• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Receptor variability-driven evolution of snake toxins

    2018-08-21 01:21:56XianHongJiShangFeiZhangBinGaoShunYiZhu
    Zoological Research 2018年6期

    Xian-Hong Ji,Shang-Fei Zhang,Bin Gao,Shun-Yi Zhu,*

    1 Group of Peptide Biology and Evolution,State Key Laboratory of Integrated Management of Pest Insects and Rodents,Institute of Zoology,Chinese Academy of Sciences,Beijing 100101,China

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    ABSTRACT Three- finger toxins(TFTs)are well-recognized nonenzymatic venom proteins found in snakes.However,although TFTs exhibit accelerated evolution,the drivers of this evolution remain poorly understood.The structural complexes between long-chain α-neurotoxins,a subfamily of TFTs,and their nicotinic acetylcholine receptor targets have been determined in previous research,providing an opportunity to address such questions.In the current study,we observed several previously identified positively selected sites(PSSs)and the highly variable C-terminal loop of these toxins at the toxin/receptor interface. Of interest,analysis of the molecular adaptation of the toxin-recognition regions in the corresponding receptors provided no statistical evidence for positive selection. However,these regions accumulated abundant amino acid variations in the receptors from the prey of snakes,suggesting that accelerated substitution of TFTs could be a consequence of adaptation to these variations.To the best of our knowledge,this atypical evolution,initially discovered in scorpions,is reported in snake toxins for the first time and may be applicable for the evolution of toxins from other venomous animals.

    Keywords:Three-finger toxins;Nicotinic acetylcholine receptor;Driver

    INTRODUCTION

    Three- finger toxins(TFTs)are among the most abundantly secreted and effective components of snake venom.They are encoded by a large multigene family and show a diversity of functional activities(Fry et al.,2003;Kini,2011).Members in this family contain 57–82 residues and four conserved disulfide bridges(Endo&Tamiya,1987),and are identified by three loops extending from a central core resembling their namesake three fingers(Fry et al.,2003).

    The long-term evolutionary process that has resulted in the high diversity of TFTs conforms to the birth-and-death model of multigene family evolution(Nei et al.,1997).This model of evolution produces a series of toxins,allowing snakes to adapt to a variety of prey and predators(Nei et al.,1997).Snakes employ their venom as a weapon to disable prey(primary function)and as a defensive tool against predators(secondary function)(Kang et al.,2011). Snake toxins and prey are likely involved in a co-evolutionary arms race,whereby evolving toxin resistance in prey species and novel toxin evolution in snake species exert mutual selective effects(Arbuckle et al.,2017;Calvete,2017;Jansa&Voss,2011;Voss&Jansa,2012).However,despite evidence of accelerated evolution in the TFT family(Sunagar et al.,2013),the cause of this evolution remains vague.

    The TFT family members can target various receptors and ion channels with high affinity and specificity(Doley et al.,2009;Kini,2011). The α-neurotoxins(α-NTXs)of TFTs can interact with nicotinic acetylcholine receptors(nAChRs),inhibiting postsynaptic membrane ion flow and leading to flaccid paralysis(Barber et al.,2013;Chiappinelli et al.,1996).Based on the chain length and number of disulphide bridges,α-NTXs are usually divided into short or long α-NTXs.Short α-NTXs contain 60–62 amino acid residues with four disul fide bonds,whereas long α-NTXs contain 66–75 residues and five disul fide bonds(Dajas-Bailador et al.,1998).

    nAChRs are pentameric transmembrane proteins of ligand-gated ion channels and are formed by different combinations of five subunits,that is,α,β,γ,δ and ε(Corringer et al.,2000;Karlin,2002).Each subunit is composed of a large N-terminal extracellular domain,which serves as the major binding site for the toxins,followed by four transmembrane helices and a small C-terminal extracellular domain(Dellisanti et al.,2007;Karlin,2002).nAChRs can be further divided into muscular or neuronal types(Corringer et al.,2000;Wang et al.,2002). α-NTXs can potently antagonize the α1 subunit of heteropentameric muscle nAChRs((α1)2β1γδ in fetal muscle and(α1)2β1εδ in adult muscle)and the α7, α8, α9 or α10 subunits of homopentameric neuronal nAChRs(Karlin,2002;Sine et al.,2013).Crystal structures in the complexes between long α-NTXs and related receptors have been identified and offer opportunities to explore the molecular mechanism driving the accelerated evolution of these toxins(Bourne et al.,2005;Dellisanti et al.,2007;Huang et al.,2013).

    In this work,we found several sites previously identified as positively selected sites(PSSs)as well as the highly variable C-terminal loop of the toxins to be located at the toxin/receptor binding interface(Bourne et al.,2005;Sunagar et al.,2013).Structural and evolutionary analyses of the toxin-recognition region from the receptors(α1,α7,α9 and α10 subunits from nAChRs)uncovered an atypical evolution between snakes and their prey,in which the amino acid diversity of the nAChR toxin-binding regions appeared to drive the adaptive evolution of the TFT family.This study showed good agreement with our previous research on scorpion toxins and sodium channels from their competitors(Zhang et al.,2015).Furthermore,this paper provides a broader vision into the evolution between venomous animals and their prey/predators.

    MATERIALS AND METHODS

    Sequence analysis

    ClustalX (http://www.clustal.org)was used to align all nucleotide and amino acid sequences.A total of 130 long α-NTX sequences were aligned and used for sequence logo analysis with the WebLogo program(Supplementary Figure S1). For the receptors,76 sequences of muscle-type α1 nAChRs(three from Reptilia,three from Amphibian,four from Aves,31 from small mammals,and 35 from fishes),59 neuronal-type α7 nAChRs(one from Gastropoda,two from Arthropoda,three from Reptilia,three from Amphibian,three from Aves,18 from small mammals,and 29 from fishes),68 neuronal-type α9 nAChRs(three from Reptilia,three from Amphibian,four from Aves,30 from small mammals,and 28 from fishes),and 52 neuronal-type α10 nAChRs(two from Reptilia,two from Amphibian,four from Aves,24 from small mammals,and 20 from fishes)(Supplementary Figures S2–S5)were also aligned.For positive selection analyses,aligned nucleotide sequences of the receptors were used to construct neighbor-joining trees.

    WebLogo and ConSurf analyses

    WebLogo can be used to generate sequence logos,which are graphical representations of the patterns within multiple sequence alignments.The alignments of the aforementioned toxins were used to create sequence logos to identify the conservation of each position(Supplementary Figure S1).Each logo comprises stacks of letters,one stack for each position in the sequence(Crooks et al.,2004).The overall height of each stack shows the sequence conservation of that position,whereas the height of the symbols within the stack indicates the comparative frequency of the amino acid at the position(Crooks et al.,2004). Generally,sequence logos provide a richer and more precise description of conserved and variable regions within sequences.We used the ConSurf program(http://consurf.tau.ac.il/)under default parameters to calculate conservation scores of the amino acid sequences of the related receptors.ConSurf not only depends on sequence alignments but also on phylogenetic trees to identify conserved and variable regions(Landau et al.,2005).A Bayesian tree was constructed using the corresponding alignments with the JTT evolutionary substitution model.One of the advantages of ConSurf compared with other methods is that the computation of the evolutionary rate is more precise when employing the empirical Bayesian or maximum-likelihood methods.

    Positive selection analysis

    Excess nonsynonymous substitutions compared with synonymous substitutions (ω=dN/dS>1)is an important sign of positive selection at the molecular level(Yang,1998;Zhu&Gao,2016).To perform such analysis,we compared two pairs of site models(M1a(neutral)/M2a(selection)and M7(beta)/M8(beta&ω))to measure the selective pressure of the receptors to which the long α-NTXs bind(α1, α7, α9 and α10 subunits from nAChRs).Model M2a and M8 add a site class to M1a and M7,respectively,with the free ω ratio calculated from the data and used to determine the probability of positive selection(Anisimova et al.,2001;Anisimova et al.,2003;Wong et al.,2004;Yang&Swanson,2002).As M1a and M7 are nested within their respective alternative models(M2a and M8)and have two more parameters,χ2distribution can be used for the likelihood ratio test to compare the fit of the two competing models.We used the Bayes Empirical Bayes method to calculate the posterior possibility that each codon is from the site class of positive selection.The Bayes Empirical Bayes method is an improvement of the previous Na?ve Empirical Bayes method and accounts for sampling errors in the maximum-likelihood estimates of parameters in the model(Nielsen&Yang,1998).Sites with a high possibility(≥95%)of coming from the class with ω>1 are likely under positive selection and can be analyzed further(Yang,1998).

    RESULTS

    PSSs of toxins locating on the toxin-receptor complex interface

    The N-terminal extracellular domains of nAChRs,which consist of a 10 stranded β-sandwich and an N-terminal α-helix,act as the major binding sites for long α-NTXs(Changeux et al.,1970).The three regions of long α-NTXs comprising fingers I and II and the C-terminus are involved in interactions with the receptors,with finger II being the main stabilizing interaction center(Bourne et al.,2005). The α211 structure(mouse nAChR α1 subunit(PDB entry 2qc1))can be seen as a representative of the N-terminal extracellular domain of the nAChR subunit(Dellisanti et al.,2007),in which loops β4-β5(loop A), β7-β8(loop B)and β9-β10(loop C)serve as the principal ligand-binding interfaces(Brejc et al.,2001;Unwin,2005)and loop C is the most important region for high affinity with long α-NTXs,as revealed by site-directed mutations(Fruchart-Gaillard et al.,2002;Levandoski et al.,1999).Loop C of α211 is enveloped by fingers I and II and the C-terminal loop of the toxin,with finger II inserted into the ligand-binding site wrapped by loops A,B and C of α211(Figure 1A)(Dellisanti et al.,2007).In addition, finger I is sandwiched by loop C,whereas finger III weakly contributes to α211 binding(Dellisanti et al.,2007).

    Figure 1 α-bungarotoxin interacts with α211 and the sequence logos of long α-NTXs

    We mapped the PSSs of long α-NTXs identified by Sunagar et al.(2013)on the complex structure of α-bungarotoxin and its receptor(Figure 1A).The toxin-receptor complex model showed that some PSSs of the long α-NTXs were located on the toxin binding surface with the receptors(Bourne et al.,2005;Dellisanti et al.,2007;Huang et al.,2013).Almost all PSSs in finger II(Ala31,Phe32,Ser34,Ser35 and Val39)of α-bungarotoxin are involved in the interactions with the receptors(Dellisanti et al.,2007;Dimitropoulos et al.,2011;Huang et al.,2013).The same situation appears in α-cobratoxin(long α-NTX)since their fast evolved sites(Ala28,Phe29,Ser31,Ile32 and Arg36)in finger II also overlap with the toxin binding sites of α-cobratoxins(Bourne et al.,2005;Dimitropoulos et al.,2011).

    The C-terminal loop of the long α-NTXs also contributes to the interaction with related receptors.Multiple sequence alignments of long α-NTXs,generated by ClustalX,were used to create sequence logos(Figure 1B,Supplementary Figure S1)(Crooks et al.,2004).The C-terminal loop of the long α-NTXs,indicated in the red box in Figure 1B,was highly variable based on the WebLogo analyses,and the whole C-tail involves extensive insertions and deletions.Thus,this loop might undergo positive selection despite the technical difficulty in detecting PSSs from indel-containing sequences.

    No evidence for positive selection in the toxin-recognition regions of receptors

    Snakes employ their venom to immobilize various prey,including snails,insects, fishes,toads,lizards,chickens,small mammals and even other snakes(Kang et al.,2011).The maximum-likelihood models of codon substitutions were used to identify selective pressure in the toxin-recognition regions of the receptors from the prey of snakes. However,no positive selection signals were detected in the receptors of long α-NTXs(α1,α7,α9 and α10 subunits)(Table 1,Supplementary Tables S1–S4).The maximum-likelihood estimates under M0 showed that the average ω ratios for all receptor sequence pairs ranged from 0.02 to 0.07.M2a and M8 detected no evolution-accelerating sites.The ωsunder M8 of the α1 and α10 subunits of nAChRs from snake prey equaled 1(Table 1).Under the M8 model,the α7 and α9 subunits of nAChRs showed ωs>1(Table 1),but their proportions(p1)equaled 0,proving that no PSSs existed(Supplementary Tables S1–S4).

    Table 1 Parameter estimates and likelihood ratio statistics(2Δl)for different subunit types of n ACh Rs

    Snake toxins bind to variable regions of their receptors

    Although PSSs were detected in the toxins,none were found in the toxin-recognition regions of the involved receptors.Based on the complex models between the long α-NTXs and related receptors,we further analyzed the evolutionary conservation of the N-terminal extracellular domain regions of the nAChR α1 and α7 subunits from snake prey using ConSurf(Dellisanti et al.,2007;Huang et al.,2013)(Figure 2).Our results indicated that loop C demonstrated the greatest variation among the three receptor loops(Figure 2).

    Figure 2 Con Surf results of α-bungarotoxin with the receptors

    We analyzed the interaction pairs in the α-bungarotoxin and α1 nAChR subunit complex,which were Ile11-Phe189/Pro194, Val31-Tyr93/Asp99/Phe100, Phe32-Tyr93/Phe100/Trp149/Tyr190,Val39-Val188/Tyr190,His68-Pro194,Pro69-Ser191,Lys70-Pro194 and Gln71-Pro194,with the toxin sites corresponding to the PSSs in fingers I and II and the C-terminal loop(Dellisanti et al.,2007;Dimitropoulos et al.,2011).The loop A(Tyr93,Asp99 and Phe100),loop B(Trp149)and loop C(Val188,Phe189,Tyr190,Ser191,Pro194 and Pro197)were involved in the interaction with the PSSs of the toxin binding surface.Although Tyr93 in loop A and Trp149 in loop B were conserved,Asp99 and Phe100 in loop A exhibited some variability(99:Asp/Asn and 100:Phe/Tyr).In contrast,the binding sites in loop C were more variable(188:Val/Arg/Lys,189:Phe/Tyr/Thr,191:Ala/Ser/Thr/Pro and 194:Pro/Gln)(Figure 2A).

    For the α-bungarotoxin and α7 nAChR subunit complex,the interaction pairs include Ile11-Phe183/Lys188,Phe32-Tyr91/Trp145/Arg182/Tyr184, Val39-Arg182/Tyr184, His68-Lys188,Pro69-Glu185,Lys70-Cys186/Lys188 and Gln71-Lys188,with the sites of the toxins also corresponding to the PSSs in fingers I and II and the C-terminal loop(Huang et al.,2013).Compared with the conserved residues in loop A and loop B(Tyr91 and Trp145),the binding sites in loop C were diverse(182:Lys/Arg/Leu/Ser/Asn,183:Phe/Tyr/Ile,185:Glu/Asp/Asn/Gly and 188:Lys/Asp/Glu/Pro/Gln)(Figure 2B).The additional PSSs(Val31,Ser34 and Ser35)in finger II contacted residues of the complementary subunit,and included Ser32,Ser34,Leu36,Trp53,Gln55,Gln114,Leu116 and Asp160(Huang et al.,2013). These residues in the complementary subunit may provide the driving force for the additional sites in finger II.

    Taken together,our results suggest that the variable toxin-recognition region in the receptors might drive the accelerated evolution of the toxin-binding residues.

    DISCUSSION

    By mapping the PSSs of the long α-NTXs on the toxin-receptor complex,we found that several of them are located on the toxin-binding surface of the receptor(Figure 1A).In addition to these PSSs,high sequence diversity was also observed in the C-terminal loop of the long α-NTXs.Thus,given its importance in the interaction with receptors,we surmised that it could be an accelerated substituted region for adaptation to receptor variability(Figure 1B).Several PSSs were detected in finger III of the long α-NTXs,although finger III contributed little to the binding. This may be due to its high flexibility in the complex.Other mechanisms may be involved in the accelerated substitutions of this finger,which requires further investigation.

    We further observed the amino acid variability of the principal toxin-recognition regions(mainly in loop C)in related nAChR subunits(Figure 2).Compared with loop A and loop B,loop C exhibited the greatest variation due to its predominant role in the toxin-receptor interactions.Thus,we concluded that the evolutionary variability of the toxin-recognition regions of the receptors is a possible driver for the accelerated evolution of the toxins.

    Short-chain α-NTXs can bind to nAChRs with high affinity(Trémeau et al.,1995).Loop II of short-chain α-NTXs pushes into the ligand-binding pocket of nAChRs,whereas the tips of loops I and III contact nAChRs only in a ‘surface-touch’way(Mordvintsev et al.,2005).Previous study on Torpedo californica showed that the C-loop is vital for the binding of short α-NTXs to nAChRs(Bourne et al.,2005;Mordvintsev et al.,2005).However,as there are no specific coordinate files of complexes between short α-NTXs and their targets,hindering further study.

    Our previous study on the evolution of scorpion toxins and voltage-gated sodium(Nav)channels indicated that variability of the toxin-recognition regions in the Navchannels from scorpion predators and prey is a putative driver of the accelerated evolution of the functional regions of scorpion toxins following gene duplication(Zhang et al.,2015).Similarly,PSSs exist in the binding interface of the long α-NTXs,though only amino acid variability was detected in the principal toxin-recognition regions of the related nAChR subunits,suggesting that amino-acid substitutions on the toxin-recognition surface in related nAChR subunits could provide a force driving the accelerated evolution of the toxins.Thus,the atypical co-evolutionary manner between snake toxins and their receptors is similar to our previous research on scorpion toxins and their targets(Zhang et al.,2015).We supposed that accelerated evolution of the receptor-bound regions of the snake toxins is a consequence of adaptation to variable receptors of their prey. From the viewpoint of a co-evolutionary arms race between predators and prey(Arbuckle et al.,2017;Calvete,2017;Jansa&Voss,2011;Voss&Jansa,2012),it appears that prey might exert greater selective pressure on their predators,as described in our current study.As this evolutionary manner has been shown to occur in two distant species,we believe it will be revealed in more toxins from diverse venomous animals.

    COMPETING INTERESTS

    The authors declare that they have no competing interests.

    AUTHORS’CONTRIBUTIONS

    S.Y.Z.conceived and designed the study.X.H.J.and S.F.Z.analyzed the data.X.H.J.,S.F.Z.,B.G.and S.Y.Z.jointly wrote the manuscript.

    国产精品香港三级国产av潘金莲 | 亚洲av男天堂| 国产成人精品在线电影| 日韩熟女老妇一区二区性免费视频| 深夜精品福利| 宅男免费午夜| h视频一区二区三区| 日韩电影二区| h视频一区二区三区| 人妻 亚洲 视频| 久久久a久久爽久久v久久| 国产日韩欧美亚洲二区| 巨乳人妻的诱惑在线观看| 久久这里有精品视频免费| 午夜免费男女啪啪视频观看| 日本欧美视频一区| 日韩精品免费视频一区二区三区| 考比视频在线观看| 精品人妻熟女毛片av久久网站| 成人亚洲精品一区在线观看| 成年美女黄网站色视频大全免费| 久久99一区二区三区| 亚洲第一区二区三区不卡| 成人毛片a级毛片在线播放| 中文天堂在线官网| 日韩一本色道免费dvd| 街头女战士在线观看网站| 一区二区三区精品91| 日本午夜av视频| 色吧在线观看| 人人妻人人澡人人看| 亚洲精品乱久久久久久| 国产视频首页在线观看| 国产成人av激情在线播放| 国产成人a∨麻豆精品| 五月天丁香电影| 亚洲欧美精品综合一区二区三区 | 亚洲精品美女久久av网站| 人妻 亚洲 视频| 日韩熟女老妇一区二区性免费视频| 美女脱内裤让男人舔精品视频| 国产福利在线免费观看视频| 免费人妻精品一区二区三区视频| 日本色播在线视频| 免费不卡的大黄色大毛片视频在线观看| 97在线视频观看| av在线播放精品| 咕卡用的链子| 国产精品免费视频内射| 欧美成人精品欧美一级黄| 午夜影院在线不卡| 亚洲久久久国产精品| www.av在线官网国产| 黑丝袜美女国产一区| 久久女婷五月综合色啪小说| 母亲3免费完整高清在线观看 | 精品一区二区免费观看| 亚洲成国产人片在线观看| 亚洲内射少妇av| 欧美日韩视频高清一区二区三区二| 王馨瑶露胸无遮挡在线观看| 水蜜桃什么品种好| 老熟女久久久| 欧美变态另类bdsm刘玥| 免费大片黄手机在线观看| 久久这里有精品视频免费| 日韩在线高清观看一区二区三区| 性高湖久久久久久久久免费观看| 国产av码专区亚洲av| 高清黄色对白视频在线免费看| 国产极品天堂在线| 久久久久精品久久久久真实原创| 国产精品成人在线| 亚洲激情五月婷婷啪啪| 久久久精品国产亚洲av高清涩受| 久久久精品国产亚洲av高清涩受| 成人漫画全彩无遮挡| 2022亚洲国产成人精品| av免费观看日本| 欧美国产精品一级二级三级| 狂野欧美激情性bbbbbb| 国产探花极品一区二区| 国产日韩一区二区三区精品不卡| 精品一区在线观看国产| 亚洲情色 制服丝袜| 亚洲色图综合在线观看| 女性被躁到高潮视频| 久久久精品区二区三区| 天天躁夜夜躁狠狠躁躁| 亚洲视频免费观看视频| 制服丝袜香蕉在线| 国产精品国产三级专区第一集| 亚洲av成人精品一二三区| 亚洲精品国产色婷婷电影| 高清不卡的av网站| 丝袜脚勾引网站| 伊人久久大香线蕉亚洲五| 国产又色又爽无遮挡免| 精品国产乱码久久久久久男人| 汤姆久久久久久久影院中文字幕| 国产成人免费观看mmmm| 黑人猛操日本美女一级片| 一二三四中文在线观看免费高清| 97精品久久久久久久久久精品| 涩涩av久久男人的天堂| 欧美+日韩+精品| 精品国产乱码久久久久久男人| 波多野结衣一区麻豆| 大片电影免费在线观看免费| 青青草视频在线视频观看| 男人爽女人下面视频在线观看| 纯流量卡能插随身wifi吗| 一区福利在线观看| 美女高潮到喷水免费观看| 国产黄色免费在线视频| 色婷婷av一区二区三区视频| 精品少妇久久久久久888优播| 热re99久久国产66热| 亚洲欧美精品综合一区二区三区 | 午夜免费男女啪啪视频观看| 国产av码专区亚洲av| 日本午夜av视频| √禁漫天堂资源中文www| 久久精品国产综合久久久| 婷婷成人精品国产| 男人添女人高潮全过程视频| 国产精品.久久久| 丝袜美腿诱惑在线| 免费在线观看完整版高清| 午夜福利,免费看| 亚洲av日韩在线播放| 国产一区二区三区av在线| 欧美精品国产亚洲| 亚洲国产欧美在线一区| 捣出白浆h1v1| 国产高清不卡午夜福利| 久久久国产精品麻豆| 人人妻人人爽人人添夜夜欢视频| 欧美日韩综合久久久久久| 超色免费av| 中国三级夫妇交换| 亚洲国产精品一区三区| 国产成人av激情在线播放| 日韩成人av中文字幕在线观看| 亚洲三区欧美一区| 丁香六月天网| 不卡视频在线观看欧美| 亚洲伊人久久精品综合| 少妇被粗大猛烈的视频| 国产精品三级大全| 久久韩国三级中文字幕| 建设人人有责人人尽责人人享有的| 乱人伦中国视频| 午夜福利,免费看| 欧美精品一区二区大全| 日韩伦理黄色片| 亚洲欧洲日产国产| 啦啦啦在线免费观看视频4| a 毛片基地| 午夜福利视频在线观看免费| 五月开心婷婷网| 飞空精品影院首页| 欧美av亚洲av综合av国产av | 国产一区有黄有色的免费视频| 久久久国产精品麻豆| 国产成人免费观看mmmm| 我要看黄色一级片免费的| tube8黄色片| 满18在线观看网站| 熟女少妇亚洲综合色aaa.| 五月天丁香电影| 国产成人精品一,二区| 成人亚洲精品一区在线观看| 99久久中文字幕三级久久日本| 精品少妇久久久久久888优播| 亚洲av免费高清在线观看| 国产精品二区激情视频| 亚洲国产看品久久| 日本爱情动作片www.在线观看| 伦理电影免费视频| 99热网站在线观看| 一级片'在线观看视频| 久久精品久久精品一区二区三区| 欧美日韩精品网址| 女人高潮潮喷娇喘18禁视频| 在线天堂中文资源库| 母亲3免费完整高清在线观看 | 亚洲av.av天堂| 成人漫画全彩无遮挡| 日本欧美国产在线视频| 久久久久久久大尺度免费视频| a级片在线免费高清观看视频| 丝袜美腿诱惑在线| 26uuu在线亚洲综合色| 免费av中文字幕在线| 美女福利国产在线| 妹子高潮喷水视频| 日韩欧美一区视频在线观看| 久久久久精品人妻al黑| 一区二区三区精品91| 视频在线观看一区二区三区| av免费在线看不卡| 91在线精品国自产拍蜜月| 日韩一区二区三区影片| 国产一区有黄有色的免费视频| 捣出白浆h1v1| 一区二区三区精品91| av天堂久久9| 国产 精品1| 日本91视频免费播放| 亚洲精品美女久久av网站| 国产福利在线免费观看视频| 亚洲欧美成人综合另类久久久| av天堂久久9| 美女国产高潮福利片在线看| 亚洲精品一区蜜桃| 人人妻人人爽人人添夜夜欢视频| 免费女性裸体啪啪无遮挡网站| 少妇人妻久久综合中文| 精品少妇久久久久久888优播| 日韩一区二区三区影片| 在线观看免费视频网站a站| 精品福利永久在线观看| 极品人妻少妇av视频| av天堂久久9| 亚洲欧美精品综合一区二区三区 | 久久精品国产亚洲av高清一级| 亚洲av男天堂| 91精品国产国语对白视频| 韩国高清视频一区二区三区| 两个人免费观看高清视频| 最近中文字幕2019免费版| 午夜av观看不卡| 亚洲精品久久午夜乱码| 免费看av在线观看网站| 蜜桃在线观看..| 国产福利在线免费观看视频| 一本色道久久久久久精品综合| 亚洲精品久久午夜乱码| 狂野欧美激情性bbbbbb| 少妇精品久久久久久久| www.av在线官网国产| 国产精品无大码| 国产高清国产精品国产三级| av不卡在线播放| 一个人免费看片子| 中文字幕人妻丝袜制服| av片东京热男人的天堂| 青青草视频在线视频观看| 韩国av在线不卡| 少妇被粗大的猛进出69影院| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久电影网| 国产1区2区3区精品| 久热久热在线精品观看| 伦精品一区二区三区| 超色免费av| 亚洲精品国产色婷婷电影| 亚洲欧美中文字幕日韩二区| 男人添女人高潮全过程视频| 黑丝袜美女国产一区| 国产一区二区在线观看av| 午夜91福利影院| 乱人伦中国视频| 欧美最新免费一区二区三区| 国产欧美日韩综合在线一区二区| 亚洲精品av麻豆狂野| 中文字幕制服av| 精品人妻熟女毛片av久久网站| 中文欧美无线码| 综合色丁香网| 999精品在线视频| 亚洲国产精品999| 中文字幕人妻熟女乱码| 最近中文字幕高清免费大全6| 婷婷色av中文字幕| 在线天堂中文资源库| 人人妻人人澡人人看| 国产在视频线精品| 青春草视频在线免费观看| 边亲边吃奶的免费视频| 97在线视频观看| 亚洲精品成人av观看孕妇| 赤兔流量卡办理| 日本av免费视频播放| 校园人妻丝袜中文字幕| 18禁动态无遮挡网站| 最近中文字幕2019免费版| 日韩三级伦理在线观看| 色婷婷久久久亚洲欧美| 久久久久久久亚洲中文字幕| 男女免费视频国产| 成人18禁高潮啪啪吃奶动态图| 性色av一级| 亚洲在久久综合| 中文字幕人妻熟女乱码| 午夜福利视频精品| 成年av动漫网址| 精品国产乱码久久久久久男人| 久久久国产一区二区| 免费黄色在线免费观看| 人妻 亚洲 视频| 亚洲人成电影观看| 午夜免费鲁丝| 亚洲av在线观看美女高潮| 亚洲成人av在线免费| 七月丁香在线播放| 婷婷色综合www| 日韩电影二区| 丝袜人妻中文字幕| 青春草亚洲视频在线观看| 国产精品久久久久久久久免| 国产免费现黄频在线看| 国产97色在线日韩免费| 在现免费观看毛片| 久久国产精品男人的天堂亚洲| 日韩一本色道免费dvd| 国产一区二区 视频在线| 久久精品国产亚洲av天美| 最近中文字幕2019免费版| 亚洲av福利一区| 2021少妇久久久久久久久久久| 18禁国产床啪视频网站| 2022亚洲国产成人精品| 日韩成人av中文字幕在线观看| 午夜福利视频在线观看免费| 2022亚洲国产成人精品| 午夜免费鲁丝| 中文字幕最新亚洲高清| 日韩中文字幕欧美一区二区 | 五月天丁香电影| 欧美激情 高清一区二区三区| 一区二区av电影网| 成年人午夜在线观看视频| 日韩欧美一区视频在线观看| 日本午夜av视频| 亚洲综合精品二区| 久久精品aⅴ一区二区三区四区 | 久久午夜综合久久蜜桃| 女的被弄到高潮叫床怎么办| 大陆偷拍与自拍| 97在线视频观看| 国产精品久久久久久精品古装| www.精华液| 性色av一级| 夫妻性生交免费视频一级片| 一级片'在线观看视频| 国产亚洲一区二区精品| 看十八女毛片水多多多| 国产精品欧美亚洲77777| 纯流量卡能插随身wifi吗| 午夜福利在线观看免费完整高清在| 伦理电影免费视频| 三上悠亚av全集在线观看| 女性生殖器流出的白浆| 亚洲av男天堂| 下体分泌物呈黄色| 捣出白浆h1v1| 成年女人毛片免费观看观看9 | 国产亚洲精品第一综合不卡| 在线看a的网站| 一本色道久久久久久精品综合| 99九九在线精品视频| 老女人水多毛片| 午夜日本视频在线| 免费观看无遮挡的男女| 男女午夜视频在线观看| 日韩av不卡免费在线播放| 国产精品久久久久久av不卡| 在线观看一区二区三区激情| 欧美日韩精品成人综合77777| 国产 精品1| 国产成人精品在线电影| 一级毛片电影观看| 亚洲美女搞黄在线观看| 麻豆av在线久日| 国产免费视频播放在线视频| 亚洲国产成人一精品久久久| a级毛片在线看网站| 亚洲成人手机| 人妻 亚洲 视频| 性少妇av在线| 国产日韩欧美视频二区| 久久人妻熟女aⅴ| av国产精品久久久久影院| 国产又爽黄色视频| 国产熟女午夜一区二区三区| 热99国产精品久久久久久7| 99国产精品免费福利视频| 午夜久久久在线观看| 乱人伦中国视频| 欧美日韩成人在线一区二区| 高清欧美精品videossex| 亚洲男人天堂网一区| 成人国语在线视频| 国产一级毛片在线| 交换朋友夫妻互换小说| 久久韩国三级中文字幕| 久久久欧美国产精品| 各种免费的搞黄视频| 久久精品国产亚洲av天美| 只有这里有精品99| 一本大道久久a久久精品| 国产在线视频一区二区| 色哟哟·www| 国产野战对白在线观看| 日本色播在线视频| 一边摸一边做爽爽视频免费| 香蕉丝袜av| 久久国产亚洲av麻豆专区| 少妇被粗大的猛进出69影院| av免费在线看不卡| 久久久久久人人人人人| 国产精品国产三级专区第一集| 欧美 亚洲 国产 日韩一| 黄色配什么色好看| 欧美精品av麻豆av| 欧美av亚洲av综合av国产av | 日韩制服骚丝袜av| 性色av一级| 国产成人精品久久二区二区91 | 久久午夜综合久久蜜桃| 欧美97在线视频| 精品一区二区三区四区五区乱码 | 婷婷色麻豆天堂久久| 2021少妇久久久久久久久久久| 久久久国产精品麻豆| 美女xxoo啪啪120秒动态图| 青春草视频在线免费观看| 少妇人妻久久综合中文| 老汉色∧v一级毛片| a级毛片在线看网站| 免费在线观看视频国产中文字幕亚洲 | 校园人妻丝袜中文字幕| 日韩一区二区视频免费看| 七月丁香在线播放| 晚上一个人看的免费电影| 2022亚洲国产成人精品| 超碰成人久久| 18禁国产床啪视频网站| 大香蕉久久成人网| 最近手机中文字幕大全| 国产在线免费精品| 国产亚洲最大av| 在线观看人妻少妇| 天天操日日干夜夜撸| 亚洲av电影在线观看一区二区三区| 亚洲av综合色区一区| 国产免费现黄频在线看| 国产人伦9x9x在线观看 | 成年女人毛片免费观看观看9 | 成年人免费黄色播放视频| 在线观看国产h片| 亚洲伊人色综图| 如日韩欧美国产精品一区二区三区| 777久久人妻少妇嫩草av网站| 亚洲第一区二区三区不卡| 午夜91福利影院| 久久精品人人爽人人爽视色| 久久人人爽av亚洲精品天堂| 精品一品国产午夜福利视频| 日本-黄色视频高清免费观看| 亚洲av中文av极速乱| 女性被躁到高潮视频| 最近中文字幕2019免费版| 久久97久久精品| 深夜精品福利| 久久久精品94久久精品| 在线观看一区二区三区激情| 性少妇av在线| 伊人久久大香线蕉亚洲五| 日本av免费视频播放| 麻豆精品久久久久久蜜桃| 亚洲精品自拍成人| 中文乱码字字幕精品一区二区三区| 狠狠婷婷综合久久久久久88av| av卡一久久| 精品酒店卫生间| 一区二区三区四区激情视频| 人妻一区二区av| 免费av中文字幕在线| 国产日韩欧美在线精品| 最近最新中文字幕免费大全7| 老熟女久久久| 国产国语露脸激情在线看| 黄色 视频免费看| 制服诱惑二区| 韩国高清视频一区二区三区| 1024视频免费在线观看| 97人妻天天添夜夜摸| 大话2 男鬼变身卡| 午夜老司机福利剧场| 国产成人精品在线电影| 久久国产亚洲av麻豆专区| av有码第一页| xxxhd国产人妻xxx| 亚洲在久久综合| 精品少妇久久久久久888优播| 国产成人一区二区在线| 丰满迷人的少妇在线观看| 1024香蕉在线观看| 激情五月婷婷亚洲| 久久婷婷青草| 国产亚洲午夜精品一区二区久久| 美女中出高潮动态图| av网站在线播放免费| 一区福利在线观看| 日本猛色少妇xxxxx猛交久久| 午夜影院在线不卡| 啦啦啦在线观看免费高清www| 亚洲国产看品久久| 免费久久久久久久精品成人欧美视频| 国产淫语在线视频| 高清av免费在线| 一区二区日韩欧美中文字幕| 国产成人精品婷婷| 精品一品国产午夜福利视频| 国产精品 欧美亚洲| 少妇的逼水好多| 国产视频首页在线观看| 黄片小视频在线播放| 久久热在线av| 欧美人与善性xxx| 一区二区三区四区激情视频| 国产一区二区激情短视频 | 啦啦啦啦在线视频资源| 街头女战士在线观看网站| 久久久久国产精品人妻一区二区| 久久久亚洲精品成人影院| 久久精品夜色国产| 日韩av在线免费看完整版不卡| 日韩 亚洲 欧美在线| 亚洲精品自拍成人| 亚洲五月色婷婷综合| 亚洲精品,欧美精品| 激情视频va一区二区三区| 91aial.com中文字幕在线观看| 国产一级毛片在线| 日韩精品有码人妻一区| 亚洲图色成人| 七月丁香在线播放| 国产xxxxx性猛交| 国产精品 欧美亚洲| 国产精品国产av在线观看| 夫妻午夜视频| 欧美激情 高清一区二区三区| 人人澡人人妻人| 精品人妻熟女毛片av久久网站| 高清不卡的av网站| 色94色欧美一区二区| av电影中文网址| 亚洲欧美一区二区三区黑人 | 丝袜美腿诱惑在线| 午夜老司机福利剧场| 成年美女黄网站色视频大全免费| 国产精品嫩草影院av在线观看| a级毛片在线看网站| 秋霞在线观看毛片| 91aial.com中文字幕在线观看| 晚上一个人看的免费电影| 国产熟女午夜一区二区三区| 中文字幕制服av| 一级毛片 在线播放| 国产精品久久久av美女十八| 国产精品免费大片| 午夜福利一区二区在线看| 丰满乱子伦码专区| 国产毛片在线视频| 久久97久久精品| 日韩熟女老妇一区二区性免费视频| 午夜91福利影院| 中文天堂在线官网| 麻豆乱淫一区二区| 欧美日韩精品成人综合77777| 美女视频免费永久观看网站| 搡女人真爽免费视频火全软件| 精品人妻一区二区三区麻豆| 成年女人毛片免费观看观看9 | 永久网站在线| 国产黄色视频一区二区在线观看| 在线观看免费日韩欧美大片| 老汉色∧v一级毛片| 久久久久久伊人网av| 免费少妇av软件| 亚洲精品国产色婷婷电影| 宅男免费午夜| 啦啦啦在线免费观看视频4| 丝袜美腿诱惑在线| 下体分泌物呈黄色| 日本av免费视频播放| 久久精品国产鲁丝片午夜精品| 2018国产大陆天天弄谢| 深夜精品福利| 王馨瑶露胸无遮挡在线观看| 久久精品国产亚洲av高清一级| 97精品久久久久久久久久精品| 中文欧美无线码| 欧美成人午夜免费资源| 国产一区亚洲一区在线观看| 成人午夜精彩视频在线观看| 校园人妻丝袜中文字幕| 国产精品av久久久久免费| 大片免费播放器 马上看| 亚洲国产精品一区二区三区在线| 777久久人妻少妇嫩草av网站| 午夜av观看不卡| a 毛片基地| 一区在线观看完整版| 男女午夜视频在线观看| 激情五月婷婷亚洲| 久久鲁丝午夜福利片| 精品久久久精品久久久| 1024视频免费在线观看| 中文字幕亚洲精品专区| 日韩中文字幕视频在线看片|