• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and simulation studies on delamination strength of laminated glass composites having polyvinyl butyral and ethyl vinyl acetate inter-layers of different critical thicknesses

    2018-08-25 03:15:30AjitanshuVedrtnam
    Defence Technology 2018年4期

    Ajitanshu Vedrtnam

    aDepartment of Applied Mechanics,Motilal Nehru National Institute of Technology Allahabad,Allahabad,UP,211004,India

    bDepartment of Mechanical Engineering,Invertis University,Bareilly,UP,243001,India

    Keywords:Delamination strength Composite material PVB Laminated glass Finite element analysis

    A B S T R A C T The laminated glasses(LGs)composites are gaining popularity as protective structural material.Delamination strength(DS)of(LGs)with different inter-layers and their different nominal thicknesses were compared.The effect of inter-layer thickness,delamination load,and inter-layer type on DS is clearly observed from this brief study.It is concluded that inter-layer thickness has the significant role in determining the DS of LGs.The statistical analysis confirmed the strong association of DS with inter-layer thickness and the interlayer type.It was found that the LG-PVB composite has the comparatively lower DS than LG-EVA composite and inter-layer thickness has the prominent role in the determination of DS in the LG-EVA composite.There is an increment in DS with an increment in critical inter-layer thickness in both LG-EVA and LG-PVB composites.The increment in the inter-layer thickness from 0.38 mm to 0.76 mm increases DS significantly;whereas,the further increment in the inter-layer thickness to the higher value has a lesser effect.The finite element model was constituted(without considering the effect of temperature)for determining DS of LG composite.The simulation results were in a good match with experimental results.The results of the present work can be utilized by the design engineers while selecting LG for structural applications.

    1.Introduction

    LG is a sandwiched composite material,composed of two pieces of outer glass layers(LG panels can have more than 2 glass layers)and one or more pieces of the interlayer sandwiched in-between the glasses.Inter-layer modifies the fracture pattern of LG,improves the post-breakage performance,and keeps together the wrecked pieces of glasses that can possibly cause hazardous incidents[1-4].The properties of the LG are generally determined by bending test(impact and blast performance are also widely discussed)of LG[1-24];acoustics[25],hardness[26],ringon ring[27]are also discussed in the cited literature.An experimental study on delamination strength(rare in cited literature)is reported in the present work.Delamination is the mode of failure in LG composites in which shear,fatigue or impact loading causes separation of glasses and polymer interlayer[1].

    Hooper has reported a mathematical model for four-point loading bending test of simply supported LG beams[8].Behr et al.have performed experimentation for determining bending strength of the monolithic and LG beams[9].Edel has reported the effect of temperature on the bending strength of LG[10].Norville et al.reported a multilayer model for describing the bending behavior of LG[11].Asik and Tezcan presented the three coupled non-linear differential equations for analyzing LG beams with different boundary conditions[12].Viciusa et al.compared load bearing ability of LG with Polyvinyl butyral(PVB),Ethyl vinyl acetate(EVA),and Sentry Glass(SG)inter-layers with at different temperatures using four-point bending test and found that SG inter-layer has more load bearing ability compared to LG-PVB and LG-EVA[13].Louter et al.reported the effects of humidity,temperature,thermal cycling,and load period on LG-SG performance[14,15].Belis et al.found that failure mechanism of LG-SG was considerably different from LG-PVB[16].Seshadri et al.reported dependence of the post fracture performance of LG on the polymer inter-layer[17].Biolzi et al.reported the difference between the gradual breakage of the LG-SGP and LG-PVB[18].Ivelin and Ivanov reported that the bending stress in glass layers decide load bearing ability of the LG and the inter-layer of LG should be thinner than the external glass layer under external pressure for the lightweight structural design[19].Galuppi and Carfagni have found the inconsistency in EN-standards and suggested that Enhanced Effective Thickness(EET)method can be effectively applied for LG constructions[20].Nhamoinesu and overend have presented a FE based model for the post-breakage behavior of the LG and compared it with experimental results obtained a four-point bending test of the LG[21].Calderone et al.found that the effective thickness technique has been an efficient method for calculating the glass stress and deflection of the LG[22].Serafinavi?ius et al.experimentally investigated long-term bending strength of LG,by conducting four-point bending test on LG with PVB,EVA and SG inter-layers at different temperatures[23].Galuppi et al.also evaluated the enhanced effective thickness for multi-layered LG[24].The fatigue strength of rectangular glass specimen subjected to cyclic-torsion depends on the ratio of specimen width to specimen thickness[28].A few studies on torsional buckling of LG were reported in the cited literature[29-32].Belis and Luible[31]evaluated an existing model for lateral torsional buckling analysis of the LG-PVB beams using simulations and the experiments.Amadio and Bedon[32]investigated the out-of-plane bending by developing an analytical model based on Newmark's theory.Additionally,few buckling curves were also proposed to find the effect of different aspects[33].The fatigue strength of laminated composites is discussed widely[34-37],but DS of LG composite with the variety of the interlayers(types and thickness)considered in the present work along with the presented experimental setup was not cited in literature.

    DS of LG having PVB/EVA inter-layers with different nominal thicknesses(0.38/0.76/1.52mm)is evaluated in the present work.The results of the experimentation were validated by the statistical analysis using MINITAB.A finite element(FE)model was constituted for determining the effect of interlayer thickness on DS of LG composites.An additional objective of the present work includes determining the suitability of the type of LG for different structural applications.

    2.Material and methods

    The LG specimens were prepared by combining two annealed float soda lime glasses(5mm thick)with an inter-layer of PVB/EVA of 0.38/0.76/1.52mm thickness.The LG-PVB and LG-EVA samples are prepared at Hindustan Glass Works Ltd,Allahabad,India and at Mehr Image Pvt.Ltd.,Delhi,India respectively.The shear test was conducted on the LG-PVB and LG-EVA specimens having three different critical inter-layer thicknesses(0.38 mm,0.76mm and 1.52 mm)following ASTM D3163.The test method ASTM D3163 is an extension for ASTM D1002 and used for rigid plastic adherents.The test method is useful for generating comparative shear strength data for joints made from a number of plastics.The test method includes the following steps:

    1)Firstly,the specimens were heated up to 100-120°C for LG-EVA composite and 150-160°C for LG-PVB composite in a hot air oven for the softening of inter-layer (causing partial delamination).

    2)Further,the softened partially delaminated LG samples placed inside the shear testing machine.

    3)Further,the LG specimens were fixed in the grips of the testing machine such that the applied load coincides with the long axis of the test specimen.The specimen was loaded at a rate of 8.3-9.7MPa(1200-1400 psi)of shear area per minute(at 0.05 in./min cross head speed)up to the failure of the specimen.

    4)Finally,the shear stress at which failure occurred is noted.Fig.1 shows the steps of experimentation and schematic diagram of delamination process diagrammatically.The schematic diagram reflects the way LG composite is fixed and loading is applied inside the shear testing machine.

    3.Results and discussion

    The result and discussion section is divided into three parts:the first part reports experimental results and discussion on same.Further,the statistical analysis is reported for ensuring the validity of experimental results.Finally,the FE simulation results are reported.

    3.1.Experimentation

    Table 1 shows the results obtained from the testing of 60 samples having different inter-layers and different thicknesses.

    The result obtained from testing of 10.38mm thick LG-PVB shows that a maximum DS is 6N/mm2whereas the minimum DS is 63.5N/mm2.The variation in the observed values are due to the non-uniform behavior of glass due to non-uniformity of the chemical composition,surface(crack)and edge defect,the duration of the loading,glass manufacturing techniques(including heat treatment,environmental parameters),the geometry production,storage,cutting,and transportation of the LG sample,which requires further intensive investigation[38].The results obtained from the testing of 10.38mm thick LG-EVA shows that a maximum DS is 79.72 N/mm2whereas the minimum DS is 70.55N/mm2.The DS of LG-EVA samples are higher at an average from LG-PVB samples.Results obtained from the testing of 10.76 mm thick LGPVB reflects the maximum DS is 98.63 N/mm2whereas the minimum DS is 85.25 N/mm2.It clearly indicates that increasing the inter-layer thickness increases the DS.Testing of LG-EVA 10.76mm thick samples shows that a maximum DS is 97.73 whereas the minimum DS is 95.55 N/mm2.The LG-EVA 11.52 mm thick samples have maximum 129.21 N/mm2whereas the minimum DS is 126.15N/mm2.The testing of 11.52 mm thick LG-PVB shows that a maximum DS is 117.32N/mm2where as the minimum DS is106.47 N/mm2.From the experimental results,it can be safely concluded that increasing the interlayer thickness increases the DS and LG-EVA is having comparatively higher DS than LG-PVB.

    3.2.Statistical analysis

    Statistical analysis is conducted using MINITAB software for the validation and description of experimental results.The F value shows the dependency of DS on inter-layer thickness.The higher F-value of LG-EVA also reflects that LG-PVB is having comparatively lower DS and inter-layer thickness has more prominent role in the determination of DS in case of LG-EVA.A general linear model of Analysis of variance(ANOVA)is constituted for the DS considering inter-later thickness and inter-layer type using an adjusted sum of square for the test.

    3.2.1.Analysis of variance(ANOVA)

    ANOVA includes a general linear model preferable for factorial designs,in which main effects and interactions between one or more factors are to be determined.In the present work,ANOVA is one of the most suitable way to establish the dependency of DS on interlayer type and inter layer thickness.Table 2(a)shows the factors with their different levels considered in the present study.Table 2(b)shows the result of ANOVA.

    Table 1 Results of DS test.

    Table 2(a)Factors with their levels for ANOVA.

    Table 2(b)Results of ANOVA.

    ANOVA clearly reflects that the number of cycle withstand by the LG samples depends most significantly on inter-layer thickness followed by type of interlayer.

    Fig.2 shows the residue plots obtained from ANOVA.The pencil thickness plot shows that the data qualifies the pencil thickness test,thus,data is normally distributed.It also reflects that an error is within the considerable limits.

    3.2.2.Regression analysis

    The regression analysis is conducted for LG-PVB samples.LGEVA samples follow the similar patterns as LG-PVB samples,however,with higher DS values.Table 3(a),Table 3(b),and Table 3(c)shows the results of regression analysis of LG samples.

    It is safe to conclude from the regression and ANOVA output that the errors in interpretations of the experimentation results are within considerable limit.The DS of LG composite significantly depends on the interlayer thickness[2,3].

    3.3.Numerical simulation

    A numerical model is presented to predict the effect of interlayer thickness on delamination strength of laminated glass.The principle of numerical modelling is presented in Fig.3.The simulation was performed considering the experimental set-up used.The loading conditions were simulated assuming the similar boundary and the loading condition as used in experimentation.

    The maximum load at which delamination of LG composite took place(116.3N)was applied as line load at the centre of specimen and one side of LG sample.The samples were kept fixed at one of the end(lateral face of the sample)using nodal restraints.The linear elastic material model is followed during simulation[1-3].The tetrahedron, fine mesh(number of nodes-24872,number of elements-5866)was used,grid refinement study was also conducted but no significant changes were observed in the response.The properties of Glass and inter-layers(Table 4)were taken from Refs.[1,2].

    Fig.4 shows the sample output of simulation results.The Fig.4 clearly shows that the interlayer thickness has the significant effect on DS.The maximum deflection(resulted after separation of glasses)is 86.81%lesser in LG composite having 11.52mm interlayer than the LG composite having 10.38 mm interlayer at 116.3 N delamination load.The LG composite having 10.76mm thick interlayer has 57.6%less deflection after delamination than the LG composite having 10.38 mm thick interlayer.The DS of LG increases with the interlayer thickness as reflected by the experimentation results.It is also reflected by simulation results that increment from 0.38mm to 0.76mm has more significant than the further increment in the interlayer thickness.However,results of experimentation and simulation can't be compared,as the effect of temperature is not considered in the simulation.

    Table 3(a)Regression statistics.

    Table 3(b)Results of regression analysis.

    4.Conclusions

    Table 4 Material properties used in simulation.

    The interlayer type and interlayer thickness have a significant effect on DS.LG-EVA has higher DS when compared to LG-PVB for same critical inter-layer thickness.The statistical analysis(highF-statics value)confirmed the dependability of DS of LG on the interlayer type and inter-layer thickness.Pvalue shows that the error in the analysis is within considerable limits.Inter-layer thickness has a more prominent role in the determination of DS in the case of LGEVA,however,the effect of inter-layer type is also significant on DS.An increment in inter-layer thickness results in an increment in average DS before fracture.DS significantly increases when the inter-layer thickness increases from 0.38mm to 0.76 mm but the further increment of interlayer thickness to 1.52 mm reported lesser increment in DS.The results of present work reflected that the experimentation along with the use of the statistical techniques gives the conclusive results for designing the LG structures.Aparallel comparison of experimental results,FE method with other computational methods like boundary element analysis can be performed in future for further accurate prediction of the DS of LG by theoretical means.The shortcoming of present work includes selecting the linear elastic material model and not considering the effect of temperature during simulation.The experimental results can be utilized for developing a further specialized numerical model(utilizing other means than FE method)that can predict the performance and DS of LG in structural,automotive,and other applications adequately.

    Table 3(c)Results of ANOVA.

    Acknowledgement

    Present work is supported by Technical Education Quality Improvement Programme(TEQIP-II)of Motilal Nehru National Institute of Technology Allahabad,Allahabad(U·P.),India financially and also by Invertis University,Bareilly,(U·P.),India.

    国产亚洲精品久久久com| 校园人妻丝袜中文字幕| av专区在线播放| 日韩成人av中文字幕在线观看 | 婷婷色综合大香蕉| 欧美人与善性xxx| 欧美色欧美亚洲另类二区| 国产精品精品国产色婷婷| 不卡一级毛片| 国内久久婷婷六月综合欲色啪| 在线观看午夜福利视频| 少妇丰满av| 成年版毛片免费区| 国产 一区 欧美 日韩| 国产欧美日韩一区二区精品| 亚洲精品成人久久久久久| 看十八女毛片水多多多| 欧美国产日韩亚洲一区| 午夜福利在线观看吧| 国产蜜桃级精品一区二区三区| 日本黄大片高清| 小蜜桃在线观看免费完整版高清| 国产精品日韩av在线免费观看| 亚洲成人精品中文字幕电影| 女同久久另类99精品国产91| 国产在视频线在精品| 午夜福利视频1000在线观看| 国产高清视频在线观看网站| 神马国产精品三级电影在线观看| 国产探花在线观看一区二区| 麻豆国产av国片精品| 99在线人妻在线中文字幕| av福利片在线观看| 免费一级毛片在线播放高清视频| 日本撒尿小便嘘嘘汇集6| 国产淫片久久久久久久久| 丰满乱子伦码专区| eeuss影院久久| 青春草视频在线免费观看| 国产日本99.免费观看| 国产国拍精品亚洲av在线观看| 日本成人三级电影网站| 亚洲人成网站高清观看| 人妻少妇偷人精品九色| 亚洲av第一区精品v没综合| 日韩制服骚丝袜av| 寂寞人妻少妇视频99o| av在线亚洲专区| 在线播放国产精品三级| 亚洲人与动物交配视频| 日韩欧美免费精品| 国产精品,欧美在线| 男女啪啪激烈高潮av片| 国产精品99久久久久久久久| 中出人妻视频一区二区| 亚洲最大成人手机在线| 丰满乱子伦码专区| 午夜a级毛片| 你懂的网址亚洲精品在线观看 | 亚洲成人中文字幕在线播放| 国产高清不卡午夜福利| 少妇的逼水好多| 国产亚洲欧美98| 天天躁日日操中文字幕| 国产亚洲91精品色在线| 97人妻精品一区二区三区麻豆| 高清午夜精品一区二区三区 | 别揉我奶头 嗯啊视频| 禁无遮挡网站| 露出奶头的视频| 久久精品国产清高在天天线| 看非洲黑人一级黄片| 一区二区三区高清视频在线| 国产伦在线观看视频一区| 欧美一级a爱片免费观看看| 干丝袜人妻中文字幕| 亚洲婷婷狠狠爱综合网| 中国国产av一级| 变态另类丝袜制服| 草草在线视频免费看| 日本免费一区二区三区高清不卡| .国产精品久久| 成人综合一区亚洲| 久久精品国产99精品国产亚洲性色| 久久国内精品自在自线图片| 日日干狠狠操夜夜爽| 十八禁网站免费在线| 日本 av在线| 国产精品无大码| 久久精品91蜜桃| 国产精品乱码一区二三区的特点| 国产精品电影一区二区三区| 午夜精品国产一区二区电影 | 国产 一区 欧美 日韩| 色视频www国产| 亚洲四区av| av卡一久久| 有码 亚洲区| 久久精品夜夜夜夜夜久久蜜豆| 婷婷精品国产亚洲av在线| 国产午夜福利久久久久久| 日韩,欧美,国产一区二区三区 | 丰满人妻一区二区三区视频av| 最好的美女福利视频网| 熟女电影av网| 亚洲经典国产精华液单| 午夜免费男女啪啪视频观看 | 国产 一区精品| 寂寞人妻少妇视频99o| 国产白丝娇喘喷水9色精品| 小蜜桃在线观看免费完整版高清| 丝袜喷水一区| 亚洲美女搞黄在线观看 | 全区人妻精品视频| 久久久久久久久久成人| 搡女人真爽免费视频火全软件 | 此物有八面人人有两片| 网址你懂的国产日韩在线| 搞女人的毛片| 国产欧美日韩精品一区二区| 级片在线观看| 欧美高清性xxxxhd video| 精品日产1卡2卡| 亚洲一区高清亚洲精品| 国产人妻一区二区三区在| 久久午夜亚洲精品久久| 两个人视频免费观看高清| 舔av片在线| 中文字幕熟女人妻在线| 亚洲av.av天堂| 亚洲美女视频黄频| 亚洲国产精品sss在线观看| 久久精品人妻少妇| 国产成人精品久久久久久| 国产精品久久久久久久电影| 日韩精品中文字幕看吧| 国产午夜精品论理片| 真人做人爱边吃奶动态| 亚洲在线自拍视频| 亚洲在线自拍视频| 观看免费一级毛片| 国产亚洲精品av在线| 中文字幕av在线有码专区| 大又大粗又爽又黄少妇毛片口| av黄色大香蕉| 欧美极品一区二区三区四区| 欧美极品一区二区三区四区| 欧美色欧美亚洲另类二区| 国产真实乱freesex| 一个人观看的视频www高清免费观看| 偷拍熟女少妇极品色| 亚洲无线在线观看| 国产一区二区激情短视频| 哪里可以看免费的av片| 国产精品国产三级国产av玫瑰| 婷婷六月久久综合丁香| 亚洲精品日韩在线中文字幕 | 国产精品99久久久久久久久| 亚洲中文日韩欧美视频| 亚洲欧美成人精品一区二区| 免费人成在线观看视频色| 淫妇啪啪啪对白视频| 国产高清三级在线| 日本在线视频免费播放| 亚洲av不卡在线观看| 国产亚洲欧美98| 亚洲精品456在线播放app| 久久人人爽人人片av| a级毛色黄片| 亚洲一区高清亚洲精品| 韩国av在线不卡| 99热这里只有是精品在线观看| 午夜激情欧美在线| 99热6这里只有精品| 日本黄色片子视频| 久久精品国产亚洲网站| 非洲黑人性xxxx精品又粗又长| 最近2019中文字幕mv第一页| 男人和女人高潮做爰伦理| 国产亚洲av嫩草精品影院| 久久久久国内视频| 亚洲精品国产av成人精品 | 看黄色毛片网站| 波多野结衣巨乳人妻| 91在线观看av| 成人精品一区二区免费| 久久久久久久久中文| 国产亚洲精品av在线| 日韩国内少妇激情av| 黄色日韩在线| 婷婷亚洲欧美| 亚洲经典国产精华液单| 精品福利观看| 成人特级黄色片久久久久久久| 国产女主播在线喷水免费视频网站 | 中文字幕av在线有码专区| 亚洲人成网站在线观看播放| 国产在线男女| 真人做人爱边吃奶动态| 内射极品少妇av片p| 亚洲精华国产精华液的使用体验 | 国产在线男女| 亚洲欧美成人精品一区二区| 亚洲四区av| 久久天躁狠狠躁夜夜2o2o| 六月丁香七月| 一本一本综合久久| 精品无人区乱码1区二区| 久久人人爽人人片av| 免费看日本二区| 欧美极品一区二区三区四区| 午夜久久久久精精品| 亚洲在线自拍视频| 欧美高清成人免费视频www| 伦精品一区二区三区| 黄色日韩在线| 国产一级毛片七仙女欲春2| 日韩精品青青久久久久久| 天天躁夜夜躁狠狠久久av| 亚洲成人精品中文字幕电影| 免费av毛片视频| 成人三级黄色视频| 草草在线视频免费看| 国产成年人精品一区二区| 国产精品三级大全| 日韩欧美免费精品| 日韩欧美精品免费久久| 国内精品宾馆在线| 夜夜夜夜夜久久久久| 亚洲人成网站在线播| 久久人妻av系列| 午夜视频国产福利| 欧美激情国产日韩精品一区| 国产成人freesex在线 | 国产精品日韩av在线免费观看| 我要搜黄色片| 欧美成人a在线观看| 99久国产av精品国产电影| 麻豆乱淫一区二区| 99热这里只有精品一区| 国产精品永久免费网站| 波多野结衣巨乳人妻| 日韩精品中文字幕看吧| 亚洲国产高清在线一区二区三| 男女啪啪激烈高潮av片| 最新中文字幕久久久久| 99热只有精品国产| 一级毛片电影观看 | 在线免费十八禁| 啦啦啦啦在线视频资源| 日本在线视频免费播放| 日日摸夜夜添夜夜添小说| 国产精品99久久久久久久久| 在线天堂最新版资源| 亚洲真实伦在线观看| 一区福利在线观看| АⅤ资源中文在线天堂| 97超视频在线观看视频| 国产精品爽爽va在线观看网站| 日韩av在线大香蕉| av女优亚洲男人天堂| 成人鲁丝片一二三区免费| 十八禁国产超污无遮挡网站| av专区在线播放| 看十八女毛片水多多多| 22中文网久久字幕| 日韩制服骚丝袜av| 亚洲欧美清纯卡通| 干丝袜人妻中文字幕| 十八禁国产超污无遮挡网站| 亚洲精华国产精华液的使用体验 | 亚洲天堂国产精品一区在线| 可以在线观看毛片的网站| 日韩精品中文字幕看吧| 成人毛片a级毛片在线播放| 亚洲乱码一区二区免费版| 国产成人91sexporn| 在线观看美女被高潮喷水网站| 18禁在线无遮挡免费观看视频 | 一个人看的www免费观看视频| 三级国产精品欧美在线观看| 国产午夜精品久久久久久一区二区三区 | 国产女主播在线喷水免费视频网站 | 成人鲁丝片一二三区免费| a级毛色黄片| 成人鲁丝片一二三区免费| 精品午夜福利视频在线观看一区| 中文字幕久久专区| 日本熟妇午夜| 老熟妇仑乱视频hdxx| 久久国产乱子免费精品| 国产国拍精品亚洲av在线观看| 毛片一级片免费看久久久久| 麻豆乱淫一区二区| 成人美女网站在线观看视频| 搞女人的毛片| 亚洲成人久久性| 日本 av在线| 乱人视频在线观看| 99久久精品国产国产毛片| 老司机福利观看| 国产精品人妻久久久久久| 亚洲电影在线观看av| 久久精品久久久久久噜噜老黄 | 性色avwww在线观看| 简卡轻食公司| 国产精品久久电影中文字幕| 亚洲欧美成人精品一区二区| av.在线天堂| 久久国产乱子免费精品| 在线观看美女被高潮喷水网站| 免费看av在线观看网站| 色综合色国产| 成人三级黄色视频| 丰满乱子伦码专区| 日韩高清综合在线| 如何舔出高潮| 国产亚洲精品av在线| 麻豆久久精品国产亚洲av| 国产精品av视频在线免费观看| 欧美性猛交╳xxx乱大交人| 日韩亚洲欧美综合| 国产乱人偷精品视频| 日本熟妇午夜| 国产男靠女视频免费网站| 国产成人福利小说| 日本一二三区视频观看| 内地一区二区视频在线| 日韩成人伦理影院| 亚洲成人久久性| 精品乱码久久久久久99久播| 99国产精品一区二区蜜桃av| 一级黄片播放器| 国产精品电影一区二区三区| 中文亚洲av片在线观看爽| 一区福利在线观看| 校园人妻丝袜中文字幕| 秋霞在线观看毛片| 99久久精品一区二区三区| 国产精品久久久久久久电影| 久久亚洲精品不卡| 国产高清有码在线观看视频| 亚洲成a人片在线一区二区| 天堂av国产一区二区熟女人妻| 高清午夜精品一区二区三区 | 深夜a级毛片| 成人漫画全彩无遮挡| 国产人妻一区二区三区在| 黄色欧美视频在线观看| 变态另类成人亚洲欧美熟女| 国内揄拍国产精品人妻在线| 嫩草影院新地址| 久久久国产成人精品二区| 午夜日韩欧美国产| 久久久久久九九精品二区国产| 亚洲精品色激情综合| 亚洲av免费高清在线观看| 不卡视频在线观看欧美| 国产男人的电影天堂91| 一卡2卡三卡四卡精品乱码亚洲| 全区人妻精品视频| 久久久久久大精品| 麻豆精品久久久久久蜜桃| 国产免费男女视频| 男人舔女人下体高潮全视频| 天天躁日日操中文字幕| 国产69精品久久久久777片| 成人一区二区视频在线观看| 嫩草影视91久久| 久久中文看片网| 亚洲18禁久久av| 日韩亚洲欧美综合| 午夜久久久久精精品| 99视频精品全部免费 在线| 男女做爰动态图高潮gif福利片| 综合色丁香网| 高清毛片免费看| 不卡视频在线观看欧美| 亚洲精品一区av在线观看| 美女xxoo啪啪120秒动态图| 一本一本综合久久| 国产激情偷乱视频一区二区| 91久久精品电影网| 日本精品一区二区三区蜜桃| 精品欧美国产一区二区三| 精品久久久久久久久久免费视频| .国产精品久久| 国产亚洲91精品色在线| 国产淫片久久久久久久久| 亚洲天堂国产精品一区在线| 国内精品一区二区在线观看| 午夜a级毛片| 日日干狠狠操夜夜爽| 蜜桃久久精品国产亚洲av| 白带黄色成豆腐渣| 日韩中字成人| 禁无遮挡网站| 国产大屁股一区二区在线视频| 欧美三级亚洲精品| 久久久久久久久久黄片| 色播亚洲综合网| 午夜久久久久精精品| 精品熟女少妇av免费看| 亚洲av.av天堂| 一本一本综合久久| 国产色婷婷99| 精品一区二区三区视频在线观看免费| 国产精品三级大全| 精品一区二区三区视频在线| 免费人成在线观看视频色| 日韩一本色道免费dvd| 99在线人妻在线中文字幕| 久久精品夜色国产| 久久久久久久久中文| 97碰自拍视频| 少妇猛男粗大的猛烈进出视频 | 91午夜精品亚洲一区二区三区| 国产亚洲91精品色在线| 成人性生交大片免费视频hd| 国产成人一区二区在线| 亚洲精品一区av在线观看| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av天美| 少妇高潮的动态图| 国产av不卡久久| 国产片特级美女逼逼视频| 精品国产三级普通话版| 免费大片18禁| 高清毛片免费看| 成人特级黄色片久久久久久久| 97热精品久久久久久| 久久久久久久久久久丰满| 亚洲av二区三区四区| 国产精品免费一区二区三区在线| 日本一二三区视频观看| 亚洲av成人精品一区久久| 日产精品乱码卡一卡2卡三| 欧美性感艳星| 久久久久精品国产欧美久久久| 熟女电影av网| 九色成人免费人妻av| 亚洲精品456在线播放app| 国产成人freesex在线 | 国产日本99.免费观看| 特级一级黄色大片| 日韩三级伦理在线观看| 不卡一级毛片| 香蕉av资源在线| 久久99热6这里只有精品| 婷婷亚洲欧美| 免费不卡的大黄色大毛片视频在线观看 | 亚洲第一区二区三区不卡| 国国产精品蜜臀av免费| 最近的中文字幕免费完整| 伦理电影大哥的女人| 黑人高潮一二区| 日韩 亚洲 欧美在线| av福利片在线观看| 亚洲av美国av| 麻豆av噜噜一区二区三区| 免费无遮挡裸体视频| 国产欧美日韩精品亚洲av| 欧美中文日本在线观看视频| 中国美女看黄片| 亚洲va在线va天堂va国产| 日韩成人伦理影院| 国产 一区精品| 免费搜索国产男女视频| 人妻丰满熟妇av一区二区三区| 亚洲精品亚洲一区二区| 一边摸一边抽搐一进一小说| 大又大粗又爽又黄少妇毛片口| 美女免费视频网站| 18禁裸乳无遮挡免费网站照片| 可以在线观看毛片的网站| 久久精品夜夜夜夜夜久久蜜豆| 春色校园在线视频观看| 天天一区二区日本电影三级| 美女大奶头视频| 日韩亚洲欧美综合| 成人高潮视频无遮挡免费网站| 亚洲内射少妇av| 免费看日本二区| 日韩一本色道免费dvd| 欧美一区二区亚洲| 成人综合一区亚洲| 午夜影院日韩av| 欧美xxxx黑人xx丫x性爽| 国产精品不卡视频一区二区| 亚洲电影在线观看av| 综合色av麻豆| 99久久成人亚洲精品观看| 久久久久久九九精品二区国产| 日韩欧美精品免费久久| 在线国产一区二区在线| 一进一出好大好爽视频| 少妇熟女欧美另类| 日本黄色视频三级网站网址| 亚洲精品国产成人久久av| 国产大屁股一区二区在线视频| 神马国产精品三级电影在线观看| 91久久精品国产一区二区成人| 91在线观看av| 波多野结衣高清作品| 欧洲精品卡2卡3卡4卡5卡区| 精品人妻视频免费看| 可以在线观看的亚洲视频| 国产午夜福利久久久久久| 18禁裸乳无遮挡免费网站照片| 日韩欧美在线乱码| 深夜精品福利| 成人三级黄色视频| 天堂动漫精品| 亚洲天堂国产精品一区在线| ponron亚洲| 18禁裸乳无遮挡免费网站照片| 人人妻人人看人人澡| 国产高清视频在线观看网站| 特大巨黑吊av在线直播| 日韩av不卡免费在线播放| videossex国产| 亚洲最大成人中文| 舔av片在线| 午夜精品一区二区三区免费看| 午夜影院日韩av| 日韩 亚洲 欧美在线| 亚洲av五月六月丁香网| 免费观看人在逋| 亚洲欧美日韩高清在线视频| 热99在线观看视频| 欧美xxxx性猛交bbbb| 国内精品美女久久久久久| 中文字幕熟女人妻在线| 亚洲精品乱码久久久v下载方式| 久久人人精品亚洲av| 亚洲av免费高清在线观看| 亚洲人成网站在线播放欧美日韩| 精品免费久久久久久久清纯| 麻豆一二三区av精品| 99久久中文字幕三级久久日本| 亚洲精品乱码久久久v下载方式| 日韩一本色道免费dvd| 麻豆国产av国片精品| 亚洲性久久影院| 久久久久久久久大av| 中文字幕免费在线视频6| 午夜福利高清视频| 最近在线观看免费完整版| 小说图片视频综合网站| 一区二区三区四区激情视频 | 欧美中文日本在线观看视频| 三级国产精品欧美在线观看| 禁无遮挡网站| 国产精品国产高清国产av| 我要搜黄色片| a级一级毛片免费在线观看| 一级黄色大片毛片| 国产男人的电影天堂91| 国产乱人偷精品视频| 少妇丰满av| 精品99又大又爽又粗少妇毛片| 午夜影院日韩av| 中文字幕精品亚洲无线码一区| 悠悠久久av| 男人的好看免费观看在线视频| 国产老妇女一区| 亚洲aⅴ乱码一区二区在线播放| 国产伦一二天堂av在线观看| 国产男人的电影天堂91| 精品一区二区三区av网在线观看| 在线观看一区二区三区| 中文字幕免费在线视频6| 亚洲精品在线观看二区| 在线看三级毛片| 91久久精品电影网| 精品人妻熟女av久视频| 你懂的网址亚洲精品在线观看 | 天堂av国产一区二区熟女人妻| 久久久久久伊人网av| 级片在线观看| 日本 av在线| 国产久久久一区二区三区| 亚洲精品一区av在线观看| 欧美色欧美亚洲另类二区| 国产高清视频在线播放一区| 成人av在线播放网站| 久久精品91蜜桃| 午夜精品在线福利| 插逼视频在线观看| 久久久久国内视频| 亚洲av五月六月丁香网| 国产精品久久视频播放| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩卡通动漫| 国产伦一二天堂av在线观看| 男女之事视频高清在线观看| 97超碰精品成人国产| 免费看美女性在线毛片视频| 午夜视频国产福利| 欧美性猛交╳xxx乱大交人| 国产伦精品一区二区三区四那| a级毛片a级免费在线| 国产精品野战在线观看| 淫秽高清视频在线观看| 免费一级毛片在线播放高清视频| 成人特级av手机在线观看| 免费人成在线观看视频色| 久久久精品94久久精品| 可以在线观看毛片的网站| 亚洲精品国产成人久久av| 真人做人爱边吃奶动态| 久久久精品欧美日韩精品| 少妇的逼水好多| 一级毛片久久久久久久久女| 中国美白少妇内射xxxbb|