• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unusual retention behavior of omeprazole and its chiral impurities B and E on the amylose tris(3-chloro-5-methylphenylcarbamate)chiral stationary phase in polar organic mode

    2018-08-22 06:41:24RosellFerrettiLeoZnittiAdrinoCsulliRobertoCirilli
    Journal of Pharmaceutical Analysis 2018年4期

    Rosell Ferretti,Leo Znitti,Adrino Csulli,Roberto Cirilli,*

    aCentro nazionale per il controllo e la valutazione dei farmaci,Istituto Superiore di Sanità,Viale Regina Elena 299,00161 Rome,Italy

    bEuropean Union Reference Laboratory for the Parasites,Istituto Superiore di Sanità,Viale Regina Elena 299,00161 Rome,Italy

    cWorld Health Organization Collaborating Centre for the Epidemiology,Detection and Control of Cystic and Alveolar Echinococcosis(In Animals and Humans),Istituto Superiore di Sanità,Viale Regina Elena 299,00161 Rome,Italy

    Keywords:Chiralpak?IG-3 Retention Enantioselective HPLC Omeprazole Column temperature Basic/acid additives

    ABSTRACT Recent reports have demonstrated that the new commercially available immobilized-type chiral stationary phases(CSPs)containing amylose tris(3-chloro-5-methylphenylcarbamate)(ACMPC)as a selector exhibit not only an exceptionally high enantioselectivity in high-performance liquid chromatography(HPLC)but they are also applicable to a wide range of chiral analytes.Herein,we report the results obtained in the HPLC analysis of omeprazole and its impurities B and E on the ACMPC-based Chiralpak IG-3 CSP(CSP)under polar organic conditions.A systematic evaluation of the retention characteristics of the selected benzimidazole chiral probes was carried out by changing the composition of the mobile phase and the column temperature.It is worth emphasizing that the high affinity of both enantiomers of all analytes recorded in pure methanol mode dramatically decreased incorporating small volumes of either basic or acid additives in the mobile phase.Unspecified sites of the IG-3 CSP presumably involved in strong and non-stereoselective H-bonding contacts with chiral analytes are assumed responsible for the unproductive retention process.

    1.Introduction

    Amylose tris(3-chloro-5-methylphenylcarbamate)(ACMPC)is a new meta-substituted polysaccharide-based selectorforenantioselective HPLC.Three versions of chiral stationary phases(CSPs)have been prepared by immobilizing the chlorinated amylose phenylcarbamate derivative onto particles of silica of different diameters(typically 1.6,3.0 and 5.0 μm,from which the trade names Chiralpak?IG-U,Chiralpak?IG-3 and Chiralpak IG?,respectively,came).Although only since 2016 it has become commercially available,the Chiralpak?IG CSP seems to have suitable characteristics for the separation of enantiomers on an analytical and semipreparative scale.In fact,as demonstrated in an accurate study carried out by Ghanem et al.[1],it combines a broad chiral resolving ability,which is typical of other more popular polysaccharide selectors such as tris-(3,5-dimethylphenylcarbamate)of amylose(ADMPC)and cellulose,with a universal solvent compatibility resulting from the immobilization process.In the same report it was highlighted that the replacing of a methyl group on the phenyl moiety of the parent ADMPC by a chlorine atom gives rise to a substantial enlarging of the enantioselectivity spectrum toward chiral analytes of pharmaceutical interest.

    Recently,our research group has showed that the ACMPC-based CSP can be successfully applied to develop efficient analytical and semipreparative protocols for the enantiomer separation of the anthelmintic drug albendazole sulfoxide[2],known also as ricobendazole,and a series of novel secondary alcohols,endowed with rhinovirus inhibitory activity[3].

    However,exhaustive and clear chromatographic and spectroscopic data to understand its retentive and chiral recognition mechanism are still missing.

    In the present article,three biologically active chiral sulfoxides,omeprazole(OME)and its impurities B and E(IMP-B and IMP-E),have been selected as molecular probes to investigate the chromatographic behavior of the Chiralpak IG-3 column under polar organic mode.OME is currently marketed as racemic mixture and single(S)-enantiomer in treatment of gastric-acid related diseases[4,5].As shown in Fig.1,the structures of IMP-B and IMP-E are strictly related to OME lacking in the former the methoxy group at 4-position of the pyridine moiety and the latter resulting from the oxidation of the pyridine nitrogen.

    Fig.1.Structure of(S)-OME(A)and its chiral impurities B(B)and E(C).

    A particular attention was devoted to the study of the in fluence of mobile phase composition and column temperature on the retentive comportment of the IG-3 CSP.

    The knowledge acquired on an analytical scale was finally applied to set up productive multimilligram chiral separations of OME,IMP-B and IMP-E.

    2.Experimental

    2.1.Chemicals and reagents

    OME and the impurities shown in Fig.1 were purchased from the European Directorate for the Quality of Medicines&Healthcare(EDQM)(France)and United States Pharmacopoeial Convention,Rockville(MD).HPLC-grade solvents were used as supplied by Aldrich(Milan,Italy).HPLC enantioseparations were performed by using stainless-steel Chiralpak?IG-3(250 mm × 4.6 mm,3μm)and Chiralpak?IG(250 mm × 10mm,5μm)columns(Chiral Technologies Europe,Illkirch,France).

    2.2.Instruments and chromatographic conditions

    The HPLC apparatus consisted of a Dionex P580 LPG pump,an ASI-100 T autosampler,an STH 585 column oven,a PDA-100 UV detector or a Jasco(Tokyo,Japan)Model CD 2095 Plus UV/CD detector;data were acquired and processed by a Chromeleon Datasystem (DionexCorporation,Sunnyvale,CA).Forsemipreparative separation,a Perkin-Elmer(Norwalk,CT,USA)200 LC pump equipped with a Rheodyne(Cotati,CA,USA)injector,a 5000μL sample loop,a Perkin-Elmer LC 101 oven and Waters 484 detector(Waters Corporation,Milford,MA,USA)was used.The signal was acquired and processed by Clarity software(DataApex,Prague,The Czech Republic).

    In analytical separations,fresh standard solution of OME and single impurities were prepared shortly before using by dissolving 1–3 mg of each analyte in the mobile phase.

    In order to ensure reproducible chromatographic performance,after the incorporation of acid or basic additives into the mobile phase,the IG-3 column was washed with the following mobile phases:ethanol at 0.5 mL/min for 30 min,followed by tetrahydrofuran at 0.5 mL/min for 120 min and, finally,ethanol at 0.05 mL/min for 120 min.

    2.3.Enantiomer elution order

    Theenantiomerelution orderoftheinvestigated chiral compounds was unambiguously established by evaluating the on-line CD signal monitored at 280 nm during the enantioselective analysis.As demonstrated previously[6],at the diagnostic wavelength of 280 nm there is a univocal correlation between CD properties and absolute configuration of the eluting enantiomer.In all elution modes investigated in this work,the first eluting enantiomer of OME and IMP-E on the IG-3 CSP exhibited negative CD signal at 280 nm which was related to the(S)-configuration.On the contrary,the first eluting (R)-enantiomer of IMP-B on the IG-3 CSP exhibited positive CD signal at the same wavelength.

    3.Results and discussion

    3.1.Analytical HPLC enantioseparation in polar organic conditions

    Initially,pure methanol and ethanol were used as mobile phases for the enantioseparation of OME,IMP-B and IMP-E on the Chiralpak IG-3 CSP.

    Chromatographic data collected from the measurements of retention,enantioselectivity and resolution at the column temperature of 25°C and flow rate of 1mL/min are summarized in Table 1.

    Comparing the data obtained with two alcoholic mobile phases it can be noted that methanol provided superior chiral resolving ability than ethanol for all the tested chiral analytes.

    Undermethanolmode,the highestvalue ofthe enantioseparation factor was observed for IMP-B(α=8.83)whereas the lowest degree of discrimination was observed for the IMP-E enantiomers(α=1.54).Even in the case of OME,a rather high value of enantioselectivity factor(α=2.35)was recorded.

    As appears in Table 1,the(S)-enantiomers of OME and IMP-E were found to be eluted before than(R)-counterparts.On the contrary,for IMP-B the(S)-configuration was assigned to the more retained enantiomer.The reversal of the enantiomer elution order suggests that the methoxy group of OME and IMP-E,which is lacking in the IMP-B,takes a significant part in the enantioseparation process on IG-3 CSP,probably participating in H-bonding interactions with the hydrogen atom of the carbamate group of the stationary phase.

    Another interesting aspect of the enantioselective HPLC analysis on the IG-3 CSP is the retention behavior of the three chiral compounds.Based on the results reported in Table 1,the retention was unusually high in methanol and in the cases of OME and IMPB significantly higher than that recorded in ethanol.In particular,the retention factor values of the more retained enantiomers were higher than 7.72.The reasons for such uncommon retentive behavior under methanol mode are unclear.It has already been reported that methanol can produce a stronger retention than ethanol due to its capability to promote solvophobic interactions between the CSP and chiral analytes[7]and/or induce conformational changes in the helical structure of the polysaccharide selectors[8],which can result in a higher affinity for selectands.

    The chromatographic behavior of the IG-3 CSP was even more surprising when aprotic polar organic such as acetonitrile and acetone were used as mobile phases.In fact,in aprotic polar organic mode, fluxing the mobile phase at 1 mL/min,the first enantiomers of chiral compounds were not eluted from the 250 mm×4.6 mm IG-3 column after 40 min;thus they were much more retained than in polar alcoholic conditions.

    On the basis of these findings,other factors potentially in fluencing the retention such as the column temperature and the presence of basic/acid additives in the mobile phase were evaluated.Under all conditions investigated methanol was the unique solvent component.

    Table 1 Chromatographic results in polar organic conditions.

    3.2.Effect of temperature on retention and enantioselectivity

    In order to evaluate the impact of temperature on retention of OME,IMP-B and IMP-E enantiomers and calculate thermodynamic parameters,column temperature was changed in the 25–45 °C range at progressive intervals of 5°C.

    As established by van’t Hoff analysis[9],the ln values of the resultant retention factors were related to the inverse of the temperature and the enthalpy and entropy of adsorption onto stationary phase(ΔH°and ΔS°)were calculated.The linear van’t Hoff plots shown in Fig.2 reveal that for all chiral compounds investigated the retention progressively decreased with increasing temperature.

    Differently,as can be seen in Fig.2,column temperature affected the enantioseparation of the chiral analytes through two different ways.The enantioselectivity of OME and IMP-E increased significantly when the temperature changed from 25 °C to 45 °C.On the basis ofΔΔH°andΔΔS°values,it was possible to calculate the correspondent isoenantioselective temperatures,TISO(i.e.temperature at whichα=1)[10]and to establish that the two chiral resolution processes were entropically driven(i.e.TISOwas always lower than column temperature).

    Instead,the enantioseparation of IMP-B was enthalpically driven(TISO=1020 K)andαlowered when temperature increased.

    3.3.Effect of basic and acid additives on retention

    During optimization of enantioselective analysis of chiral basic and acidic analytes it is a common practice to incorporate low concentrations of basic and acidic additives,respectively,into the eluent[11].Numerous studies highlight that this alteration of the mobile phase composition improves peak efficiency and symmetry,and consequently favors the resolution through the competitive interactions of the additives with the underivatized silanol groups of the CSP.Usually,the additive addition only slightly affects the retention[12].However,in the event that the additive produces an alteration of the complex network of stereoselective interactions between enantiomers of chiral analyte and selector,a change in enantioseparation can be observed[13].

    In this work,variable concentrations of DEA in the range of 0.01%–0.1%were added to methanol in the resolution of OME,IMPB and IMP-E on the Chiralpak IG-3.Fig.3 shows the in fluence of concentration of amine additive on retention and enantioseparation parameters for one selected compound.As can be seen,the presence of growing levels of DEA in the methanol eluent system reduced deeply and progressively the elution times of both enantiomers of OME,leaving the enantioseparation value almost on the same value.Examination of the chromatographic data illustrated in Fig.4 reveals that the retention factors of the more retained enantiomer(R)-OME recorded in absence and at 0.08%DEA level were 11.82 and 3.48,respectively,while the enantioseparation factors changed from 2.35 to 2.42.

    The effect of DEA in significantly shortening retention was evident also for enantiomers of other two related chiral benzimidazoles(data not shown).However,in the case of IMP-B the lowering in retention was much more pronounced for the first eluting enantiomer.Therefore,the presence of DEA substantially improved enantioselectivity.Changesin retention and enantioseparation values from methanol to methanol-DEA(0.1%)are presented in Fig.4.

    Dramatic shifts in retention were also observed when TFA was used as an acid additive.As shown in Fig.5,the addition of only 0.01%TFA to methanol was sufficient to reduce the elution times for the second eluting enantiomer of OME and IMP-B by over 70%without greatly altering enantioselectivity.

    Fig.2.Plots of ln k vs.1/T × 103and ln α vs.1/T × 103for OME(A),IMP-B(B)and IMP-E(C).Column:Chiralpak IG-3(250 mm × 4.6 mm I.D.);detection:UV at 280 nm; flow rate:1.0 mL/min;column temperature:25–45 °C.

    Fig.3.Effect of DEA content on k1,k2and α of selected OME and IMP-E.Column:Chiralpak IG-3(250 mm×4.6 mm I.D.);detection:UV at 280 nm; flow rate:1.0 mL/min;column temperature:25°C.

    The exact mechanism by which the basic/acid additives produced the retention changes is not clear.However,since the interactions responsible for enantioseparation are slightly affected bytheaction ofacid orbasicmodifier,itispresumable thatnon-stereoselectivestrongH-bondingcontactsbetween chiral analytes and binding sites of the polysaccharide-based CSP may be involved in determining the unusual increment in affinity with CSP.

    Fig.5.Typical HPLC chromatograms illustrating the separation of the enantiomers of OME(A)and IMP-B(B)in absence and in presence of TFA(0.01%)in methanol.Column:Chiralpak IG-3(250mm×4.6 mm I.D.);detection:UV at 280 nm; flow rate:1.0 mL/min;column temperature:25°C.

    3.4.Semipreparative HPLC enantioseparation

    The availability of chiral impurities of enantiopure APIs is a challenge in the development of effective analytical methods with strict quality requirements established by regulatory agencies.Chiral impurities include all the chiral related substances formed as undesired reaction or degradation products which have the same absolute configuration of the API as well as its enantiomeric form[14].

    The mg-scale production of enantiomerically pure impurities of(S)-OME by enantioselective HPLC on the immobilized ADMPC-based Chiralpak IA CSP under normal phase mode was reported in a previous paper by our research group[15].

    Here,as high retention of racemic sample is generally recognized as a limiting factor when approaching scale-up of enantioseparation conditions,for each chiral benzimidazole derivative it was searched the best analytical compromise between enantioselectivity,time and solvent consumption.Method development and optimization on the IG-3 CSP was carried out according to the findings of the above described study of the in fluence of mobile phase composition and column temperature on retention and enantioseparation.Fig.6 shows the advantages obtained in the enantioselective HPLC of OME by substituting in the mobile phase 60%of methanol with ethanol and increasing the column temperature from 25 to 45°C.As a result,the elution time was reduced by more than half and the factor of resolution appreciably improved from 12.08 to 14.47.

    As illustrated again in Fig.6,in the case of IMP-B the total replacement of methanol with the green solvent ethanol and the use of a column temperature of 45°C,dramatically reduced the retention time of the second elution enantiomer maintaining the resolution factor value at a rather high level(i.e.Rs=20.91).

    Fig.6.Optimization of the analytical HPLC enantioseparation of OME(A),IMP-B(B)and IMP-E(C).Column:Chiralpak IG-3(250 mm×4.6 mm I.D.);detection:UV at 280 nm; flow rate:1.0 mL/min.

    Finally,the optimized HPLC enantioseparation of IMP-E on IG-3 CSP was carried out at 40°C and using the mixture methanol-DEA(0.01%)as a mobile phase(Fig.6).

    Fig.7 shows the typical chromatograms pertinent to the resolution of 40mg of OME,70mg of IMP-B and 9mg of IMP-E by a 1-cm i.d.Chiralpak IG column in a single chromatographic run.The high efficiency and loading capacity of the column as well as the good degree of enantioselectivity achieved in polar alcoholic conditions allowed to obtain,in all cases,two enantiomerically pure fractions(e.e.>99%).

    4.Conclusions

    The immobilized ACMPC-based IG-3 CSP has been tested in HPLC enantioseparation of OME and its chiral impurities B and E under alcoholic organic mode.

    Fig.7.Typical chromatograms illustrating the resolution of 40 mg(in 3 mL of ethanol)of OME(A),70mg(in 5 mL of ethanol)of IMP-B(B)and 9 mg(in 3.5 mL of ethanol)of IMP-E(C)on the Chiralpak IG column.Column:Chiralpak IG(250 mm×10 mm I.D.);eluent:ethanol-methanol 60:40(v/v)(OME),ethanol(IMP-B)and methanol-DEA(0.01%)(IMP-E); flow rate:4.7(OME),3.7(IMP-B)and 5.0(IMPE)mL/min;column temperature:45 °C(OME and IMP-B)and 40 °C(IMP-E);detection:UV at 310 nm.

    The enantioselective HPLC analysis reveals that:i)the retentive behavior of the IG-3 CSP towards benzimidazoles is strongly affected by the type of solvent used as mobile phase and it decreases in the following order:acetone/acetonitrile>>methanol>ethanol;ii)under methanol conditions the enantiomers of the chiral analytes are discriminated at the best level although their elution times are excessively high;iii)the high retention recorded in methanol can be reduced by the addition of basic/acid additives or increasing the column temperature;iv)temperature exerts a significant in fluence on the chromatographic performance of the IG-3 CSP;in particular,the enantioseparations of OME and IMP-E are entropically-driven whereas the resolution of IMP-B is enthalpically driven.

    The manipulation and control of the chromatographic parameters affecting retention allowed minimizing the unproductive CSP/selectands interactions responsible for the undesirable increment in retention and setting up productive separations of the enantiomers of chiral analytes on a semipreparative scale.

    Therefore,a simple screening with a reduced number of mobile phase compositions and fluctuations in temperature has demonstrated the effectiveness of the immobilized ACMPC-based IG-3 CSP for enantiomer resolution of the chiral benzimidazole derivatives structurally related to OME.

    Conflicts of interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    The authors are grateful to Ms.A.Mosca for her technical assistance.

    The research that has led to these results has received funding from the European Community's Seventh Framework Programme under the grant agreement 602051(Project HERACLES:Humancystic Echinococcosis ReseArch in CentraL and Eastern Societies;http://www.Heracles-fp7.eu/).The funding body had no involvement in the preparation,ideas,writing,interpretation,or the decision to submit this article.

    飞空精品影院首页| 黄色女人牲交| 天堂动漫精品| 欧美激情高清一区二区三区| 母亲3免费完整高清在线观看| 久久精品亚洲av国产电影网| 国产单亲对白刺激| 高清av免费在线| xxxhd国产人妻xxx| 丁香六月欧美| 亚洲国产精品合色在线| 欧美日韩av久久| 亚洲专区国产一区二区| 欧美成人午夜精品| 欧美亚洲日本最大视频资源| 亚洲专区中文字幕在线| 涩涩av久久男人的天堂| 久久国产精品男人的天堂亚洲| 一a级毛片在线观看| 国产精品久久久人人做人人爽| 99热只有精品国产| 日韩熟女老妇一区二区性免费视频| 少妇裸体淫交视频免费看高清 | 精品久久久久久,| 国产成人精品在线电影| 极品人妻少妇av视频| 国产成人免费无遮挡视频| 精品国产亚洲在线| 日韩三级视频一区二区三区| 美女 人体艺术 gogo| 亚洲精品av麻豆狂野| 久久久精品区二区三区| 亚洲熟妇熟女久久| 国产欧美日韩综合在线一区二区| 国产精品电影一区二区三区 | 色婷婷av一区二区三区视频| 无限看片的www在线观看| 日韩欧美国产一区二区入口| 欧美日韩亚洲综合一区二区三区_| 精品国产一区二区久久| 一本综合久久免费| 美女午夜性视频免费| 欧美日韩乱码在线| 欧美另类亚洲清纯唯美| 亚洲熟女毛片儿| 国产欧美日韩一区二区三| 久久亚洲真实| www.精华液| www日本在线高清视频| 久久国产乱子伦精品免费另类| 极品教师在线免费播放| 国产97色在线日韩免费| 成年版毛片免费区| 亚洲成人国产一区在线观看| 免费观看a级毛片全部| 中文欧美无线码| 国产aⅴ精品一区二区三区波| 亚洲五月色婷婷综合| 国产精品久久久人人做人人爽| 亚洲精华国产精华精| www.熟女人妻精品国产| 亚洲三区欧美一区| 国产精品九九99| 一级作爱视频免费观看| 在线观看免费高清a一片| 999久久久国产精品视频| av有码第一页| 国产单亲对白刺激| 亚洲欧美日韩另类电影网站| 一二三四社区在线视频社区8| 欧美日韩视频精品一区| 黄色毛片三级朝国网站| 色在线成人网| 一级,二级,三级黄色视频| 夫妻午夜视频| 老汉色∧v一级毛片| 亚洲成av片中文字幕在线观看| 黄片大片在线免费观看| 久久人人爽av亚洲精品天堂| 每晚都被弄得嗷嗷叫到高潮| 国产av精品麻豆| 十分钟在线观看高清视频www| netflix在线观看网站| 极品少妇高潮喷水抽搐| 亚洲中文av在线| 大型av网站在线播放| 国产午夜精品久久久久久| 90打野战视频偷拍视频| 国产精品偷伦视频观看了| 日韩一卡2卡3卡4卡2021年| 在线av久久热| 久久久国产成人免费| 一级,二级,三级黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜91福利影院| 久久国产乱子伦精品免费另类| 狠狠狠狠99中文字幕| 中文字幕色久视频| 国产精品亚洲一级av第二区| 99在线人妻在线中文字幕 | 男女午夜视频在线观看| 久久久久久久久久久久大奶| 亚洲精品久久午夜乱码| 自线自在国产av| 国产一区二区三区在线臀色熟女 | 91在线观看av| 日韩欧美一区二区三区在线观看 | 美女国产高潮福利片在线看| 高清视频免费观看一区二区| aaaaa片日本免费| 久久精品亚洲精品国产色婷小说| 国产一卡二卡三卡精品| 欧美色视频一区免费| 黄色毛片三级朝国网站| 国产精品香港三级国产av潘金莲| 两性夫妻黄色片| 日日夜夜操网爽| 伊人久久大香线蕉亚洲五| 天天添夜夜摸| 亚洲精品国产色婷婷电影| 亚洲熟女毛片儿| 99在线人妻在线中文字幕 | 99久久人妻综合| 他把我摸到了高潮在线观看| 久久午夜亚洲精品久久| av天堂久久9| 国产精品1区2区在线观看. | 久久影院123| 免费在线观看影片大全网站| 18禁美女被吸乳视频| 在线播放国产精品三级| 男人舔女人的私密视频| 亚洲av欧美aⅴ国产| 丰满迷人的少妇在线观看| 午夜精品国产一区二区电影| 国产有黄有色有爽视频| 久久人人爽av亚洲精品天堂| 欧美精品高潮呻吟av久久| 一级片免费观看大全| 91大片在线观看| 飞空精品影院首页| 亚洲av熟女| 久久久久精品国产欧美久久久| 久久婷婷成人综合色麻豆| 人人妻人人澡人人爽人人夜夜| 国产精品亚洲av一区麻豆| a级毛片黄视频| 91麻豆精品激情在线观看国产 | 看免费av毛片| 日本欧美视频一区| 欧美精品一区二区免费开放| 欧美性长视频在线观看| 日本黄色日本黄色录像| 美女扒开内裤让男人捅视频| 亚洲全国av大片| 午夜亚洲福利在线播放| 国产高清国产精品国产三级| 亚洲成人免费av在线播放| 久久亚洲真实| 午夜91福利影院| 日韩欧美一区视频在线观看| 国产欧美日韩综合在线一区二区| 久久久久国产精品人妻aⅴ院 | 色综合婷婷激情| 国产一区在线观看成人免费| 一级作爱视频免费观看| 国产免费男女视频| 国产一区二区三区综合在线观看| 久久久国产成人精品二区 | 国产欧美日韩一区二区三| 操出白浆在线播放| 亚洲专区国产一区二区| 欧美激情高清一区二区三区| 亚洲 欧美一区二区三区| 男女午夜视频在线观看| 视频在线观看一区二区三区| 亚洲一区二区三区不卡视频| 亚洲成av片中文字幕在线观看| 日本vs欧美在线观看视频| 国产精品99久久99久久久不卡| 亚洲成av片中文字幕在线观看| 操美女的视频在线观看| 身体一侧抽搐| 黄色视频,在线免费观看| 国产精品 欧美亚洲| 欧美日韩亚洲高清精品| 一级,二级,三级黄色视频| 日日夜夜操网爽| 美女午夜性视频免费| 国产av又大| 久久精品亚洲精品国产色婷小说| 啦啦啦 在线观看视频| 黄片小视频在线播放| 国产极品粉嫩免费观看在线| 国产精品免费视频内射| 国产三级黄色录像| 伦理电影免费视频| 国产在线一区二区三区精| 人成视频在线观看免费观看| 9191精品国产免费久久| 深夜精品福利| 大片电影免费在线观看免费| 嫩草影视91久久| 人成视频在线观看免费观看| 久久精品国产综合久久久| 他把我摸到了高潮在线观看| 狂野欧美激情性xxxx| 亚洲成人免费电影在线观看| 性色av乱码一区二区三区2| 精品第一国产精品| 日韩精品免费视频一区二区三区| 女警被强在线播放| 一级黄色大片毛片| 满18在线观看网站| 咕卡用的链子| 捣出白浆h1v1| 男女高潮啪啪啪动态图| 村上凉子中文字幕在线| av福利片在线| 日本黄色视频三级网站网址 | 水蜜桃什么品种好| 国内毛片毛片毛片毛片毛片| 日日夜夜操网爽| 国产高清激情床上av| 在线观看免费午夜福利视频| 一级黄色大片毛片| 亚洲av日韩在线播放| 人妻丰满熟妇av一区二区三区 | 日本wwww免费看| 黄色成人免费大全| 香蕉丝袜av| 亚洲情色 制服丝袜| tube8黄色片| 国产av又大| a级毛片黄视频| 日韩熟女老妇一区二区性免费视频| 免费av中文字幕在线| 韩国精品一区二区三区| 亚洲熟女精品中文字幕| 国产亚洲av高清不卡| 丝袜美腿诱惑在线| 精品国产乱子伦一区二区三区| 欧美精品高潮呻吟av久久| 后天国语完整版免费观看| 国产精品国产高清国产av | 热99国产精品久久久久久7| 亚洲熟妇熟女久久| 欧美久久黑人一区二区| 国产主播在线观看一区二区| 女人被狂操c到高潮| 国产精品1区2区在线观看. | 成人18禁高潮啪啪吃奶动态图| 丝袜美足系列| 大型黄色视频在线免费观看| 亚洲熟妇中文字幕五十中出 | 51午夜福利影视在线观看| 亚洲成a人片在线一区二区| 欧美精品啪啪一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 国产男女超爽视频在线观看| 热99re8久久精品国产| 黄色怎么调成土黄色| 美女视频免费永久观看网站| 精品亚洲成a人片在线观看| 99国产综合亚洲精品| bbb黄色大片| 成熟少妇高潮喷水视频| 女人爽到高潮嗷嗷叫在线视频| 午夜免费观看网址| 丝袜人妻中文字幕| 久久久久视频综合| 亚洲在线自拍视频| 亚洲一区二区三区不卡视频| 婷婷精品国产亚洲av在线 | 久久影院123| 每晚都被弄得嗷嗷叫到高潮| 人人妻人人澡人人爽人人夜夜| 中文字幕色久视频| 美女国产高潮福利片在线看| 欧美午夜高清在线| 亚洲熟女精品中文字幕| 久久 成人 亚洲| av中文乱码字幕在线| 亚洲aⅴ乱码一区二区在线播放 | 免费不卡黄色视频| 欧美+亚洲+日韩+国产| 亚洲人成电影观看| 精品少妇一区二区三区视频日本电影| av超薄肉色丝袜交足视频| 无限看片的www在线观看| av有码第一页| 黄色a级毛片大全视频| 成年动漫av网址| 日本vs欧美在线观看视频| 老司机靠b影院| 麻豆av在线久日| 亚洲国产精品合色在线| 亚洲欧美一区二区三区黑人| 老司机深夜福利视频在线观看| 成人免费观看视频高清| 真人做人爱边吃奶动态| 欧美激情极品国产一区二区三区| 精品久久久久久久久久免费视频 | 午夜福利,免费看| 免费久久久久久久精品成人欧美视频| 亚洲第一av免费看| 可以免费在线观看a视频的电影网站| 午夜精品国产一区二区电影| 午夜精品久久久久久毛片777| 精品少妇一区二区三区视频日本电影| 国产精品 国内视频| 国产精品久久久久成人av| 久久久久久久午夜电影 | 国产无遮挡羞羞视频在线观看| cao死你这个sao货| 中文字幕av电影在线播放| 国产亚洲精品第一综合不卡| 国产av精品麻豆| 亚洲国产中文字幕在线视频| 女人爽到高潮嗷嗷叫在线视频| 极品少妇高潮喷水抽搐| 久久天躁狠狠躁夜夜2o2o| av国产精品久久久久影院| 伊人久久大香线蕉亚洲五| 午夜福利在线免费观看网站| 18禁黄网站禁片午夜丰满| 久久 成人 亚洲| 日韩精品免费视频一区二区三区| 婷婷丁香在线五月| 免费少妇av软件| 十分钟在线观看高清视频www| 国产深夜福利视频在线观看| 精品国产一区二区久久| 亚洲精品在线观看二区| 无人区码免费观看不卡| 999久久久精品免费观看国产| 国产精品久久视频播放| 国产精品亚洲一级av第二区| 嫁个100分男人电影在线观看| 一二三四在线观看免费中文在| 午夜老司机福利片| ponron亚洲| 波多野结衣一区麻豆| 成年版毛片免费区| a级毛片在线看网站| 曰老女人黄片| av超薄肉色丝袜交足视频| a级毛片黄视频| 满18在线观看网站| 97人妻天天添夜夜摸| 日韩欧美免费精品| 老司机深夜福利视频在线观看| 国产精品av久久久久免费| 一区二区三区国产精品乱码| 99re6热这里在线精品视频| 久久久久视频综合| 亚洲欧美日韩另类电影网站| 亚洲视频免费观看视频| 少妇裸体淫交视频免费看高清 | 宅男免费午夜| x7x7x7水蜜桃| 一边摸一边抽搐一进一出视频| 黄色成人免费大全| 91麻豆精品激情在线观看国产 | 啦啦啦 在线观看视频| 国产欧美日韩综合在线一区二区| 757午夜福利合集在线观看| 99精品欧美一区二区三区四区| 两人在一起打扑克的视频| av不卡在线播放| 在线免费观看的www视频| 日韩有码中文字幕| 91在线观看av| av欧美777| 午夜亚洲福利在线播放| 国产精品一区二区在线不卡| 久久国产精品影院| 美女高潮喷水抽搐中文字幕| 亚洲一区二区三区欧美精品| 在线观看免费高清a一片| 波多野结衣av一区二区av| 亚洲成a人片在线一区二区| 国产日韩欧美亚洲二区| 亚洲成国产人片在线观看| 国产野战对白在线观看| 亚洲综合色网址| avwww免费| 午夜成年电影在线免费观看| 午夜免费观看网址| 精品少妇久久久久久888优播| 亚洲男人天堂网一区| 人人妻人人添人人爽欧美一区卜| 久久久久久久午夜电影 | 国产在线一区二区三区精| 一区在线观看完整版| 香蕉久久夜色| 亚洲欧美色中文字幕在线| 超色免费av| xxx96com| 动漫黄色视频在线观看| 亚洲熟妇熟女久久| 国产成人精品久久二区二区91| 成人18禁在线播放| 中文字幕高清在线视频| 搡老岳熟女国产| 母亲3免费完整高清在线观看| 丝袜美足系列| 精品乱码久久久久久99久播| 大码成人一级视频| 12—13女人毛片做爰片一| 久久精品91无色码中文字幕| 香蕉久久夜色| 亚洲精品一二三| 国产精品美女特级片免费视频播放器 | 精品免费久久久久久久清纯 | 99re6热这里在线精品视频| 成人三级做爰电影| ponron亚洲| 18在线观看网站| 757午夜福利合集在线观看| 视频区欧美日本亚洲| xxx96com| 精品视频人人做人人爽| 很黄的视频免费| 亚洲精品中文字幕在线视频| 男女下面插进去视频免费观看| 午夜91福利影院| 亚洲精品美女久久久久99蜜臀| 国产成人啪精品午夜网站| 人人妻,人人澡人人爽秒播| 国产成人免费观看mmmm| 美女午夜性视频免费| 两人在一起打扑克的视频| 国产无遮挡羞羞视频在线观看| 精品国产乱码久久久久久男人| 多毛熟女@视频| 999精品在线视频| 免费女性裸体啪啪无遮挡网站| 中文字幕av电影在线播放| 欧美精品高潮呻吟av久久| 国产精品成人在线| 国产成+人综合+亚洲专区| 19禁男女啪啪无遮挡网站| 国产精品一区二区在线不卡| 天天影视国产精品| 国产极品粉嫩免费观看在线| 久久香蕉精品热| 精品福利永久在线观看| 成人永久免费在线观看视频| 五月开心婷婷网| 久久热在线av| 他把我摸到了高潮在线观看| 国产一区有黄有色的免费视频| 极品人妻少妇av视频| 国产xxxxx性猛交| 国产人伦9x9x在线观看| 日韩三级视频一区二区三区| 无限看片的www在线观看| 亚洲国产欧美一区二区综合| 亚洲精品国产区一区二| 久久这里只有精品19| 国产又爽黄色视频| 9色porny在线观看| 午夜福利在线免费观看网站| 手机成人av网站| 桃红色精品国产亚洲av| 黑人巨大精品欧美一区二区蜜桃| av网站在线播放免费| 91麻豆精品激情在线观看国产 | 飞空精品影院首页| 狂野欧美激情性xxxx| 在线永久观看黄色视频| 91精品国产国语对白视频| 男女之事视频高清在线观看| 亚洲精品成人av观看孕妇| 免费观看a级毛片全部| 男女午夜视频在线观看| av一本久久久久| 久久久久精品人妻al黑| 国产免费男女视频| 亚洲五月婷婷丁香| 日本五十路高清| 欧美中文综合在线视频| 亚洲成av片中文字幕在线观看| 99久久99久久久精品蜜桃| 国产精品久久久久久人妻精品电影| 亚洲中文字幕日韩| 日本撒尿小便嘘嘘汇集6| 午夜福利乱码中文字幕| 高潮久久久久久久久久久不卡| 日韩视频一区二区在线观看| 亚洲色图av天堂| 欧美色视频一区免费| 久久久国产欧美日韩av| 久久人妻av系列| 欧美日韩瑟瑟在线播放| 国产色视频综合| 国产日韩欧美亚洲二区| 国产高清国产精品国产三级| 国产精品一区二区在线观看99| 老熟妇乱子伦视频在线观看| 色精品久久人妻99蜜桃| 好男人电影高清在线观看| 成熟少妇高潮喷水视频| 老汉色av国产亚洲站长工具| 欧美人与性动交α欧美软件| 久久精品亚洲av国产电影网| 国产亚洲精品第一综合不卡| 国产精品一区二区在线不卡| 黑丝袜美女国产一区| 亚洲专区国产一区二区| 国产成人一区二区三区免费视频网站| 国产高清激情床上av| 日日摸夜夜添夜夜添小说| 18禁美女被吸乳视频| 国产精品一区二区精品视频观看| 亚洲五月天丁香| 亚洲一区中文字幕在线| 成在线人永久免费视频| 亚洲在线自拍视频| 国产主播在线观看一区二区| 777米奇影视久久| 国产一区有黄有色的免费视频| 欧美丝袜亚洲另类 | 黑人巨大精品欧美一区二区蜜桃| 99热国产这里只有精品6| 飞空精品影院首页| 日韩有码中文字幕| 天天躁夜夜躁狠狠躁躁| x7x7x7水蜜桃| 国产亚洲精品第一综合不卡| 国产精品亚洲av一区麻豆| 久久国产乱子伦精品免费另类| 狂野欧美激情性xxxx| 啦啦啦免费观看视频1| 国产精品免费大片| 亚洲av美国av| 午夜福利影视在线免费观看| 青草久久国产| 免费少妇av软件| 精品少妇久久久久久888优播| 性色av乱码一区二区三区2| 国产无遮挡羞羞视频在线观看| 久久精品国产99精品国产亚洲性色 | 91老司机精品| 免费女性裸体啪啪无遮挡网站| 热re99久久精品国产66热6| 夜夜夜夜夜久久久久| 日韩欧美三级三区| 亚洲一区二区三区不卡视频| 成人手机av| 国产精品久久久av美女十八| 精品国产乱子伦一区二区三区| 亚洲七黄色美女视频| 久久久久久免费高清国产稀缺| 狂野欧美激情性xxxx| 亚洲精品美女久久久久99蜜臀| 色婷婷久久久亚洲欧美| 别揉我奶头~嗯~啊~动态视频| 美女午夜性视频免费| 一级毛片精品| 亚洲精华国产精华精| av天堂在线播放| xxx96com| 亚洲七黄色美女视频| 午夜视频精品福利| svipshipincom国产片| 久久精品人人爽人人爽视色| 黄色成人免费大全| av片东京热男人的天堂| 亚洲成av片中文字幕在线观看| 色婷婷久久久亚洲欧美| 日本一区二区免费在线视频| 国产精品国产av在线观看| 在线观看舔阴道视频| 黄片大片在线免费观看| 亚洲欧美色中文字幕在线| 99精品在免费线老司机午夜| 日韩人妻精品一区2区三区| 婷婷精品国产亚洲av在线 | 亚洲性夜色夜夜综合| 久久久精品区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产午夜精品久久久久久| 国产精品免费视频内射| 欧美黄色淫秽网站| 99re6热这里在线精品视频| 欧美不卡视频在线免费观看 | 精品高清国产在线一区| 超色免费av| 啦啦啦免费观看视频1| 真人做人爱边吃奶动态| 18禁裸乳无遮挡免费网站照片 | 99热国产这里只有精品6| 国产蜜桃级精品一区二区三区 | 又大又爽又粗| 亚洲少妇的诱惑av| 人人妻人人添人人爽欧美一区卜| 亚洲av欧美aⅴ国产| 十八禁高潮呻吟视频| 欧美久久黑人一区二区| 99国产精品一区二区蜜桃av | 欧美另类亚洲清纯唯美| 午夜福利在线免费观看网站| 热re99久久精品国产66热6| 亚洲avbb在线观看| 免费高清在线观看日韩| 日本黄色视频三级网站网址 | 亚洲av成人av| 国产精品98久久久久久宅男小说| 亚洲免费av在线视频| 亚洲精品美女久久av网站| 少妇 在线观看| 中出人妻视频一区二区| 91成年电影在线观看|