuous for the period 1960–2016 and 1968–2016, respectively.Along with the continuous daily temperature records at Xiongxian, a continuous daily time series of the average for Xiongan New Area for the period 1960–2016 can be produced by calculating the arithmetic mean values available from the three stations in the new area. Since the three stations are very close and have similar elevations (Table 1), this calculation is reasonable.

    Table 1. Details of the three meteorological stations in Xiongan New Area.

    2.2.2. Calculation of temperature indices

    The mean temperature indices analyzed include annual Tmean, Tmax, and Tmin(Table 2). The corresponding indices of the two extreme seasons, i.e. summer (June–July–August,JJA) and winter (December–January–February, DJF), are also analyzed (Table 2). The 16 extreme temperature indices analyzed are listed in Table 2. These are adopted from the 27 core indices of the Expert Team on Climate Change Detection and Indices (ETCCDI) (Zhang et al. 2011; also see http://etccdi.pacificclimate.org/list_27_indices.shtml), except for the index of hot days (HD35), which is revised from the index of summer days according to the local threshold of 35 °C frequently used in China (e.g. Zhai and Pan 2003; Sun et al.2014; Qian 2016b) to fit regional characteristics.

    Version 1.1 of the RClimDex software package (Zhang and Yang 2004) is used to ensure consistency in the calculation of the indices with other regions. The percentiles required for some of the extreme temperature indices are calculated from the base period of 1961–90 using a bootstrap method to avoid possible inhomogeneities (Zhang et al. 2005). The base period of 1961–90, as recommended by ETCCDI, is used to facilitate comparison of the results with those at other global sites, because using different base periods would result in different mean annual cycles and thus different anomalies, making the results difficult to compare with others (Qian et al. 2011a).

    North China in this study is defined as the region covering (33°–43°N, 108°–120°E), as in Ren et al. (2008) and Zhou and Ren (2011). Since national-level Reference Climatic and Basic Meteorological Stations (hereafter, ‘national stations’) have been frequently used by researchers in China, especially those outside the CMA, for analyzing the long-term changes in mean and extreme climate, the Jing-Jin-Ji and North China region results, to which Xiongan’s results are compared, are based on data from this type of station. There are 124 such stations analyzed in the North China region (Figure 1(b)), not including Baoding station, because of unresolved recent relocation problems. Records with standard deviations five times greater than the average are considered as outliers and marked as missing on those days. The average time series for the Jing-Jin-Ji region and North China region are calculated as grid area–weighted averages on the basis of longitude by latitude grids of 2° × 2° (Figure 1(b)), after calculating the mean and extreme temperature indices at each station.

    2.2.3. Trend calculation

    The linear trends in the mean and extreme temperature indices at Anxin station, as well as those of the three-station-averaged temperature in Xiongan New Area, for the period 1960–2016, are analyzed and compared to those of the regional average in the Jing-Jin-Ji region and North China region. The linear trends in the mean temperature indices are estimated using the ordinary least squares(OLS) method, and the 95% or 99% confidence interval is estimated by allowing positive first-order auto-regressive dependence in the data (Hartmann et al. 2013; Qian 2016b). Since extreme temperature indices may not necessarily follow a Gaussian distribution (e.g. Qian 2016b),their trend slopes and significance testing are estimated using the nonparametric Sen’s slope estimator and Mann–Kendall test, taking into account the first-order autocorrelation calculated through an iterative process proposed by Zhang et al. (2000) and refined by Wang and Swail (2001).This method is referred to as WS2001 in this paper.

    3. Results

    3.1. Mean temperature

    The mean values of annual, summer, and winter Tmeanfor Xiongan New Area (at Anxin station) during the base period of 1961–1990 are 11.2 °C (11.2 °C), 24.8 °C (24.7 °C), and?4.5 °C (?4.3 °C), respectively. As can be seen from Table 2,the annual (Figure 2(a)), summer (figure not shown), and winter (figure not shown) Tmeanfor Xiongan New Area all show warming trends during the analyzed period, at rates of 0.34 °C/decade, 0.21 °C/decade, and 0.50 °C/decade,respectively. These trends are all statistically significant at the 0.01 level. In other words, the annual Tmeanincreases by about 1.9–2 °C from 1960 to 2016. The results at Anxin station are similar to those for Xiongan New Area, except for a slightly smaller trend slope magnitudes for the annual and winter situations. It should be mentioned that, even after 1998, the linear trend in annual Tmeanstill increases at a rate of 0.28 °C/decade, i.e. without a warming hiatus(Figure 2(a)).

    在如今的化妝品市場上,一百多元的單品精華定價(jià)并不算高,還稱不上是高端產(chǎn)品。但是你要知道,大寶最為消費(fèi)者所熟知的明星單品“大寶SOD蜜”100 mL容量在天貓超市的售價(jià)僅為9.9元。與大寶一貫的低價(jià)相比,這款定價(jià)110元的精華,已經(jīng)算是高端。

    For Xiongan New Area, the annual (Figure 2(b) and (c)),summer (figure not shown), and winter (figure not shown)Tmaxand Tminall show warming trends and are statistically significant at the 0.01 level, except for the summer Tmax,which is at the 0.05 level. Besides, all the Tminindices warm at a faster (more than double) rate than their Tmaxindex counterparts, resulting in a reduction in the diurnal temperature range (DTR) at a rate between 0.2 and 0.5 °C/decade. These trends in the annual (Figure 2(d)), summer(figure not shown), and winter (figure not shown) DTR are all statistically significant at the 0.01 level. It should be noted that the minimum value in 1964 for the annual DTR (Figure 2(d)) is an outlier, which would make the OLS-estimated linear trend an underestimated one because this method is sensitive to outliers. This outlier is a regional feature, since it also exists in the DTR index of the North China regional mean calculated without the stations in Xiongan New Area, mainly due to an extremely cold Tmaxin that year (figures not shown). This outlier may also be partly due to the relocation of Anxin station to the countryside on 1 October 1964, which reduced its elevation by 7 m. It is adjusted in the Tmeanand Tmin, but not in the Tmax,as it is not significant in the RHtest result. Nevertheless,the WS2001 estimator used in this study overcomes this problem. The results at Anxin station are similar, but with slightly larger trends in Tmaxindices, smaller trends in Tminindices and DTR indices, and lower statistical significance for winter DTR. In addition, the winter Tmean, Tmax, and Tminin this region all show warming trends at a much faster rate than their summertime counterparts, resulting in weakening annual cycles.

    3.2. Extreme temperature

    As can also be seen from Table 2, for Xiongan New Area,four extreme value indices (TXx, TNx, TXn, and TNn) all show warming trends (Figure 3(a)–(d)), at rates of 0.13,0.32, 0.35, 0.99 °C/decade, respectively, although only TNx and TNn are statistically significant (at the 0.01 level), indicating that temperatures on the hottest day (Figure 3(a)),the warmest night (Figure 3(b)), the coldest day (Figure 3(c)), and the coldest night (Figure 3(d)), every year, all show increasing trends. The mean values of TXx, TNx, TXn,and TNn during the base period of 1961–90 are 37.6, 25.0,?5.6, and ?20.1 °C, respectively.

    Figure 2. Annual time series (solid lines) of (a) Tmean, (b) Tmax, (c) Tmin, and (d) DTR, and their corresponding linear trends (dashed lines), for the period 1960–2016, for Xiongan New Area.

    Figure 3. Time series (solid lines) of four extreme value indices: (a) TXx, (b) TNx, (c) TXn, and (d) TNn; and of four relative threshold indices: (e) TX90p, (f) TN90p, (g) TX10p, and (h) TN10p; and their corresponding linear trends (dashed lines), for the period 1960–2016,for Xiongan New Area.

    The linear trends in the four relative threshold indices(TX90p, TN90p, TX10p, and TN10p) are all statistically significant at the 0.01 level, with increasing annual occurrence of warm days (TX90p, Figure 3(e)) and warm nights (TN90p,Figure 3(f)), at rates of 1.38% and 5.39%/decade, respectively, but decreasing annual occurrence of cold days(TX10p, Figure 3(g)) and cold nights (TN10p, Figure 3(h)),at rates of ?1.08% and ?2.14%/decade, respectively. The mean values of TX90p, TN90p, TX10p, and TN10p during the base period of 1961–90 are 10.3%, 10.4%, 10.5%, and 10.4%, respectively.

    Figure 4. Time series (solid lines) of four absolute threshold indices: (a) HD35, (b) TR, (c) ID, and (d) FD; and of three other indices: (e) GSL,(f) WSDI, and (g) CSDI; and their corresponding linear trends (dashed lines), for the period 1960–2016, for Xiongan New Area.

    The linear trend results for the four absolute threshold indices (HD35, TR, ID, and FD) are similar to those of the relative threshold indices, with increasing annual occurrence of hot days (HD35, Figure 4(a)) and tropical nights(TR, Figure 4(b)), at rates of 0.40 and 5.39 days/ decade,respectively, but decreasing annual occurrence of icing days (ID, Figure 4(c)) and frost days (FD, Figure 4(d)), at rates of ?1.67 and ?4.40 days/decade, respectively. The increasing trends in TR and the decreasing trends in FD are both statistically significant at the 0.01 level. The mean values of HD35, TR, ID, and FD during the base period of 1961–90 are 8.5, 38.9, 22.9, and 136.5 days, respectively.

    The growing season length (GSL, Figure 4(e)) extends at a rate of 2.88 days/decade, and is statistically significant at the 0.01 level. The mean value of GSL during the base period of 1961–90 is 240.6 days. The warm spell duration index (WSDI, Figure 4(f)) and cold spell duration index(CSDI, Figure 4(g)) show no obvious linear trend. The maximum value of WSDI is 28 days in 1987 and the minimum in many years, especially in the 1960s, is zero (Figure 4(f)).The maximum value of CSDI is 13 days in 1981 and the minimum in many years, especially in the 2000s, is zero(Figure 4(g)).

    For Anxin station, the corresponding results are similar,albeit with slightly different trend slopes. The linear trends for its TNx, TNn, TX90p, TN90p, TX10p, TN10p, TR, FD, and GSL are all statistically significant, at least at the 0.05 level(Table 2).

    3.3. Comparison with the Jing-Jin-Ji and North China regions

    Compared with the Jing-Jin-Ji and North China regions(Table 2), the basic characteristics of the linear trends in the temperature indices in Xiongan New Area are similar, with the same sign of change in almost all the indices except HD35, whose trend is trivial. However, the magnitudes of the linear trends in all the mean temperature indices and most (14 out of 18) of the extreme temperature indices of Xiongan New Area are larger than those of the adjacent regional mean, especially for the high temperature indices.The exceptions are ID, WSDI, and CSDI, for which North China has larger and statistically significant linear trends.

    4. Discussion

    The basic characteristics of the changes in the mean and extreme temperature indices reported in this study are similar to those in other recent studies, such as Ren et al. (2008) and Zhou and Ren (2011) for North China,and Zhou and Ren (2011), Xu et al. (2013), and Zhou et al.(2016) for China as a whole. However, the magnitudes of these changes are different because of the different analysis periods, methods, and regions. Here, the comparisons between Xiongan New Area and adjacent regions are performed using the same data source, analysis period,and method, and the results show an overall faster rate of change in Xiongan New Area compared to the adjacent regional mean. This is useful information for the planning of this new area.

    5. Summary

    Linear trends in mean and extreme temperature indices for the newly established Xiongan New Area are analyzed,based on homogenized daily temperature data for the period 1960–2016. The main conclusions can be summarized as follows:

    (1) All the mean temperature indices show warming trends, statistically significant at least at the 0.05 level. A decreasing trend in the DTR and a weakening trend in the annual cycle are found.

    (2) Temperatures on the hottest day, warmest night,coldest day, and coldest night, every year, all show increasing trends, with the two nighttime-related indices being statistically significant.

    (3) An increasing occurrence of warm days, warm nights, hot days, and tropical nights, but a decreasing occurrence of cold days, cold nights,icing days, and frost days, is found, all of which are statistically significant, except for the occurrences of hot days and icing days.

    (4) A statistically significant extension of the length of the growing season is found.

    In short, local climatic warming in terms of mean temperature is continuing in Xiongan New Area without a ‘hiatus’, especially after 2013; and so the effect of this, along with related impacts, should be taken into account during its construction. In addition, the magnitudes of the linear trends in most of the temperature indices for Xiongan New Area are larger than those of the adjacent Jing-Jin-Ji and North China regional mean, especially for the high temperature indices, indicating a potentially greater danger under future global warming and development-induced local urbanization effects. Thus, green development planning seems important for this new area.

    Funding

    This study was sponsored by the National Key R&D Program of China (grant number 2016YFA0600404), Key Technology of Integration of Meteorological and Application Projects (grant number CMAGJ2015Z16), the Youth Innovation Promotion Association of CAS (grant number 2016075), and the Jiangsu Collaborative Innovation Center for Climate Change.

    ORCID

    猜你喜歡
    低價(jià)大寶精華
    低價(jià)≠實(shí)惠 吃喝玩樂購,切記避開這些“坑”
    不同的茶第幾泡是精華
    “精華”之說欠妥
    中華詩詞(2020年3期)2020-11-19 04:40:01
    鱷魚大寶
    為什么高價(jià)總能打敗低價(jià)?
    中國照明(2016年5期)2016-06-15 20:30:13
    復(fù)合肥低價(jià)促銷是否會(huì)成常態(tài)
    合理低價(jià)法在公路工程招投標(biāo)中的應(yīng)用
    大寶小神探
    琴童(2006年7期)2006-07-18 09:39:58
    大寶小神探
    琴童(2006年6期)2006-06-06 09:32:02
    大寶小神探
    琴童(2006年1期)2006-02-10 09:04:16
    欧美高清成人免费视频www| 成人亚洲精品一区在线观看| 麻豆精品久久久久久蜜桃| 亚洲av免费高清在线观看| 热re99久久国产66热| av一本久久久久| 久久久久人妻精品一区果冻| 爱豆传媒免费全集在线观看| 亚洲av男天堂| 99热网站在线观看| 99久久中文字幕三级久久日本| 成人黄色视频免费在线看| 久久99精品国语久久久| 国产免费一级a男人的天堂| 亚洲第一区二区三区不卡| 国产精品一区二区在线观看99| 看十八女毛片水多多多| 内射极品少妇av片p| 91精品一卡2卡3卡4卡| 亚洲国产精品999| 久久久欧美国产精品| 午夜视频国产福利| 国产午夜精品一二区理论片| 亚洲丝袜综合中文字幕| 欧美变态另类bdsm刘玥| 在线观看免费视频网站a站| 少妇精品久久久久久久| 日本91视频免费播放| 免费黄网站久久成人精品| 老熟女久久久| 男人狂女人下面高潮的视频| 亚洲情色 制服丝袜| 久久久久久久亚洲中文字幕| 另类亚洲欧美激情| 亚洲av在线观看美女高潮| 国产爽快片一区二区三区| 久久97久久精品| 校园人妻丝袜中文字幕| 亚洲,一卡二卡三卡| 一级毛片我不卡| 51国产日韩欧美| 啦啦啦啦在线视频资源| 久久久久久久国产电影| av在线app专区| 丁香六月天网| 在线观看免费视频网站a站| 国产av一区二区精品久久| 国产一区有黄有色的免费视频| 国产亚洲av片在线观看秒播厂| 少妇精品久久久久久久| av视频免费观看在线观看| 久久毛片免费看一区二区三区| 熟女av电影| 欧美激情极品国产一区二区三区 | 国产一区二区在线观看日韩| 搡女人真爽免费视频火全软件| 各种免费的搞黄视频| 午夜久久久在线观看| 嫩草影院新地址| 嫩草影院入口| 老司机亚洲免费影院| 亚洲欧美一区二区三区国产| 精品人妻熟女av久视频| 欧美精品亚洲一区二区| 青春草国产在线视频| 特大巨黑吊av在线直播| 新久久久久国产一级毛片| 丝袜喷水一区| 免费人成在线观看视频色| 免费看不卡的av| 欧美激情极品国产一区二区三区 | 国语对白做爰xxxⅹ性视频网站| 国产精品嫩草影院av在线观看| 亚洲国产精品成人久久小说| 人妻系列 视频| 晚上一个人看的免费电影| 成年av动漫网址| 免费少妇av软件| 亚洲精品一二三| 99国产精品免费福利视频| 99re6热这里在线精品视频| 99re6热这里在线精品视频| .国产精品久久| 国产成人精品无人区| 日本与韩国留学比较| 少妇人妻久久综合中文| 亚洲内射少妇av| 国产精品女同一区二区软件| 黄色毛片三级朝国网站 | 午夜福利,免费看| 欧美激情国产日韩精品一区| 亚洲国产日韩一区二区| 波野结衣二区三区在线| 人妻夜夜爽99麻豆av| 日韩人妻高清精品专区| 精品国产一区二区三区久久久樱花| 美女脱内裤让男人舔精品视频| 日韩av不卡免费在线播放| 一级,二级,三级黄色视频| 中文欧美无线码| 最近最新中文字幕免费大全7| 伦理电影免费视频| 少妇裸体淫交视频免费看高清| 日日爽夜夜爽网站| 国产片特级美女逼逼视频| 热re99久久精品国产66热6| 亚洲美女搞黄在线观看| 丝袜喷水一区| 欧美老熟妇乱子伦牲交| 精品人妻熟女毛片av久久网站| 成人亚洲欧美一区二区av| 国产黄色免费在线视频| 极品人妻少妇av视频| √禁漫天堂资源中文www| 搡老乐熟女国产| 六月丁香七月| 97精品久久久久久久久久精品| 美女视频免费永久观看网站| 国产深夜福利视频在线观看| 高清在线视频一区二区三区| 日日啪夜夜爽| 成人午夜精彩视频在线观看| 黄色一级大片看看| 天天操日日干夜夜撸| 日韩中字成人| 99久久中文字幕三级久久日本| 亚洲欧洲精品一区二区精品久久久 | 男人添女人高潮全过程视频| 免费黄频网站在线观看国产| 亚洲三级黄色毛片| 欧美老熟妇乱子伦牲交| 久久女婷五月综合色啪小说| 日韩欧美 国产精品| 日韩中字成人| 亚洲精品乱久久久久久| 汤姆久久久久久久影院中文字幕| 在线观看av片永久免费下载| 插逼视频在线观看| 国产黄频视频在线观看| 国产精品秋霞免费鲁丝片| 一级毛片电影观看| 中文字幕精品免费在线观看视频 | 国产在线视频一区二区| 国产有黄有色有爽视频| 91午夜精品亚洲一区二区三区| 99久久精品热视频| 久久久久人妻精品一区果冻| 国产成人a∨麻豆精品| 简卡轻食公司| 久热久热在线精品观看| 久久久a久久爽久久v久久| 秋霞伦理黄片| 女性生殖器流出的白浆| 伊人亚洲综合成人网| 久久精品国产自在天天线| 精品午夜福利在线看| av卡一久久| 少妇 在线观看| 国产日韩欧美亚洲二区| 麻豆成人av视频| 亚洲电影在线观看av| freevideosex欧美| 99久久精品热视频| 在线观看美女被高潮喷水网站| 精品人妻熟女av久视频| 观看免费一级毛片| 成人亚洲精品一区在线观看| 国产黄色免费在线视频| 一本色道久久久久久精品综合| 在线观看国产h片| 婷婷色综合www| 中文字幕制服av| 久久毛片免费看一区二区三区| 国产黄片美女视频| av播播在线观看一区| 欧美精品国产亚洲| 国产免费视频播放在线视频| 51国产日韩欧美| 午夜影院在线不卡| 女人久久www免费人成看片| 亚洲精品,欧美精品| 在线观看三级黄色| 精品国产国语对白av| 免费黄色在线免费观看| 亚洲av成人精品一区久久| 亚洲成色77777| 国产熟女午夜一区二区三区 | 久久人人爽人人爽人人片va| 91精品伊人久久大香线蕉| 婷婷色av中文字幕| 国产伦精品一区二区三区四那| 老司机影院毛片| 欧美日韩视频精品一区| 一级a做视频免费观看| 亚洲高清免费不卡视频| 少妇熟女欧美另类| 亚洲三级黄色毛片| 一区二区av电影网| 嫩草影院新地址| 中文字幕制服av| 五月开心婷婷网| 国产一区二区在线观看av| 乱系列少妇在线播放| 黄色配什么色好看| 91久久精品国产一区二区三区| 三上悠亚av全集在线观看 | 少妇熟女欧美另类| 黑丝袜美女国产一区| 亚洲精品国产色婷婷电影| 亚洲美女搞黄在线观看| 自拍偷自拍亚洲精品老妇| 人妻人人澡人人爽人人| 国产在线免费精品| 久久影院123| 极品少妇高潮喷水抽搐| 亚洲精品日韩av片在线观看| 女性被躁到高潮视频| 国产在线视频一区二区| 久久久国产一区二区| 特大巨黑吊av在线直播| 亚洲真实伦在线观看| 精品久久久精品久久久| 精品酒店卫生间| 久久久国产一区二区| 久久久久久久国产电影| 91aial.com中文字幕在线观看| 免费观看的影片在线观看| 一个人看视频在线观看www免费| av免费在线看不卡| 国产欧美日韩一区二区三区在线 | 男女国产视频网站| 亚洲第一av免费看| 久久久久久久久大av| 韩国高清视频一区二区三区| 大话2 男鬼变身卡| 日韩欧美精品免费久久| 精品酒店卫生间| 久久久精品94久久精品| 免费少妇av软件| 精品国产乱码久久久久久小说| 欧美日韩av久久| 人人妻人人澡人人爽人人夜夜| 欧美少妇被猛烈插入视频| 久久精品国产鲁丝片午夜精品| 日日啪夜夜撸| 国产成人aa在线观看| 免费av不卡在线播放| 中国国产av一级| 日本欧美视频一区| 亚洲av男天堂| 18禁动态无遮挡网站| 在线观看av片永久免费下载| 一区二区三区乱码不卡18| 高清视频免费观看一区二区| 国产男女内射视频| 亚洲第一av免费看| 中国三级夫妇交换| 亚洲精品一区蜜桃| 国产极品粉嫩免费观看在线 | 内地一区二区视频在线| 亚洲精品久久久久久婷婷小说| 春色校园在线视频观看| 久久久国产精品麻豆| 久久久久人妻精品一区果冻| 中文字幕久久专区| 五月玫瑰六月丁香| 中文字幕人妻熟人妻熟丝袜美| 国产 一区精品| 国产精品久久久久久精品电影小说| 看十八女毛片水多多多| 亚洲欧美日韩卡通动漫| 内射极品少妇av片p| 国产精品欧美亚洲77777| 在线观看人妻少妇| 亚洲av.av天堂| 免费看av在线观看网站| 精品国产一区二区三区久久久樱花| 黑人高潮一二区| 韩国av在线不卡| 国产黄片美女视频| 亚洲色图综合在线观看| 中国美白少妇内射xxxbb| 精品午夜福利在线看| 99久久人妻综合| 精华霜和精华液先用哪个| 99热6这里只有精品| 国产免费福利视频在线观看| 美女内射精品一级片tv| 少妇高潮的动态图| 免费观看性生交大片5| 久久毛片免费看一区二区三区| 国产一区亚洲一区在线观看| 国产在线一区二区三区精| 久久国产乱子免费精品| 男人狂女人下面高潮的视频| 亚洲av中文av极速乱| 国产精品久久久久成人av| 性高湖久久久久久久久免费观看| 人人妻人人添人人爽欧美一区卜| 国产在线男女| a级毛片免费高清观看在线播放| 亚洲av成人精品一区久久| 国产一区二区在线观看av| 国产精品久久久久久久久免| freevideosex欧美| 久久精品国产亚洲网站| 日韩av在线免费看完整版不卡| 免费观看的影片在线观看| 久久女婷五月综合色啪小说| 黄色毛片三级朝国网站 | 成人无遮挡网站| 伊人久久精品亚洲午夜| 9色porny在线观看| 亚洲性久久影院| 日韩av免费高清视频| tube8黄色片| 精品国产一区二区久久| 丝瓜视频免费看黄片| 深夜a级毛片| 国产中年淑女户外野战色| 午夜福利网站1000一区二区三区| 一本大道久久a久久精品| av天堂中文字幕网| 午夜老司机福利剧场| 国产精品一区二区三区四区免费观看| 日日爽夜夜爽网站| 女人久久www免费人成看片| 日本av手机在线免费观看| 中国美白少妇内射xxxbb| 男女国产视频网站| a级片在线免费高清观看视频| 九色成人免费人妻av| 少妇精品久久久久久久| 精品午夜福利在线看| 久久久国产欧美日韩av| 各种免费的搞黄视频| 十八禁高潮呻吟视频 | 国产淫语在线视频| 亚洲国产欧美在线一区| 日韩电影二区| 男女边吃奶边做爰视频| 国产午夜精品一二区理论片| 激情五月婷婷亚洲| 中文资源天堂在线| 黄色怎么调成土黄色| 熟女av电影| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久久久久久免| 国产 一区精品| 国产无遮挡羞羞视频在线观看| 最新的欧美精品一区二区| 狂野欧美白嫩少妇大欣赏| 日韩欧美 国产精品| 麻豆成人午夜福利视频| 一级,二级,三级黄色视频| 精品人妻熟女av久视频| freevideosex欧美| 国产无遮挡羞羞视频在线观看| 国产精品成人在线| 国产精品伦人一区二区| 最黄视频免费看| 亚洲精品456在线播放app| 国产精品福利在线免费观看| 在线免费观看不下载黄p国产| 国产熟女欧美一区二区| 久久97久久精品| 亚洲欧美日韩东京热| 九九在线视频观看精品| 插阴视频在线观看视频| 永久网站在线| 欧美日韩av久久| 国产永久视频网站| 国产日韩欧美视频二区| 国产极品天堂在线| 成人二区视频| 99热国产这里只有精品6| 三上悠亚av全集在线观看 | 男人添女人高潮全过程视频| 国产精品免费大片| 91精品一卡2卡3卡4卡| 我要看日韩黄色一级片| 精品少妇黑人巨大在线播放| 免费观看性生交大片5| 国产欧美亚洲国产| 成人无遮挡网站| 国产av码专区亚洲av| 一本大道久久a久久精品| 欧美xxⅹ黑人| 麻豆成人午夜福利视频| 最新的欧美精品一区二区| 麻豆乱淫一区二区| 五月伊人婷婷丁香| 自线自在国产av| 九九久久精品国产亚洲av麻豆| 十八禁高潮呻吟视频 | 91精品一卡2卡3卡4卡| 成人漫画全彩无遮挡| 亚洲久久久国产精品| 午夜免费鲁丝| av有码第一页| 插阴视频在线观看视频| 欧美精品一区二区大全| 久久久久国产精品人妻一区二区| 这个男人来自地球电影免费观看 | 99re6热这里在线精品视频| 久久青草综合色| 少妇高潮的动态图| 亚洲欧美清纯卡通| 成人毛片60女人毛片免费| 亚洲国产色片| 免费人妻精品一区二区三区视频| 婷婷色av中文字幕| 亚洲欧洲国产日韩| 一级爰片在线观看| a级毛片免费高清观看在线播放| 中文资源天堂在线| 久久国产亚洲av麻豆专区| 国产精品一区二区在线观看99| 精品久久久精品久久久| 纵有疾风起免费观看全集完整版| 久久人人爽人人片av| 日本av免费视频播放| 在线亚洲精品国产二区图片欧美 | 性色avwww在线观看| 最近中文字幕2019免费版| 大香蕉97超碰在线| 亚洲精品自拍成人| 麻豆乱淫一区二区| 一级,二级,三级黄色视频| 女性被躁到高潮视频| 日韩av在线免费看完整版不卡| 成年人午夜在线观看视频| 成人亚洲欧美一区二区av| 精品国产国语对白av| 国产成人精品久久久久久| 国产精品99久久99久久久不卡 | 天堂8中文在线网| 免费大片黄手机在线观看| av国产久精品久网站免费入址| 你懂的网址亚洲精品在线观看| 国产淫片久久久久久久久| 日日啪夜夜撸| 亚洲人成网站在线播| 亚洲一级一片aⅴ在线观看| 成年女人在线观看亚洲视频| 一级毛片久久久久久久久女| 黄色日韩在线| 日韩亚洲欧美综合| 久久99蜜桃精品久久| 99热这里只有精品一区| 日韩中文字幕视频在线看片| 国产精品人妻久久久久久| 最近中文字幕高清免费大全6| 老司机影院毛片| 精品一区二区三区视频在线| 中文欧美无线码| 欧美成人午夜免费资源| 国产亚洲欧美精品永久| 久久韩国三级中文字幕| 色网站视频免费| 国产老妇伦熟女老妇高清| 国产女主播在线喷水免费视频网站| 免费在线观看成人毛片| 看非洲黑人一级黄片| 涩涩av久久男人的天堂| 欧美少妇被猛烈插入视频| 久久精品国产亚洲av涩爱| 精品卡一卡二卡四卡免费| 人妻夜夜爽99麻豆av| 99热这里只有是精品在线观看| 国产极品粉嫩免费观看在线 | 中文资源天堂在线| 大片免费播放器 马上看| 寂寞人妻少妇视频99o| 久久精品国产亚洲网站| 国产伦精品一区二区三区视频9| 国产日韩欧美在线精品| 偷拍熟女少妇极品色| 久久女婷五月综合色啪小说| 人妻少妇偷人精品九色| 婷婷色综合大香蕉| 一个人免费看片子| 成人18禁高潮啪啪吃奶动态图 | 中文天堂在线官网| 免费看日本二区| 我的女老师完整版在线观看| 午夜视频国产福利| 一二三四中文在线观看免费高清| 久久人妻熟女aⅴ| 国产精品国产三级国产专区5o| 亚洲欧洲国产日韩| 久久精品熟女亚洲av麻豆精品| 亚洲情色 制服丝袜| 久久国产精品大桥未久av | 少妇被粗大猛烈的视频| 午夜影院在线不卡| 欧美日韩视频高清一区二区三区二| 久久久久久久久久人人人人人人| 最近的中文字幕免费完整| 日韩伦理黄色片| 成人综合一区亚洲| 久久99热这里只频精品6学生| 全区人妻精品视频| 日韩一区二区三区影片| 美女国产视频在线观看| 赤兔流量卡办理| 91精品国产国语对白视频| 人妻夜夜爽99麻豆av| 国产精品久久久久久精品古装| 最近最新中文字幕免费大全7| 国产精品人妻久久久久久| 国产精品久久久久久av不卡| 日韩人妻高清精品专区| 亚洲美女搞黄在线观看| 欧美少妇被猛烈插入视频| 性高湖久久久久久久久免费观看| 丝袜脚勾引网站| 国产一区二区在线观看日韩| 精品视频人人做人人爽| av在线播放精品| 寂寞人妻少妇视频99o| 啦啦啦啦在线视频资源| 久久久久视频综合| 高清视频免费观看一区二区| 日韩免费高清中文字幕av| 一区二区三区精品91| 极品少妇高潮喷水抽搐| 久久ye,这里只有精品| 老司机影院毛片| 亚洲精品成人av观看孕妇| 国产一区二区在线观看av| 成人午夜精彩视频在线观看| 99久久综合免费| 亚洲一区二区三区欧美精品| 97在线人人人人妻| 国产精品一区二区在线不卡| 国产av码专区亚洲av| 天堂俺去俺来也www色官网| 亚洲综合色惰| 午夜福利,免费看| 99久久精品国产国产毛片| 日本av免费视频播放| 国产日韩欧美在线精品| 国产高清有码在线观看视频| 91久久精品电影网| 丝瓜视频免费看黄片| 男女国产视频网站| 欧美区成人在线视频| 丰满饥渴人妻一区二区三| 亚州av有码| 伊人久久精品亚洲午夜| 久久久久精品性色| 最新中文字幕久久久久| 国产午夜精品一二区理论片| 精品久久久精品久久久| 黄片无遮挡物在线观看| 日本欧美视频一区| 啦啦啦视频在线资源免费观看| 天天躁夜夜躁狠狠久久av| 99久久人妻综合| 久久影院123| 肉色欧美久久久久久久蜜桃| 91精品国产九色| 亚洲内射少妇av| 亚洲av二区三区四区| 久久精品国产亚洲网站| 亚洲精品中文字幕在线视频 | 高清毛片免费看| 亚洲精品国产色婷婷电影| 国产av码专区亚洲av| 妹子高潮喷水视频| 啦啦啦在线观看免费高清www| 黄色配什么色好看| 最近的中文字幕免费完整| 美女国产视频在线观看| 欧美+日韩+精品| 一本一本综合久久| 日韩中字成人| 久久毛片免费看一区二区三区| 最后的刺客免费高清国语| 欧美日韩在线观看h| 精品视频人人做人人爽| 亚洲婷婷狠狠爱综合网| 中文欧美无线码| 精品视频人人做人人爽| 好男人视频免费观看在线| 久久99蜜桃精品久久| 大又大粗又爽又黄少妇毛片口| 国产免费视频播放在线视频| 男人舔奶头视频| 精品亚洲成a人片在线观看| 黄色怎么调成土黄色| 国产永久视频网站| 中文在线观看免费www的网站| 精品少妇久久久久久888优播| 日本黄大片高清| 国产爽快片一区二区三区| 久久久久人妻精品一区果冻| 欧美xxⅹ黑人| 亚洲精品乱码久久久v下载方式| 亚洲国产精品一区三区| 人妻夜夜爽99麻豆av| 亚洲精品一区蜜桃| 色视频在线一区二区三区| 美女大奶头黄色视频| 丁香六月天网| 高清不卡的av网站| 欧美亚洲 丝袜 人妻 在线| 日本欧美视频一区| av卡一久久| 国产一区二区三区av在线| 国产伦精品一区二区三区四那| 一本久久精品| 26uuu在线亚洲综合色| 日日摸夜夜添夜夜添av毛片|