• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of CORDEX regional climate models in simulating temperature and precipitation over the Tibetan Plateau

    2018-08-30 06:58:52GUODongLinSUNJinQindYUEnTo

    GUO Dong-Lin , SUN Jin-Qi nd YU En-To

    aNansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; bKey Laboratory of Meteorological Disaster, Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China; cJoint Laboratory for Climate and Environmental Change, Chengdu University of Information Technology, Chengdu, China

    ABSTRACT Using a regional climate model (RCM) is generally regarded as a promising approach in researching the climate of the Tibetan Plateau, due to the advantages provided by the high resolutions of these models. Whilst previous studies have focused mostly on individual RCM simulations, here, multiple RCMs from the Coordinated Regional Climate Downscaling Experiment are evaluated in simulating surface air temperature and precipitation changes over the Tibetan Plateau using station and gridded observations. The results show the following: (1) All RCMs consistently show similar spatial patterns, but a mean cold (wet) bias in the temperature (precipitation) climatology compared to station observations. The RCMs fail to reproduce the observed spatial patterns of temperature and precipitation trends, and on average produce greater trends in temperature and smaller trends in precipitation than observed results. The multi-model ensemble overall produces superior trends in both simulated temperature and precipitation relative to individual models. Meanwhile, RegCM4 presents the most reasonable simulated trends among the five RCMs. (2) Considerable dissimilarities are shown in the simulated quantitative results from the different RCMs, which indicates a large model dependency in the simulation of climate over the Tibetan Plateau. This implies that caution may be needed when an individual RCM is used to estimate the amplitude of climate change over the Tibetan Plateau. (3) The temperature (precipitation) in 2016–35, relative to 1986–2005, is projected by the multi-model ensemble to increase by 1.38 ± 0.09 °C (0.8% ± 4.0%) and 1.77 ± 0.28 °C(7.3% ± 2.5%) under the RCP4.5 and RCP8.5 scenario, respectively. The results of this study advance our understanding of the applicability of RCMs in studies of climate change over the Tibetan Plateau from a multiple-RCM perspective.

    KEYWORDS Tibetan Plateau; RCM;climate simulation; CORDEX

    1. Introduction

    One significant aspect of the Tibetan Plateau is its contribution to the global amount of water held on land. It features a glacial area of approximately 1.0 × 105km2(Yao et al. 2012), a snow-water-equivalent rate of approximately 41.9 × 109m3yr?1(Li et al. 2008), and a permafrost area of approximately 1.5 × 106km2(Li and Cheng 1996). These water resources feed the major rivers in East Asia, South Asia, and Southeast Asia, and provide water to more than 20% of the global population. The Tibetan Plateau is thus recognized as the ‘Asian water tower’.

    Climate change affects the fate of solid-phase water resources on the Tibetan Plateau. Therefore, proper predictions of climate change in the Tibetan Plateau region are essential for accurately evaluating the sustainability of water resources. In recent years, the global climate models(GCMs) in the third and fifth phases of the Coupled Model Intercomparison Project (CMIP3 and CMIP5, respectively)have been used to simulate and project climate change in the Tibetan Plateau region (Hu, Jiang, and Fan 2015; Liu,Chen, and Zhang 2009; Su et al. 2013). The results project a warming and wetting climate under a warming climate scenario.

    The varied topography of the Tibetan Plateau requires high-resolution simulations that can capture regional details. Consequently, regional climate models (RCMs)are promising tools for researching climate in the Tibetan Plateau region. Several RCM-based simulations have recently been carried out (Gao, Wang, and Giorgi 2013; Guo and Wang 2016; Ji and Kang 2013, 2015; Ji et al. 2016; Wang et al. 2013; Yu and Xiang 2015). For example, using RegCM4,Ji and Kang (2013) performed a 10-km dynamical downscaling simulation over the Tibetan Plateau for the twenty-first century and reported more spatial details in terms of climate dynamics, as compared to the GCM results. However, such studies have mostly been based on an individual RCM simulation. The extent of the differences among results from different RCMs and how these differences affect the projected results of climate change are not well understood.

    The objective of this study is to (1) examine the inconsistencies among multiple RCMs in simulating climate over the Tibetan Plateau, and (2) assess the climate change in the near future (2016–35) over the Tibetan Plateau implied by the ensemble results from the various RCMs. The RCM simulations are derived from the Coordinated Regional Climate Downscaling Experiment (CORDEX) in East Asia.In-situ observations at 71 weather stations and a set of gridded observations are used to evaluate the models.

    2. Data and methods

    2.1. Data

    Five regional simulations are obtained from CORDEX(Giorgi, Jones, and Asrar 2009). These simulations are run by: HadGEM3-RA (Hadley Centre Global Environment Model, version 3, with regional atmosphere configurations)(Martin et al. 2006); MM5 (Fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model) (Lee, Cha, and Kang 2004); RegCM4(Regional Climate Model, version 4) (Oh et al. 2011); WRF(Weather Research and Forecasting model, version 3.2)(Skamarock et al. 2008), and RSM (Regional Spectral Model)(Hong et al. 2013). Each model is driven using the output of HadGEM2-AO (Hadley Centre Global Environment Model, version 2, with atmosphere, ocean and sea ice configurations) (Baek et al. 2013). These five simulations have the same spatial resolution and model domain, but slightly different simulation periods (Table 1). The physical schemes and more detail regarding each simulation can be seen at https://cordex-ea.climate.go.kr/main/main-Page.do. Common periods (historical: 1980–2005; future:2006–49) and two representative concentration pathway(RCP) scenarios (RCP4.5 and RCP8.5) are used for the five simulations in this study. Notably, WRF-produced precipitation is questionable under the RCP4.5 scenario, and is therefore not used in the projections in this study. As a result, the precipitation from the WRF simulation under the RCP8.5 scenario is also not used, to ensure a homogeneous comparison between these two scenarios. These data have been widely used for research efforts on regional climate change and associated mechanisms (Guo, Yu, and Wang 2016; Yu and Xiang 2015).

    In-situ observations, used to evaluate the models, are obtained from the China Meteorological Administration.Specifically, the yearly surface air temperature (temperature) and precipitation measured at 71 weather stations from 1980 to 2005 are employed. These weather stations are located mostly in the central and eastern Tibetan Plateau region (Figure 1(g)). A basic logic test and spatial consistency test are carried out for data quality control (Li et al. 2004). These data are reliable and have been used extensively to identify climate change and validate climate models (Guo and Wang 2012; Wang et al. 2012).

    A set of gridded observations, CN05.1 (CN051) (Wu and Gao 2013), are used to evaluate the simulated area-averaged results over the entire Tibetan Plateau. These data are developed based on in situ observations at 2416weather stations in China. They have a spatial resolution of 0.25° × 0.25° and cover a period from 1961 to 2015. The data cover the entire land area of China, and the Tibetan Plateau region is extracted for analysis in this study. These data have been widely used as a reference for the validation of model results (Gao, Wang, and Giorgi 2013; Guo and Wang 2016).

    Table 1. Details of the six dynamical downscaling simulations and observed data.

    Figure 1. Comparison of simulated (a–g) temperature (units: °C) and (h–n) precipitation (mm yr?1) climatology (1986–2005) with in situ observations at 71 stations.

    2.2. Methods

    When using station data to evaluate the gridded simulated results, the simulated results are first topographically corrected to observation stations, and then compared with the station observations. The mean bias (MB), percentage bias (PB), root-mean-square error (RMSE), correlation coefficient, and Taylor Diagram are used to assess the level of agreement between the simulated and observed results.The linear trend is the slope of the linear fit, which is calculated using the ordinary least-squares regression method.The Student’s t-test is used to identify the statistical significance of the trend.

    The MB, PB, and RMSE are calculated as follows:

    Here, Sirepresents the simulated value, Oithe observed value, and n the total sample number.

    The standard deviation (SD) is used to assess the intermodel variance in the climatology and trend of air temperature and precipitation in this study, which is calculated as follows:

    The coefficient of variance (CV) is used to assess the inter-model variance in the precipitation climatology in this study, to consider the impact of mean precipitation on the variance, which is calculated as follows:

    3. Results and discussion

    3.1. Climatology (1986–2005)

    The five models consistently show similar spatial patterns of temperature climatology to observations (Figure 1(a–g)). The spatial correlation coefficients range from 0.85 to 0.95 across the five models. However, all models produce a cold bias, with a range from ?0.95 °C to ?6.94 °C. For precipitation, the models also capture the observed spatial patterns, with spatial correlation coefficients ranging from 0.59 to 0.89, but they consistently produce 15%–104%more precipitation than observed (Figure 1(h–n)). Among the five models and the ensemble, MM5, HadGEM3-RA,and the ensemble show similar, reasonable performance in simulating temperature; whereas, HadGEM3-RA shows the most reasonable performance in simulating precipitation (Figure 2(a)).

    The simulated quantitative results from the five models show large inter-model variances (Figure 3(a) and (b)).For temperature, much of the Tibetan Plateau has an SD ranging from 2 to 8 °C, with an evident center of higher values over the northwestern Tibetan Plateau. For precipitation, much of the Tibetan Plateau has an SD ranging from 100 to 400 mm yr?1. The SDs are distinctly larger over the southeastern Tibetan Plateau than the northwestern Tibetan Plateau. However, CVs are low over the southeastern Tibetan as a result of more mean precipitation in that region (Figure S1). Because the five simulations use the same forcing data and have the same spatial resolution and model domain, the models themselves cause these variances–for instance, through their various physical parameterization schemes or surface and soil data. These variances indicate that different RCMs can cause considerable uncertainties, implying that large model dependence may exist in the results from individual RCM simulations.Caution is thus needed when an individual RCM is used to quantitatively estimate the climate over the Tibetan Plateau.

    3.2. Trends (1980–2005)

    All five models show statistically insignificant relationships between simulated and observed spatial patterns of temperature trends (Figure 4(a–g)). All of them also produce a larger temperature trend compared with observations (MB:0.09–0.33 °C/decade), with the exception of HadGEM3-RA,which shows a 0.02 °C/decade temperature decline relative to observations. With the exception of RegCM4, all models also show statistically insignificant relationships between simulated and observed spatial patterns of precipitation trends (Figure 4(h–n)). All of the models except RegCM4 produce a mean trend that is 0.52–29.07 mm/decade smaller than that seen in observations. Among the five models and their ensemble, the ensemble overall produces superior simulated trends in both temperature and precipitation relative to the individual models (Figure 2(b)). Among individual models, RegCM4 shows superior simulated trends in both temperature and precipitation.

    Figure 2. Taylor diagrams between simulated temperature and precipitation (a) climatology (1986–2005) and (b) trends (1980–2005)and in situ observations at 71 stations.

    Figure 3. Standard deviation of the (a) air temperature climatology (units: °C) (1986–2005), (b) precipitation climatology (mm yr?1)(1986–2005), (c) air temperature trend (units: °C/decade) (1980–2005), and (d) precipitation trend (units: mm/decade) (1980–2005)across the five regional climate models.

    The simulated area-averaged trends are compared to the observed ones over the entire Tibetan Plateau (Figure S2). Most of the RCMs produce similar area-averaged trends in temperature to those from gridded observations. For precipitation, the biases between simulated and observed area-averaged trends are larger than the temperature biases. Overall, the multi-model ensemble shows the best agreement with the observed area-averaged trend in both temperature and precipitation. However, it should be mentioned that uncertainties exist. The gridded observations used for comparison may have low accuracy over the Tibetan Plateau because of the sparse distribution of stations in the western Tibetan Plateau (Wu and Gao 2013).

    Figure 4. Comparison of simulated trends (1980–2005) in (a–g) temperature (units: °C/decade) and (h–n) precipitation (units: mm/decade) with in situ observations at 71 stations.

    Similar to the climatology, obvious inter-model variances can also be seen in the simulated trends in temperature and (especially) precipitation (Figure 3(c) and (d)).For temperature, most of the SDs range from 0.1 to 0.4 °C/decade. There is a high-value center over the southwestern Tibetan Plateau, where some SD values exceed 0.4 °C/decade. For precipitation, the SDs are less than 10 mm/decade over the central Tibetan Plateau and the Qaidam Basin,but distinctly large over the southeastern Tibetan Plateau and the southwestern edge (the Himalaya) of the Tibetan Plateau, with SD values greater than 30 mm/decade. These results indicate considerable uncertainties caused by the different RCMs, meaning a multi-RCM ensemble is necessary to estimate the amplitude of climate change over the Tibetan Plateau.

    Figure 5. Area-averaged changes in (a) temperature and (b)precipitation during the historical period from 1980 to 2005 and future period from 2006 to 2049 under the RCP4.5 and RCP8.5 scenarios, relative to 1986–2005.

    3.3. Multi-RCM ensemble projection of climate in the near future

    The simulated temporal changes in ensemble-mean temperature and precipitation are comparable to those in observations during the historical period of 1980–2005(Figure 5). The simulated temperature trend is 0.51 °C/decade from 1980 to 2005, which is close to but larger than the observed trend of 0.44 °C/decade. The simulated precipitation trend is 2.2%/decade, which is close to but slightly smaller than the observed trend of 2.4%/decade.

    For the future period, the RCP4.5 and RCP8.5 scenarios show a significant increasing temperature trend, with values of 1.38 ± 0.09 °C and 1.77 ± 0.28 °C, respectively,during the period 2016–35 relative to 1986–2005 (Figure 5). These results are close to but larger than previous multi-GCM ensemble results, which show temperature increasing by 1.1 °C during the same period under the RCP4.5 scenario (Hu, Jiang, and Fan 2015). In terms of spatial pattern, the entire Tibetan Plateau shows increasing temperatures during the period 2016–35 under the RCP4.5 scenario, with significant increases located over the central Tibetan Plateau, the Himalaya, the northwestern corner of the Tibetan Plateau, and the Qilian Mountains(Figure 6(a) and (b)). Under the RCP8.5 scenario, significant increases are shown over the central and western Tibetan Plateau. Previous results have also shown similar significant increases in the Himalaya, the northwestern corner of the Tibetan Plateau, and the Qilian Mountains(Hu, Jiang, and Fan 2015; Ji and Kang 2013). Hu, Jiang, and Fan (2015) also showed significant increases located over the central Tibetan Plateau, but at a location more towards the southeast part of our locations in the central Tibetan Plateau that showed significant increases.

    Figure 6. Spatial changes in ensemble-mean (a, b) temperature (units: °C) and (c, d) precipitation (units: %) during the period 2016–35 relative to 1986–2005 under the (a, c) RCP4.5 and (b, d) RCP8.5 scenario.

    The precipitation is projected to increase by 0.8% ± 4.0%and 7.3% ± 2.5% in 2016–35 relative to 1986–2005 under the RCP4.5 and RCP8.5 scenarios, respectively (Figure 5).A larger increase of 4.4% was derived from a multi-GCM ensemble during the same period under the RCP4.5 scenario (Hu, Jiang, and Fan 2015). In terms of spatial pattern,a clear north–south-oriented pattern of positive–negative–positive change is projected in precipitation under both the RCP4.5 and RCP8.5 scenarios (Figure 6(c) and(d)). From RCP4.5 to RCP8.5, the positive changes over the northern and southern Tibetan Plateau strengthen,whereas the negative change over the central Tibetan Plateau weakens. This spatial pattern of change is similar to that of projected changes during the period 2090–99(Ji and Kang 2013), but differs from multi-GCM ensemble results that show a gradually increasing change from the southeastern to northwestern Tibetan Plateau (Hu, Jiang,and Fan 2015).

    4. Conclusions

    Five CORDEX RCMs are evaluated in simulating temperature and precipitation over the Tibetan Plateau. All models reproduce the observed spatial patterns of the temperature and precipitation climatology reasonably well, but consistently produce a cold bias in temperature and wet bias in precipitation. All models fail to capture the spatial patterns of the temperature and precipitation trends,with an overestimation of the observed warming trend and an underestimation of the observed wetting trend on average (except for RegCM4). The multi-RCM ensemble overall shows superior performance in simulating both the temperature and precipitation trends relative to individual models. Among the five RCMs, RegCM4 presents the most reasonable simulated trends.

    Considerable dissimilarities in the simulated temperature and precipitation changes between different RCMs are shown, which indicates a large model dependence related to RCM simulation over the Tibetan Plateau. This suggests that caution is needed when an individual RCM is used to quantitatively examine climate change over the Tibetan Plateau. The multi-RCM ensemble projection shows temperature increasing by 1.38 ± 0.09 °C(RCP4.5) and 1.77 ± 0.28 °C (RCP8.5), and precipitation by 0.8% ± 4.0% (RCP4.5) and 7.3% ± 2.5% (RCP8.5), in 2016–35 relative to 1986–2005.

    The results of this study provide insight into the differences among different RCMs in simulating climate change over the Tibetan Plateau, which advances our understanding of the applicability of RCMs in assessing climate change in this region. The present projections are comparable with previous studies, but deviations exist between them in quantities. Historically, research on climate change projection over the Tibetan Plateau has moved, in terms of models, from individual GCMs (Xu, Xue, and Lin 2003), to multiple GCMs (Hu, Jiang, and Fan 2015; Su et al. 2013;Xu, Ding, and Li 2003), and then to individual RCMs (Gao,Wang, and Giorgi 2013; Ji and Kang 2013). The present study evaluates the ability of multiple RCMs and then uses them to perform a near-future ensemble projection of climate change over the Tibetan Plateau. In the future, more RCM simulations at higher resolution should be conducted and ensembled to examine the climate dynamics of the Tibetan Plateau.

    Funding

    This research was jointly supported by the National Key R&D Program of China [grant number 2016YFA0600704], the External Cooperation Program of BIC, Chinese Academy of Sciences[grant number 134111KYSB20150016], the National Natural Science Foundation of China [grant number 41775076], and Youth Innovation Promotion Association CAS.

    ORCID

    欧美一区二区亚洲| 特大巨黑吊av在线直播| 欧美日韩国产亚洲二区| 麻豆久久精品国产亚洲av| 精品人妻视频免费看| 97在线视频观看| 最后的刺客免费高清国语| 嘟嘟电影网在线观看| 国产成人午夜福利电影在线观看| 我的老师免费观看完整版| 七月丁香在线播放| 少妇猛男粗大的猛烈进出视频 | 国产黄片视频在线免费观看| 特大巨黑吊av在线直播| h日本视频在线播放| 免费观看a级毛片全部| av在线天堂中文字幕| 日韩 亚洲 欧美在线| 欧美97在线视频| 国产精品久久久久久久电影| 亚洲国产欧美在线一区| 插阴视频在线观看视频| 99热这里只有是精品50| 两个人的视频大全免费| 亚洲国产欧美人成| 乱系列少妇在线播放| 精品久久久噜噜| 欧美区成人在线视频| 亚洲美女视频黄频| 一区二区三区乱码不卡18| 亚洲国产精品久久男人天堂| 欧美日韩综合久久久久久| 热99在线观看视频| 日韩高清综合在线| 精品久久久噜噜| av.在线天堂| 亚洲av男天堂| 国产精品嫩草影院av在线观看| 日韩欧美国产在线观看| 永久网站在线| 一级毛片电影观看 | 亚洲成人av在线免费| 最新中文字幕久久久久| 91久久精品国产一区二区成人| 国产精品久久久久久久久免| 三级经典国产精品| 亚洲精品乱久久久久久| 能在线免费观看的黄片| 国产伦理片在线播放av一区| 久久精品国产自在天天线| 久久精品久久精品一区二区三区| 九九爱精品视频在线观看| 99久久九九国产精品国产免费| 亚洲成人中文字幕在线播放| 午夜亚洲福利在线播放| 蜜桃久久精品国产亚洲av| 大香蕉久久网| 日韩大片免费观看网站 | 亚洲最大成人中文| 国产一区二区在线观看日韩| 亚洲国产最新在线播放| 欧美潮喷喷水| 国内少妇人妻偷人精品xxx网站| 中文精品一卡2卡3卡4更新| 国产精品熟女久久久久浪| 亚洲人成网站高清观看| 日韩精品青青久久久久久| 九九热线精品视视频播放| 热99re8久久精品国产| 中文字幕av在线有码专区| 91午夜精品亚洲一区二区三区| 久久久久久久午夜电影| 亚洲精品456在线播放app| 欧美激情国产日韩精品一区| 97人妻精品一区二区三区麻豆| 国产黄色小视频在线观看| 超碰97精品在线观看| 不卡视频在线观看欧美| 婷婷六月久久综合丁香| 日本一二三区视频观看| 国产精品电影一区二区三区| 亚洲欧美精品专区久久| 一边摸一边抽搐一进一小说| 成人午夜精彩视频在线观看| 只有这里有精品99| 99久久无色码亚洲精品果冻| 午夜精品一区二区三区免费看| 身体一侧抽搐| 美女xxoo啪啪120秒动态图| 韩国高清视频一区二区三区| 黄色一级大片看看| av又黄又爽大尺度在线免费看 | 亚洲人成网站在线观看播放| 中文欧美无线码| 免费观看性生交大片5| 国产91av在线免费观看| 国产免费福利视频在线观看| 深爱激情五月婷婷| 91精品国产九色| 国产精品国产高清国产av| 在线观看一区二区三区| 日韩亚洲欧美综合| 少妇的逼水好多| 日产精品乱码卡一卡2卡三| 观看美女的网站| 亚洲av不卡在线观看| 国产伦理片在线播放av一区| 日本黄大片高清| 亚洲国产精品sss在线观看| 天堂√8在线中文| 狠狠狠狠99中文字幕| 一边摸一边抽搐一进一小说| 亚洲av不卡在线观看| 欧美日本视频| 午夜福利网站1000一区二区三区| 3wmmmm亚洲av在线观看| or卡值多少钱| 18禁在线无遮挡免费观看视频| 99在线视频只有这里精品首页| 国产单亲对白刺激| 成人美女网站在线观看视频| 天天一区二区日本电影三级| ponron亚洲| 久久久久久久久大av| 日本免费a在线| 熟女人妻精品中文字幕| 精品人妻一区二区三区麻豆| 色5月婷婷丁香| 日本免费一区二区三区高清不卡| 男人舔女人下体高潮全视频| 校园人妻丝袜中文字幕| 99热6这里只有精品| 精品国内亚洲2022精品成人| 亚洲中文字幕日韩| 3wmmmm亚洲av在线观看| 欧美一区二区亚洲| 日韩亚洲欧美综合| 午夜福利成人在线免费观看| 国产午夜精品一二区理论片| 欧美最新免费一区二区三区| 村上凉子中文字幕在线| 亚洲国产欧美人成| 久久久久九九精品影院| 三级国产精品片| 久久精品国产鲁丝片午夜精品| 少妇的逼水好多| 熟女电影av网| 亚洲成人中文字幕在线播放| 中文精品一卡2卡3卡4更新| 亚洲五月天丁香| 麻豆av噜噜一区二区三区| 99热这里只有是精品50| 久久精品国产亚洲av涩爱| 麻豆久久精品国产亚洲av| 日本午夜av视频| 国产成年人精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 免费观看的影片在线观看| 成人av在线播放网站| 国产亚洲一区二区精品| 国产日韩欧美在线精品| 伦理电影大哥的女人| 人体艺术视频欧美日本| 日韩人妻高清精品专区| 日韩精品有码人妻一区| 久久精品久久久久久噜噜老黄 | 国产91av在线免费观看| 国产精品电影一区二区三区| www.av在线官网国产| 国内少妇人妻偷人精品xxx网站| 欧美日韩在线观看h| 麻豆国产97在线/欧美| 成人午夜高清在线视频| 毛片女人毛片| 欧美xxxx性猛交bbbb| 乱码一卡2卡4卡精品| 亚洲精华国产精华液的使用体验| 欧美人与善性xxx| 免费大片黄手机在线观看| 人人妻人人澡人人爽人人夜夜| 免费av不卡在线播放| 亚洲国产精品一区二区三区在线| 免费观看a级毛片全部| 97在线视频观看| 亚洲精品久久午夜乱码| 欧美日韩国产mv在线观看视频| 国产 精品1| 国产亚洲av片在线观看秒播厂| 精品少妇黑人巨大在线播放| 大香蕉久久成人网| 一级毛片电影观看| 97精品久久久久久久久久精品| 精品人妻在线不人妻| 欧美精品一区二区大全| 亚洲综合色网址| 国产精品嫩草影院av在线观看| 久久久久久久亚洲中文字幕| 99视频精品全部免费 在线| 久久免费观看电影| 亚洲一级一片aⅴ在线观看| 国产av国产精品国产| 亚洲国产欧美日韩在线播放| 午夜福利,免费看| 婷婷色麻豆天堂久久| 欧美国产精品一级二级三级| 性色avwww在线观看| 久久人人97超碰香蕉20202| 久久av网站| 制服丝袜香蕉在线| 日韩中文字幕视频在线看片| 亚洲综合精品二区| 精品99又大又爽又粗少妇毛片| 在线精品无人区一区二区三| 欧美丝袜亚洲另类| 精品99又大又爽又粗少妇毛片| 日韩,欧美,国产一区二区三区| 中文天堂在线官网| 亚洲综合色惰| 欧美日韩国产mv在线观看视频| av在线老鸭窝| 国产福利在线免费观看视频| 精品午夜福利在线看| 亚洲欧美中文字幕日韩二区| 两个人免费观看高清视频| 人成视频在线观看免费观看| 国产精品免费大片| av女优亚洲男人天堂| 免费黄频网站在线观看国产| 亚洲在久久综合| 丝袜人妻中文字幕| 日韩av免费高清视频| 中文乱码字字幕精品一区二区三区| 午夜福利视频在线观看免费| 成人亚洲欧美一区二区av| 国产极品粉嫩免费观看在线| 黄色怎么调成土黄色| 婷婷成人精品国产| 日韩欧美一区视频在线观看| 九九在线视频观看精品| 婷婷色综合大香蕉| 多毛熟女@视频| 18禁在线无遮挡免费观看视频| 免费看av在线观看网站| 精品一品国产午夜福利视频| 一二三四中文在线观看免费高清| 国产高清国产精品国产三级| 亚洲人与动物交配视频| 熟妇人妻不卡中文字幕| 久久这里有精品视频免费| 成人亚洲欧美一区二区av| 中文字幕人妻丝袜制服| 99热国产这里只有精品6| 一级毛片电影观看| 国产成人a∨麻豆精品| 午夜激情av网站| 亚洲精品456在线播放app| 天天影视国产精品| 久久久久久久久久成人| 久久鲁丝午夜福利片| 中文字幕人妻丝袜制服| 狠狠婷婷综合久久久久久88av| av.在线天堂| 2022亚洲国产成人精品| 国产成人免费观看mmmm| 久久午夜综合久久蜜桃| 免费大片18禁| 午夜福利影视在线免费观看| 51国产日韩欧美| 啦啦啦啦在线视频资源| 男人舔女人的私密视频| 男女午夜视频在线观看 | 亚洲第一区二区三区不卡| 日本与韩国留学比较| 成人国产av品久久久| 国产午夜精品一二区理论片| 色网站视频免费| 欧美精品一区二区免费开放| 丰满乱子伦码专区| 91精品伊人久久大香线蕉| 欧美丝袜亚洲另类| 久久婷婷青草| 大话2 男鬼变身卡| 久久99精品国语久久久| 日韩av免费高清视频| 亚洲国产精品一区三区| 一二三四中文在线观看免费高清| a 毛片基地| 国产亚洲av片在线观看秒播厂| 欧美激情国产日韩精品一区| 国产成人精品在线电影| 国产淫语在线视频| 久久av网站| av网站免费在线观看视频| 免费观看a级毛片全部| 菩萨蛮人人尽说江南好唐韦庄| 国产精品女同一区二区软件| 一边摸一边做爽爽视频免费| 少妇精品久久久久久久| 国产av一区二区精品久久| 国产精品一区二区在线观看99| 如日韩欧美国产精品一区二区三区| 欧美少妇被猛烈插入视频| 欧美 亚洲 国产 日韩一| 亚洲欧美一区二区三区国产| 久久久久久久国产电影| 啦啦啦啦在线视频资源| 国产乱人偷精品视频| 女的被弄到高潮叫床怎么办| 亚洲精品一区蜜桃| 日韩,欧美,国产一区二区三区| 国产女主播在线喷水免费视频网站| 欧美人与性动交α欧美精品济南到 | 啦啦啦视频在线资源免费观看| 女人被躁到高潮嗷嗷叫费观| 18禁国产床啪视频网站| 22中文网久久字幕| 久久久国产一区二区| 免费日韩欧美在线观看| 国产爽快片一区二区三区| 人妻人人澡人人爽人人| av女优亚洲男人天堂| 又黄又爽又刺激的免费视频.| 亚洲精品美女久久av网站| 国产精品 国内视频| 中国三级夫妇交换| 校园人妻丝袜中文字幕| 亚洲欧美日韩另类电影网站| 午夜影院在线不卡| 大陆偷拍与自拍| 最黄视频免费看| 欧美日韩视频高清一区二区三区二| 亚洲欧美中文字幕日韩二区| 宅男免费午夜| 在线看a的网站| 日韩精品有码人妻一区| 啦啦啦视频在线资源免费观看| 中文字幕免费在线视频6| 国产熟女欧美一区二区| 亚洲av成人精品一二三区| 综合色丁香网| 建设人人有责人人尽责人人享有的| 久久鲁丝午夜福利片| 少妇人妻久久综合中文| 最后的刺客免费高清国语| 成年女人在线观看亚洲视频| 两性夫妻黄色片 | 最近2019中文字幕mv第一页| 80岁老熟妇乱子伦牲交| 国产极品天堂在线| 国产精品久久久久久av不卡| 亚洲精华国产精华液的使用体验| 精品一区在线观看国产| 午夜免费男女啪啪视频观看| 伦理电影免费视频| 国产又色又爽无遮挡免| 伦理电影免费视频| 18+在线观看网站| 精品久久国产蜜桃| 久久毛片免费看一区二区三区| 久久久国产一区二区| 国产高清三级在线| 久久人人爽人人爽人人片va| 男女无遮挡免费网站观看| 免费不卡的大黄色大毛片视频在线观看| av黄色大香蕉| 免费在线观看黄色视频的| 999精品在线视频| 国产黄频视频在线观看| 欧美丝袜亚洲另类| 亚洲色图 男人天堂 中文字幕 | 男女下面插进去视频免费观看 | 只有这里有精品99| 性色av一级| 久久99蜜桃精品久久| 久久精品久久久久久久性| 18在线观看网站| 亚洲欧美一区二区三区国产| 亚洲一区二区三区欧美精品| 丰满饥渴人妻一区二区三| 在线观看免费日韩欧美大片| 欧美成人精品欧美一级黄| 91aial.com中文字幕在线观看| 少妇 在线观看| a级毛片在线看网站| 九色亚洲精品在线播放| 丝袜人妻中文字幕| 国产亚洲一区二区精品| 欧美日韩视频精品一区| 免费黄网站久久成人精品| 日本wwww免费看| 九九爱精品视频在线观看| 人人妻人人澡人人看| 熟妇人妻不卡中文字幕| 十分钟在线观看高清视频www| 日本91视频免费播放| 亚洲成国产人片在线观看| 一级爰片在线观看| √禁漫天堂资源中文www| 少妇被粗大的猛进出69影院 | 亚洲三级黄色毛片| 亚洲欧洲日产国产| 午夜免费男女啪啪视频观看| 天堂8中文在线网| 不卡视频在线观看欧美| 国产1区2区3区精品| 女人久久www免费人成看片| 啦啦啦视频在线资源免费观看| 性高湖久久久久久久久免费观看| 美国免费a级毛片| 亚洲第一区二区三区不卡| 亚洲四区av| 欧美精品一区二区大全| 国产精品一二三区在线看| 91aial.com中文字幕在线观看| 国产无遮挡羞羞视频在线观看| 亚洲熟女精品中文字幕| 国产欧美日韩一区二区三区在线| 久久久久久伊人网av| av在线app专区| 亚洲av.av天堂| 亚洲国产毛片av蜜桃av| 激情五月婷婷亚洲| 免费看光身美女| 久久国产亚洲av麻豆专区| 黑丝袜美女国产一区| 国产亚洲精品久久久com| 国产女主播在线喷水免费视频网站| 狂野欧美激情性bbbbbb| 日本与韩国留学比较| 欧美日韩亚洲高清精品| 最近最新中文字幕免费大全7| 国产又爽黄色视频| 亚洲欧洲精品一区二区精品久久久 | 久久青草综合色| 看十八女毛片水多多多| 大香蕉97超碰在线| 男女免费视频国产| 美国免费a级毛片| 久久久国产精品麻豆| 天堂8中文在线网| 赤兔流量卡办理| 在线观看三级黄色| 韩国精品一区二区三区 | 久久精品久久久久久久性| 精品国产乱码久久久久久小说| 性色av一级| 精品国产乱码久久久久久小说| 亚洲av在线观看美女高潮| 精品久久蜜臀av无| 日韩欧美一区视频在线观看| 日韩成人av中文字幕在线观看| 女人久久www免费人成看片| 午夜福利影视在线免费观看| 国产永久视频网站| 在线观看www视频免费| 人人妻人人澡人人看| 日本91视频免费播放| 日韩av免费高清视频| 热99久久久久精品小说推荐| 久久99热这里只频精品6学生| 精品酒店卫生间| 亚洲成人手机| 天天操日日干夜夜撸| 亚洲精品成人av观看孕妇| 国产精品成人在线| 久久人人97超碰香蕉20202| 亚洲精品色激情综合| 久久这里有精品视频免费| 在线观看国产h片| 九草在线视频观看| 欧美 亚洲 国产 日韩一| 欧美精品一区二区大全| 国产无遮挡羞羞视频在线观看| 搡女人真爽免费视频火全软件| 国产日韩欧美在线精品| 国产日韩一区二区三区精品不卡| 国产成人精品福利久久| 精品久久久精品久久久| 亚洲一区二区三区欧美精品| 如何舔出高潮| 最近最新中文字幕免费大全7| 久久精品aⅴ一区二区三区四区 | 大香蕉97超碰在线| 国产精品国产三级专区第一集| 在线亚洲精品国产二区图片欧美| 精品久久蜜臀av无| 国产毛片在线视频| 性色avwww在线观看| 母亲3免费完整高清在线观看 | 国产xxxxx性猛交| www.熟女人妻精品国产 | 国产老妇伦熟女老妇高清| 国产精品国产三级专区第一集| 久久久久久久国产电影| 又粗又硬又长又爽又黄的视频| 人妻一区二区av| 久久午夜福利片| 精品人妻偷拍中文字幕| 亚洲国产精品国产精品| 日韩精品有码人妻一区| 青春草视频在线免费观看| 青青草视频在线视频观看| 国产免费现黄频在线看| 在线 av 中文字幕| 国产熟女午夜一区二区三区| 久久久久久久亚洲中文字幕| 亚洲情色 制服丝袜| 国产男女超爽视频在线观看| 午夜激情av网站| 国产精品一国产av| 亚洲国产毛片av蜜桃av| 国产精品女同一区二区软件| 久久久久久久久久人人人人人人| 人妻少妇偷人精品九色| 成人黄色视频免费在线看| 少妇精品久久久久久久| 在线观看国产h片| 女人久久www免费人成看片| 在线 av 中文字幕| 欧美日韩精品成人综合77777| 精品亚洲成国产av| 精品第一国产精品| 在线天堂最新版资源| 侵犯人妻中文字幕一二三四区| 99香蕉大伊视频| 乱码一卡2卡4卡精品| av天堂久久9| 久久久久精品人妻al黑| 亚洲欧美清纯卡通| 久久99蜜桃精品久久| 乱码一卡2卡4卡精品| 青春草亚洲视频在线观看| 国产男女超爽视频在线观看| 午夜激情av网站| 又大又黄又爽视频免费| 精品人妻在线不人妻| 国精品久久久久久国模美| 亚洲精品aⅴ在线观看| 亚洲av综合色区一区| 日韩中文字幕视频在线看片| 91精品三级在线观看| 欧美国产精品va在线观看不卡| 国产黄频视频在线观看| 一个人免费看片子| 日韩成人av中文字幕在线观看| 插逼视频在线观看| 侵犯人妻中文字幕一二三四区| 久久这里只有精品19| 考比视频在线观看| 久久国产亚洲av麻豆专区| 母亲3免费完整高清在线观看 | 亚洲三级黄色毛片| 天美传媒精品一区二区| 欧美xxⅹ黑人| 晚上一个人看的免费电影| 少妇的逼好多水| 精品酒店卫生间| 欧美日韩av久久| 欧美人与性动交α欧美精品济南到 | 欧美丝袜亚洲另类| 国产精品人妻久久久影院| 欧美日本中文国产一区发布| 丝袜脚勾引网站| 一区二区av电影网| 97超碰精品成人国产| 一本久久精品| 亚洲天堂av无毛| 男人添女人高潮全过程视频| 久久精品久久精品一区二区三区| 欧美精品一区二区大全| 在线亚洲精品国产二区图片欧美| 国产国拍精品亚洲av在线观看| 大香蕉久久网| 少妇人妻精品综合一区二区| 精品久久久久久电影网| 中国美白少妇内射xxxbb| 欧美 亚洲 国产 日韩一| 国产精品无大码| 国产又爽黄色视频| 久久韩国三级中文字幕| 国产永久视频网站| 97在线人人人人妻| 色视频在线一区二区三区| 成人毛片60女人毛片免费| 18禁动态无遮挡网站| 欧美另类一区| 波野结衣二区三区在线| 韩国av在线不卡| 免费不卡的大黄色大毛片视频在线观看| 国产一区二区三区综合在线观看 | 欧美日韩视频精品一区| 美女中出高潮动态图| 美女内射精品一级片tv| 大香蕉久久成人网| 亚洲第一av免费看| 亚洲精品av麻豆狂野| 午夜日本视频在线| 国产一区有黄有色的免费视频| 精品少妇久久久久久888优播| 成人毛片a级毛片在线播放| 亚洲少妇的诱惑av| 国产精品女同一区二区软件| 午夜福利网站1000一区二区三区| 内地一区二区视频在线| 丰满乱子伦码专区| 精品国产露脸久久av麻豆| 国产精品久久久久久精品古装| 国产精品三级大全| 全区人妻精品视频| 中文字幕制服av| www.熟女人妻精品国产 | 97人妻天天添夜夜摸| 国产成人免费观看mmmm| 99re6热这里在线精品视频| 在现免费观看毛片|