• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An expert system for predicting shear stress distribution in circular open channels using gene expression programming

    2018-08-17 09:51:12ZohrehSheikhKhozaniHosseinBonakdariIsaEbtehaj
    Water Science and Engineering 2018年2期

    Zohreh Sheikh Khozani,Hossein Bonakdari*,Isa Ebtehaj

    Department of Civil Engineering,Razi University,Kermanshah 67131,Iran

    Abstract The shear stress distribution in circular channels was modeled in this study using gene expression programming(GEP).173 sets of reliable data were collected under four flow conditions for use in the training and testing stages.The effect of input variables on GEP modeling was studied and 15 different GEP models with individual,binary,ternary,and quaternary input combinations were investigated.The sensitivity analysis results demonstrate that dimensionless parameter y/P,where y is the transverse coordinate,and P is the wetted perimeter,is the most in fluential parameter with regard to the shear stress distribution in circular channels.GEP model 10,with the parameter y/P and Reynolds number(Re)as inputs,outperformed the other GEP models,with a coefficient of determination of 0.7814 for the testing data set.An equation was derived from the best GEP model and its results were compared with an artificial neural network(ANN)model and an equation based on the Shannon entropy proposed by other researchers.The GEP model,with an average RMSE of 0.0301,exhibits superior performance over the Shannon entropy-based equation,with an average RMSE of 0.1049,and the ANN model,with an average RMSE of 0.2815 for all flow depths.?2018 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Keywords:Circular channel;Gene expression programming(GEP);Sensitivity analysis;Shear stress distribution;Soft computing

    1.Introduction

    Predicting boundary shear stress is an important part of stable channel section design as well as estimation of the sediment transport rate and channel erosion and deposition.Researchers have employed various methods to study the measurement of boundary shear stress in channels with different cross-sections and both smooth and rough boundaries(Knight,1981;Tominaga et al.,1989;Rhodes and Knight,1994;Knight and Sterling,2000;Seckin et al.,2006;Blanckaertetal.,2008;Pechlivanidis et al.,2015).Berlamont et al.(2003)used computational fluid dynamics(CFD)to estimate the shear stress distribution in circular channels.The ability of the software package to estimate the shear stress in rectangular channels was verified,after which CFD was employed to simulate the shear stress distribution with and without sediment.Yang et al.(2013)established a depth-averaged equation for flow in a rectangular compound channel with secondary flows by analyzing the forces acting on the elemental water body using Newton's second law.Then,they modeled the depth-averaged velocity and bed shear stress in rectangular compound channels.Sheikh Khozani and Bonakdari(2016)used Tsallis entropy to estimate the shear stress distribution in compound channels and compared their model with four different analytical models.Some researchers have used the Shannon entropy concept to estimate the shear stress distribution in circular channels(Sterling and Knight,2002;Sheikh Khozaniand Bonakdari,2015,2017).Bonakdari et al.(2015)employed the Tsallis entropy concept to predict the shear stress distribution in circular and trapezoidal channels and achieved acceptable precision.

    Utilizing soft computing(SC)methods to solve different problemsisanotherprogressing concept.SC methods,including artificial neural networks(ANN),particle swarm optimization(PSO),adaptive neuro-fuzzy inference systems(ANFIS),the group method of data handling(GMDH),genetic algorithms(GA),and genetic programming(GP),are used in diverse engineering fields(Melin et al.,2013;Kaydani et al.,2014;Najafzadeh et al.,2014;Najafzadeh and Azamathulla,2015;Sheikh Khozani et al.,2016a,2017).One of the newest and most powerful SC methods is gene expression programming(GEP),which is an extension of GP and GA(Azamathulla and Ab Ghani,2010;Sattar and Gharabaghi,2015),and was first introduced by Ferreira(2001).The GEP method mitigates the majority of problems of principal SC methods related to the absence of equations for practical engineering by presenting explicit equations.In GEP,there is no predefined function to be considered in modeling of nonlinear problems,which is the main advantage of this method over other SC methods.The formed functions are generated randomly in the GEP model and the one that best fits the results is selected.

    Sheikh Khozani et al.(2016b)estimated the percentage of shear force carried by walls in rectangular channels with rough boundaries using two SC methods.Kisi et al.(2012)predicted the discharge capacity of triangular labyrinth side weirs using generalized regression neural networks(GRNN)and GEP.Shiri et al.(2014)evaluated the function of GEP-based models in estimating reference evapotranspiration according to temporal and spatial criteria and dataset scanning procedures for coastal environments of Iran.Due to the poor performance of existing equations in estimating the discharge coefficient of side weirs,Ebtehaj et al.(2015)used GEP to predict this parameter.They presented a functional equation to predict the discharge coefficient of side weirs and indicated that GEP exhibits superior performance to existing equations.Najafzadeh et al.(2016)employed GEP,evolutionary polynomial regression(EPR),and the model tree(MT)method to estimate scour depth around bridge piers with debris effects.Few studies have focused on estimating the shear stress distribution using soft computing methods.The aim of this study was to use GEP modeling to predict the shear stress distribution in circular channels.The results of the best GEP model are presented as an equation and compared with an ANN model and an equation proposed by Sterling and Knight(2002).

    2.Materials and methods

    2.1.Data presentation

    In the present work,experimental data on the shear stress distribution in circular channels measured by Knight and Sterling(2000)were used.Knight and Sterling used the Preston pipe technique to measure the shear stress distribution in a circular channel with a 244-mm diameter at four different flow depths.About 173 sets of data for GEP modeling were used from the experiments of Knight and Sterling(2000).The experimental flume is illustrated in Fig.1.

    Fig.1.Experimental flume(Knight and Sterling,2000).

    Based on the results obtained by other researchers,the shear stress τ in a circular channel depends on the channel geometry(D,P,and y,where D is the channel diameter,P is the wetted perimeter,and y is the traverse coordinate), flow depth(h),energy slope(S), flow velocity(V),kinematic viscosity(ν),gravitational acceleration(g),and hydraulic radius(R).Therefore,the functional relationship between the shear stress and the effective parameters is defined as

    Using dimensional analysis,the dimensionless function to express the shear stress is as follows:

    where ρ is the fluid density.

    In shear stress distribution modeling with GEP,the abovementioned parameters serve as input variables.Table 1 displays the statistical parameters of the dataset applied.

    As can be seen in Table 1,half of all data were used to train the dataset and the remainder were used for testing.In order to compare different similarity values,all data were normalized between 0 and 1.

    As mentioned above,Shannon entropy was one of the analytical methods employed by Sterling and Knight(2002)to predict the shear stress distribution in circular,circular-with-aflat bed,and trapezoidal channels.They extracted an equation to estimate the shear stress distribution along the wetted perimeter of a circular channel as follows:

    where τmaxis the maximum value of shear stress,and λ is the Lagrange multiplier calculated as follows:

    Eq.(4)was used to verify the accuracy of the GEP method in this study.

    Table 1 Range of input variables for modeling.

    2.2.Sensitivity analysis

    To identify the input parameter with the greatest effect on the shear stress distribution prediction using GEP modeling,fifteen different input combinations were applied to the models.These input combinations involved single,binary,ternary,and quaternary combinations.Table 2 shows the input combinations applied to each model.All possible combinations were considered and investigated.

    2.3.Overview of gene expression programming(GEP)

    GEPbene fitsfromtheadvantagesofGAandGP,butdoesnot havetheirlimitationsanddisadvantages.IntheGEPmethod,the genomes are encoded with constant lengths similar to GA.However,the genes in GEP are presented as phenotypes in the form of expression trees(ETs).Unlike GP,which isa refractory system,GEP is a full- fledged,evolved phenotype(ET)/genotype(chromosome)method that deals with each parameter separately.In some cases,GEP surpasses the GP technique by a factor of 100-60000(Ferreira,2001,2002).

    Like other evolutionary algorithms,the modeling process in GEP begins with a randomly generated initial population.This population includes individual chromosomes with a fixed length but potentially different numbers of genes.Each chromosome from the initial population undergoes fitness evaluation using existing fitness function equations from the literature.The chromosomes for the next generation are selected based on the fitness value of each chromosome in the current generation as well as the roulette wheel selection method,which is among the most powerful selection processes(Ebtehaj and Bonakdari,2016).Following superior chromosome selection according tothe randomly generated initial population,the new chromosomes of the subsequent generation are reproduced through amendments carried out by genetic operators(i.e.,mutation,transposition,inversion,and recombination).The new individuals are exposed to the same amendments by these operators.This process continues until one of the stop criteria are reached,such as a given number of generations or acceptable precision(Ferreira,2001,2002).The performance of each genetic operator in GEP is brie fly described below.

    Table 2 Input variables of each model for sensitivity analysis.

    Mutation:ThisisanimportantgeneticoperatorusedinGEP.It can occur anywhere in the genome.However,the structural organization of chromosomes should be maintained.Thus,the existing function at the head can be replaced with a function or terminal,but at the tail a terminal must be exchanged with only oneoftheotherterminals.Therefore,mutationhelpsmaintainthe structuralorganizationofchromosomes,andthenewindividuals generated by this operator are structurally correct programs.

    Inversion operator:This operator inverts a sequence in the gene head following selection.To modify the gene,the terminal and initial points of the head portion are inverted through the random selection of chromosomes.

    Insertion sequence(IS)transposition:Every sequence in the genome may become an IS element.Thus,IS transposition elements are randomly selected throughout the chromosomes;these elements are short genomic fragments with a terminal or function in the first position.IS transposition randomly selects a chromosome,a gene to be improved,the start of an element,the target site,and the transposon length.

    Root insertion sequence(RIS)transposition:RIS transposition elements are short genomic segments similar to IS transposition elements.The difference between IS and RIS is the starting point.The starting point in IS can be a function or terminal,whereas in RIS it is always a function.If no function is found,the RIS operator is ineffective.

    Gene transposition:With this operator,a complete gene operates as a transposon and transposes itself to the beginning of the chromosome.The gene transposition operator deletes the gene at the place of origin,unlike IS and RIS transposition.

    One-point and two-point recombination:In one-point recombination,the parent chromosomes are coupled at the same point.The gene's contribution downstream of the crossover point is replaced between two chromosomes.In twopoint recombination,two crossover points are randomly selected and two parent chromosomes are coupled.

    Gene crossover:In this operator,genes are replaced between two parent chromosomes,and daughter chromosomes are created,including genes from both parents.The displaced genes are randomly selected and situated in the same location as the parent chromosomes.

    2.4.Derivation of shear stress modeling based on GEP

    The shear stress (τ/(ρgRS))was modeled with the GEP technique in terms of four dimensionless parameters:Fr,Re,h/D,and y/P.First,the dataset was classified in two groups:training and testing.50%of all data were selected randomly to train the GEP model and the remaining 50%were used to test the model performance.After selecting the training set,the GEP learning environment should be defined.The five main steps in GEP training are as follows:

    First step:selecting fitness function.The fitness(fi)of an individual program i is defined as

    where Tjis the target value for fitness case j,Ci,jis the value estimated by the individual program i for fitness case j,Ciis the number offitness cases for the individual program i,and M is the selection range.If the difference between the value predicted by GEP and the actual value is less than 0.01,that isthen the precision is zero,and fi=fmax=CtM,where fmaxis the maximum fitness,and Ctis the number offitness cases.In this study,the values of M and Ctwere 100 and 10,respectively.Thus,fmaxwas 1000.The fitness function in Eq.(5)results in an optimal solution.As such,the runs continued until the maximum fitness was attained(Ferreira,2006).

    Second step:determining the function set(F)and terminal set(T)for chromosome generation.Trial and error was used to obtain the basic arithmetic operators(+,-,×,/)and some basic mathematical operators(pow,sqrt,ln,x4,3Rt,and 5Rt)that serve as function sets.lnx,pow(x,y),x4,sqrt(x),3Rt(x),and 5Rt(x)return lnThe terminal set included four dimensionless independent parameters:T={h/D,F(xiàn)r,Re,y/P}.

    Third step:specifying the number of genes and the head length.GEP modeling considers a value of 1-5 for the number of genes and 1-10 for the head length.According to an evaluation of different head lengths and numbers of gene combinations in the training and testing stages,increasing the number of genes and head length beyond 3 and 7,respectively,does not significantly enhance GEP performance.Therefore,the head length and number of genes utilized in this study were 7 and 3,respectively.In addition to these two parameters,the number of chromosomes should be defined.A number of chromosomes between 30 and 100 could lead to strong model performance(Ferreira,2001).In the present study,the initial number of chromosomes used was 30,which was increased to 50 during GEP modeling.Based on the training and testing results,30 is the best number of chromosomes.

    Fourth step:defining the linking function for linking different sub-ETs.Recent studies in various engineering fields have shown that using addition as a linking function yields better results(Gharagheizi et al.,2012;Zhang et al.,2013;Alavi et al.,2013;Ebtehaj et al.,2015).Therefore,the linking function applied in this study was addition.

    Fifth step:setting the values of different genetic operators,such as inversion,transposition,and recombination.The values of these operators and other parameters used in GEP are presented in Table 3.Fig.2 represents the GEP flowchart and best GEP model in training and testing.

    2.5.Goodness-of- fit of model performance

    Four statistical evaluation criteria were used to assess the models’performance:

    (1)Coefficient of determination(R2):

    (2)Root mean square error(RMSE):

    (3)Mean absolute error(MAE):

    (4)Thecoefficientofresidualmass(CRM),whichisanindex for recognizing model underestimation or overestimation compared to measured values in the laboratory:

    Table 3 Parameter settings for GEP modeling.

    Fig.2.GEP flowchart.

    where Tmiis the measured shear stress value,Tpiis the simulated shear stress value,and n is the number of shear stress values.A combination of the mentioned statistical parameters is sufficient for model evaluation.

    3.Results and discussion

    3.1.Individual combinations

    Fig.3.Scatterplots of models with one input variable.

    The results of applying the input variables to the models individually are illustrated in Fig.3.Models 1,2,and 3,with the ratio of the flow depth to the pipe diameter(h/D),Froude number(Fr),and Reynolds number(Re)as individual inputs,respectively,cannot model the shear stress distribution.This is evident from the results,which fall in straight lines in the scatterplots.The R2values of models 1,2,and 3 are very low and,hence,unacceptable.Therefore,it can be said that these models cannot predict the shear stress distribution with these inputs.It is concluded that model 4,with y/P as an input variable,performs well to some extent.The R2value of 0.477 for this model indicates that y/P is the most effective parameter in predicting the shear stress distribution among the effective parameters obtained by dimensional analysis in Eq.(2).Although model 4 is more accurate than other models with individual parameters(models 1,2,and 3),it does not predict the shear stress distribution well.Therefore,it is not sufficient to use individual parameters for predicting the shear stress distribution.Rather,a combination of different dimensionless parameters should be used to achieve an accurate and flexible model.

    3.2.Binary combinations

    The models containing two input variables are examined in this section.It is noted that,with an increase in the number of input variables,the GEP models perform better.Fig.4 displays the results of models 5 to 10 with different two-input variable combinations.In models 5,6,and 7 the parameter h/D is constant.The R2values of models 5 and 6 are very low,whereas for model 7 the value is 0.7031.Therefore,the twoinput variable combinations presented for models 5 and 6 cause very poor performance.However,using h/D and y/P increase the GEP model accuracy,as the value of R2increases from 0.477 in model 4 to 0.7031 in model 7.Model 8,with Fr and Re as input combinations,exhibits weak performance in predicting the shear stress distribution,similar to the individual models as well as models 5 and 6(binary).Models 9 and 10,with y/P as one of two inputs in their combinations,perform well,and better than all individual and other binary models.Therefore,using y/P with Fr or Re as effective parameters in estimating the shear stress distribution enhances prediction accuracy.Fig.4 indicates that model 9 makes some predictions with a high relative error.Thus,model 10 is the best among the models with one and two dimensionless parameters;that is,combining y/P with Re creates a robust GEP model(model 10)with precise results.

    3.3.Ternary combinations

    Fig.4.Scatterplots of models with two input variables.

    Fig.5.Scatterplots of models with three input variables.

    Of the models with ternary parameter combinations,model 11 performs poorly.This model,with h/D,Fr,and Re,cannot estimate the shear stress distribution,as the predicted values also fall in a straight line in the scatter plots.As seen in Fig.5,the absence of effective parameter y/P in model 11 significantly impacts this model's results.With the addition of parameter y/P as an input variable,the GEP model results are improved significantly(models 12,13,and 14).The parameters of model 12 are utilized in models 5,7,and 9 with binary combinations.A comparison between these models demonstrates that model 12 only outperforms model 5 in predicting the shear stress distribution;model 5 does not include y/P as an effective parameter.Actually,adding one dimensionless parameter to model 7 or 9 decreases GEP accuracy.This trend is also evident for models 13 and 14(ternary models).Of all GEP models with ternary input variables,model 13,with h/D,Re,and y/P as input variables,and with an R2value of 0.6654,performs the best.Therefore,the Re and y/P combination substantially affects GEP model 13 and validates the results of model 10.

    3.4.Quaternary combinations

    The last model contains all input variables presented in Eq.(2)as effective parameters in predicting the shear stress distribution.The results of model 15 are illustrated in Fig.6;it is clear that this model makes good shear stress distribution estimations,with an R2value of 0.7549.The predicted values are less scattered from the fitted line,showing accurate shear stress distribution predictions.Considering all 15 GEP models,model 10 with y/P and Re as input variables and an R2value of 0.7814 is the best GEP model.

    After extending the GEP models and investigating the sensitivity analysis results,GEP model 10 with y/P and Re as input variables was chosen as the best GEP model,with accurate shear stress distribution estimation in circular channels.A straightforward equation obtained from this GEP model for predicting the shear stress distribution is as follows:

    According to Eq.(10),the dimensionless shear stress can be calculated with y/P and Re.

    Fig.6.Scatterplot of model with four input variables.

    3.5.Sensitivity analysis

    Sensitivity analysis was used to analyze thevariation trend of τ/(ρgRS)accordingtotheinputvariablesforthebestmodel.The sensitivityanalysisresults areillustratedinFig.7.Asseeninthis figure,lower y/P values(y/P<0.5)correspond to positive sensitivity values,and therefore,with increasing y/P,the dimensionless shear stress increases.However,for y/P>0.5,an increase in this input variable causes the dimensionless shear stress to decrease.For input variable Re,with increasing Re,the output variable τ/(ρgRS)decreases,since all sensitivity values are in the negative range.With an increase in the Re value,the effect of this parameter decreases.

    3.6.Comparison of results of GEP with ANN model and Shannon entropy-based equation

    The GEP equation(Eq.(10))obtained from GEP model 10 was compared with an ANN model and Shannon entropybased equation.The statistical results of this comparison are tabulated in Table 4.Evidently,at greater flow depths,the GEP model performs better in terms of statistical parameter values:RMSE=0.0339 and MAE=0.0297 for h/D=0.333,RMSE=0.0297 and MAE=0.0214 for h/D=0.506,and RMSE=0.0228 and MAE=0.0187 for h/D=0.666.The ANN model predicts the shear stress distribution in circular channels with lower accuracy.For all flow depths the ANN model demonstrates poor results and at greater flow depths it exhibits the worst results.It can be deduced that the ANN model cannot simulate the shear stress distribution in circular channels.Moreover,the results of the Shannon entropy-based equation are better for greater flow depths than for lower ones.Comparison of the GEP model results with the Shannon entropy-based equation shows that the GEP model outperforms the Shannon entropy-based equation for all flow depths.For h/D=0.826,due to the presence of strong secondary flows,shear stress prediction is more complicated.Furthermore,the effect of secondary flow is not considered in the GEP model.Therefore,its results are less precise than those at h/D=0.666.Nonetheless,the results for this flow depth are once again more accurate than the shear stress predicted by the Shannon entropy-based equation.

    The shear stress distribution along the wetted perimeter of a circular channel with different flow depths predicted by the GEP model,ANN model,and the Shannon entropy-based equation is illustrated in Fig.8.From this figure,it is clear that the GEP model presents a better pattern of the shear stress distribution prediction at increasing flow depths.Moreover,the predicted shear stress values are better adapted to the experimental results for increasing flow depths.It is clear that the shear stress predictions by the Shannon entropy-based equation for 0<y/P<0.2 and 0.8<y/P<1 are underestimated for greater flow depths and overestimated for lower flow depths.The GEP model displays better performance with increasing flow depths.For h/D=0.826,the GEP model and Shannon entropy-based equation perform well,and the GEP model is superior to some extent.The ANN model demonstrates inferior performance in the shear stress distribution estimation to the GEP and the Shannon entropy-based equation.It is clear that the ANN model predicts the same shear stress pro file for all flow depths and lower shear stress values for the entire wetted perimeter.Although the ANN model can estimate the shear stress distribution pattern,the location of maximum shear stress in circular channels is not at the channel centerline.

    Fig.7.Sensitivity analysis of different inputs for best model.

    Table 4 Statistical analysis of GEP,ANN and Shannon entropy-based equation.

    Fig.8.Comparison of shear stress distributions predicted by most appropriate GEP model,ANN model,and Shannon entropy-based equation.

    4.Conclusions

    Determining the shear stress distribution in open channels is an essential problem that engineers have been attempting to solve.A new formulation for estimating the shear stress distribution in circular channels in the form of GEP was investigated.To identify the effective parameters in shear stress distribution modeling with GEP,sensitivity analysis was applied and 15 different GEP models were run.The results indicate that y/P is a sensitive parameter in shear stress distribution estimation.When Re and y/P were added as inputs,the GEP models show the most accurate shear stress distribution prediction results.A simple equation was derived from the best GEP model.According to the sensitivity analysis,parameter y/P has a complex effect on the dimensionless shear stress,but the input variable Re has a direct relation with the dimensionless shear stress.The shear stress distribution predicted by the most appropriate GEP model selected was compared with those predicted by an ANN model and the Shannon entropy-based equation.Both the GEP model and Shannon entropy-based equation performed better with increasing flow depths.The ANN model exhibited the worst results and produced lower shear stress estimations than the experimental values.The GEP model,with an average RMSE of 0.0301,indicated better functionality than the Shannon entropy-based equation and the ANN model,with average RMSE values of 0.1049 and 0.2815,respectively.A simple and applicable equation was thus extracted from the GEP model for predicting the shear stress distribution in circular channels.

    三级国产精品欧美在线观看| 男的添女的下面高潮视频| 91精品伊人久久大香线蕉| 精品人妻偷拍中文字幕| 王馨瑶露胸无遮挡在线观看| 日日啪夜夜撸| 高清在线视频一区二区三区| 久久韩国三级中文字幕| 亚洲真实伦在线观看| 国产一区有黄有色的免费视频| 色播亚洲综合网| 神马国产精品三级电影在线观看| 国产探花在线观看一区二区| 好男人在线观看高清免费视频| 日韩一本色道免费dvd| 一级毛片aaaaaa免费看小| 在线免费十八禁| 各种免费的搞黄视频| 黄色一级大片看看| 女的被弄到高潮叫床怎么办| 欧美日韩国产mv在线观看视频 | 丝袜喷水一区| 亚洲aⅴ乱码一区二区在线播放| 日韩中字成人| 岛国毛片在线播放| 免费看av在线观看网站| 久久久久久久精品精品| 亚洲av中文av极速乱| 国产精品人妻久久久久久| 麻豆乱淫一区二区| 久久精品国产亚洲av涩爱| 中文字幕免费在线视频6| 亚洲国产最新在线播放| a级毛片免费高清观看在线播放| 中文欧美无线码| av.在线天堂| 免费看光身美女| 一级av片app| 亚洲,一卡二卡三卡| 亚洲av成人精品一二三区| 国产精品一区二区三区四区免费观看| 免费看av在线观看网站| 亚洲精品久久午夜乱码| 丰满人妻一区二区三区视频av| 欧美xxⅹ黑人| 久久久久久久亚洲中文字幕| 久久99热6这里只有精品| 综合色丁香网| 久久99蜜桃精品久久| 国产又色又爽无遮挡免| 国产中年淑女户外野战色| 3wmmmm亚洲av在线观看| 国产色爽女视频免费观看| 亚洲欧美一区二区三区国产| 99九九线精品视频在线观看视频| 美女主播在线视频| 欧美xxⅹ黑人| 国产精品国产av在线观看| 99热6这里只有精品| 国产亚洲最大av| 久久久久久伊人网av| 久久久久久久久久久免费av| 亚洲人成网站在线播| 99久久精品国产国产毛片| 有码 亚洲区| 国产一区二区在线观看日韩| 亚洲国产精品专区欧美| 99视频精品全部免费 在线| 亚洲国产成人一精品久久久| 一本一本综合久久| 色吧在线观看| 日韩人妻高清精品专区| 免费av观看视频| 美女高潮的动态| 天天躁日日操中文字幕| 国产精品国产三级国产av玫瑰| 成人毛片60女人毛片免费| 99热这里只有是精品50| 免费观看无遮挡的男女| 久久人人爽人人爽人人片va| 精品国产乱码久久久久久小说| 在线a可以看的网站| 国产欧美日韩精品一区二区| 一级av片app| 卡戴珊不雅视频在线播放| 啦啦啦在线观看免费高清www| 日韩av在线免费看完整版不卡| 欧美激情国产日韩精品一区| 别揉我奶头 嗯啊视频| 国产乱来视频区| 99九九线精品视频在线观看视频| 爱豆传媒免费全集在线观看| 国产黄色免费在线视频| 久久女婷五月综合色啪小说 | 老女人水多毛片| 久久精品国产亚洲网站| 91久久精品国产一区二区成人| 深夜a级毛片| av天堂中文字幕网| 免费人成在线观看视频色| 亚洲精品国产av蜜桃| 欧美zozozo另类| 2018国产大陆天天弄谢| av福利片在线观看| 日韩欧美一区视频在线观看 | 亚洲国产精品999| 成年女人在线观看亚洲视频 | av在线蜜桃| 尾随美女入室| 狂野欧美激情性bbbbbb| 日本色播在线视频| 黄色日韩在线| 男人添女人高潮全过程视频| 亚洲图色成人| 在线观看国产h片| 亚洲精品日韩在线中文字幕| 内射极品少妇av片p| 热re99久久精品国产66热6| 偷拍熟女少妇极品色| 亚洲av欧美aⅴ国产| www.av在线官网国产| 成人欧美大片| 涩涩av久久男人的天堂| 久久久久精品性色| 综合色丁香网| 大片电影免费在线观看免费| 成人黄色视频免费在线看| 亚洲国产高清在线一区二区三| 搞女人的毛片| 国产探花在线观看一区二区| 熟妇人妻不卡中文字幕| 如何舔出高潮| 97热精品久久久久久| 七月丁香在线播放| 亚洲欧美精品专区久久| 中文天堂在线官网| 三级男女做爰猛烈吃奶摸视频| 欧美一级a爱片免费观看看| 久久久色成人| av卡一久久| 久久久久久久午夜电影| 五月玫瑰六月丁香| 久久国产乱子免费精品| 久久99蜜桃精品久久| 自拍偷自拍亚洲精品老妇| 在线看a的网站| 国产一区二区三区综合在线观看 | 欧美最新免费一区二区三区| 色5月婷婷丁香| 亚洲成人久久爱视频| 精品一区二区三区视频在线| 国产高清有码在线观看视频| 成人特级av手机在线观看| www.色视频.com| 精品国产三级普通话版| 男人舔奶头视频| 纵有疾风起免费观看全集完整版| 日韩国内少妇激情av| 国产精品国产av在线观看| 尤物成人国产欧美一区二区三区| 男女无遮挡免费网站观看| 久热这里只有精品99| 亚洲性久久影院| 欧美区成人在线视频| 国产高潮美女av| 国产女主播在线喷水免费视频网站| 久久久久久久久久久免费av| 日日摸夜夜添夜夜添av毛片| 男女那种视频在线观看| 亚洲人成网站在线播| 91精品国产九色| 亚洲精品第二区| 下体分泌物呈黄色| 99久国产av精品国产电影| av在线播放精品| 综合色av麻豆| 亚洲精品国产成人久久av| 夫妻午夜视频| 亚洲自偷自拍三级| 亚洲av男天堂| 哪个播放器可以免费观看大片| av在线观看视频网站免费| 久久久久久九九精品二区国产| av福利片在线观看| 国产精品.久久久| 三级经典国产精品| 天天一区二区日本电影三级| 国产精品一区二区三区四区免费观看| 99久久精品一区二区三区| 熟妇人妻不卡中文字幕| 青春草国产在线视频| 简卡轻食公司| 久久99热这里只频精品6学生| 久久综合国产亚洲精品| 舔av片在线| 国国产精品蜜臀av免费| 亚洲国产精品专区欧美| 亚洲国产精品专区欧美| 国产探花在线观看一区二区| 午夜爱爱视频在线播放| 天堂网av新在线| 色网站视频免费| 国产黄色免费在线视频| 国产欧美另类精品又又久久亚洲欧美| 丝袜美腿在线中文| 国产精品久久久久久精品古装| 一级爰片在线观看| 国产爱豆传媒在线观看| 亚洲内射少妇av| 性色avwww在线观看| 成年免费大片在线观看| 男人添女人高潮全过程视频| 你懂的网址亚洲精品在线观看| 亚洲精品中文字幕在线视频 | 男男h啪啪无遮挡| 亚洲最大成人av| 国精品久久久久久国模美| 亚洲精品久久午夜乱码| av国产精品久久久久影院| 深爱激情五月婷婷| 天美传媒精品一区二区| 在线观看美女被高潮喷水网站| 日本av手机在线免费观看| 少妇裸体淫交视频免费看高清| 91久久精品国产一区二区成人| 日本av手机在线免费观看| 久久影院123| 色视频在线一区二区三区| 大码成人一级视频| 大片电影免费在线观看免费| 久久99热这里只频精品6学生| 成人无遮挡网站| 狂野欧美白嫩少妇大欣赏| 美女视频免费永久观看网站| 乱码一卡2卡4卡精品| 免费看不卡的av| 人人妻人人爽人人添夜夜欢视频 | 成年女人看的毛片在线观看| 午夜福利网站1000一区二区三区| 99精国产麻豆久久婷婷| 欧美最新免费一区二区三区| 亚洲无线观看免费| kizo精华| 亚洲精品一二三| 欧美日本视频| 日韩成人伦理影院| 伦理电影大哥的女人| av天堂中文字幕网| 欧美区成人在线视频| 亚洲一区二区三区欧美精品 | 18禁在线播放成人免费| 国产av国产精品国产| 99久久精品国产国产毛片| 亚洲av免费高清在线观看| 好男人视频免费观看在线| 99久久精品国产国产毛片| 亚洲av一区综合| 一级a做视频免费观看| 国产亚洲最大av| 中国三级夫妇交换| av又黄又爽大尺度在线免费看| 成人特级av手机在线观看| 嫩草影院精品99| 色播亚洲综合网| 精品一区在线观看国产| 91久久精品国产一区二区成人| 久久午夜福利片| 人妻系列 视频| 国产久久久一区二区三区| 在线观看人妻少妇| 又爽又黄a免费视频| 国产伦精品一区二区三区四那| 欧美激情国产日韩精品一区| 久久女婷五月综合色啪小说 | 国产爱豆传媒在线观看| 国产黄频视频在线观看| 九九久久精品国产亚洲av麻豆| 97在线视频观看| 97在线视频观看| 欧美另类一区| 国语对白做爰xxxⅹ性视频网站| 一区二区三区乱码不卡18| 男男h啪啪无遮挡| 久久久久精品性色| 国产精品伦人一区二区| 久久久a久久爽久久v久久| 18+在线观看网站| 一个人看的www免费观看视频| 日韩一本色道免费dvd| 久久精品久久久久久噜噜老黄| 亚洲精品色激情综合| 一级二级三级毛片免费看| av女优亚洲男人天堂| 女的被弄到高潮叫床怎么办| 中文字幕人妻熟人妻熟丝袜美| 天天一区二区日本电影三级| 成人毛片a级毛片在线播放| 黄片无遮挡物在线观看| 国产成人a∨麻豆精品| 精品久久久久久久末码| 亚洲国产最新在线播放| av女优亚洲男人天堂| 国产精品伦人一区二区| 亚洲人成网站高清观看| videos熟女内射| 秋霞伦理黄片| 99热这里只有是精品50| 亚洲性久久影院| 免费大片黄手机在线观看| 日韩在线高清观看一区二区三区| 精品国产露脸久久av麻豆| 女人久久www免费人成看片| 国产有黄有色有爽视频| 亚洲成人精品中文字幕电影| 亚洲av男天堂| 久久久国产一区二区| 一区二区三区免费毛片| 国产视频内射| 久久久久久久久久久丰满| kizo精华| 欧美xxⅹ黑人| 国产成人91sexporn| 久久人人爽av亚洲精品天堂 | 精品一区二区免费观看| 91aial.com中文字幕在线观看| 蜜桃久久精品国产亚洲av| 人体艺术视频欧美日本| 国产老妇伦熟女老妇高清| 欧美一区二区亚洲| 欧美性感艳星| 亚洲精品久久午夜乱码| 日韩欧美精品免费久久| 国产69精品久久久久777片| 麻豆乱淫一区二区| 99久久人妻综合| 直男gayav资源| 国产久久久一区二区三区| 国产色婷婷99| 国产成人一区二区在线| 亚洲精品aⅴ在线观看| 两个人的视频大全免费| 街头女战士在线观看网站| 亚洲av中文av极速乱| 亚洲综合色惰| 亚洲精品国产成人久久av| 欧美成人一区二区免费高清观看| 亚洲国产色片| 男人爽女人下面视频在线观看| 人妻少妇偷人精品九色| 国产美女午夜福利| 真实男女啪啪啪动态图| 联通29元200g的流量卡| 久热这里只有精品99| 久久鲁丝午夜福利片| 国产女主播在线喷水免费视频网站| 亚洲欧美日韩无卡精品| 日本-黄色视频高清免费观看| 只有这里有精品99| 亚洲av成人精品一二三区| 男女边吃奶边做爰视频| 亚洲精品国产av成人精品| 国产乱来视频区| 男女那种视频在线观看| av天堂中文字幕网| 亚洲欧美精品专区久久| 国产男人的电影天堂91| 美女cb高潮喷水在线观看| 日本黄色片子视频| 日本三级黄在线观看| 日韩国内少妇激情av| 亚洲av欧美aⅴ国产| 我的老师免费观看完整版| 精品久久久久久电影网| 国产男女内射视频| 91久久精品国产一区二区成人| 三级国产精品片| 国产探花在线观看一区二区| 色5月婷婷丁香| 人人妻人人澡人人爽人人夜夜| freevideosex欧美| 日韩欧美精品v在线| 精品少妇久久久久久888优播| 少妇人妻精品综合一区二区| tube8黄色片| 精品酒店卫生间| 国产精品无大码| 亚州av有码| 少妇猛男粗大的猛烈进出视频 | 日韩在线高清观看一区二区三区| 网址你懂的国产日韩在线| 亚洲av国产av综合av卡| av免费在线看不卡| 天美传媒精品一区二区| 黄色视频在线播放观看不卡| 国产探花在线观看一区二区| 一个人看的www免费观看视频| 街头女战士在线观看网站| 在线观看美女被高潮喷水网站| 下体分泌物呈黄色| 日本一本二区三区精品| 精品久久久久久久久av| av天堂中文字幕网| 国内精品美女久久久久久| 国产成人91sexporn| 国产精品精品国产色婷婷| 韩国av在线不卡| 大又大粗又爽又黄少妇毛片口| 亚洲在线观看片| 两个人的视频大全免费| 草草在线视频免费看| 一级二级三级毛片免费看| 国产一级毛片在线| 日韩欧美一区视频在线观看 | 成人毛片a级毛片在线播放| 国产亚洲5aaaaa淫片| 亚洲精品成人久久久久久| 卡戴珊不雅视频在线播放| 欧美 日韩 精品 国产| 91精品一卡2卡3卡4卡| 搞女人的毛片| 日韩一本色道免费dvd| 日日撸夜夜添| 一本一本综合久久| 99久久人妻综合| 国产成人精品福利久久| 国产精品无大码| 欧美国产精品一级二级三级 | 99热这里只有是精品在线观看| 成人美女网站在线观看视频| 99精国产麻豆久久婷婷| xxx大片免费视频| 精品人妻熟女av久视频| 在线亚洲精品国产二区图片欧美 | 五月玫瑰六月丁香| 国产成人a∨麻豆精品| 超碰97精品在线观看| 亚洲成色77777| www.色视频.com| 日本一二三区视频观看| 内地一区二区视频在线| 色5月婷婷丁香| 午夜福利网站1000一区二区三区| 国产黄a三级三级三级人| videossex国产| 日日啪夜夜爽| 在线看a的网站| 自拍欧美九色日韩亚洲蝌蚪91 | 天堂俺去俺来也www色官网| 在线观看一区二区三区激情| 色网站视频免费| 国产精品三级大全| 国产精品一区www在线观看| 国产美女午夜福利| 免费少妇av软件| 欧美最新免费一区二区三区| 中国三级夫妇交换| 久久国内精品自在自线图片| 99久久精品一区二区三区| 精品国产露脸久久av麻豆| 各种免费的搞黄视频| 五月天丁香电影| 国产精品99久久久久久久久| 久久精品久久久久久噜噜老黄| 18禁裸乳无遮挡免费网站照片| 99久久人妻综合| 国产女主播在线喷水免费视频网站| 亚洲av免费在线观看| 久久精品国产亚洲网站| 欧美变态另类bdsm刘玥| 欧美日韩视频精品一区| 在线观看三级黄色| 99久国产av精品国产电影| 超碰av人人做人人爽久久| 国产精品国产三级国产av玫瑰| 久久久色成人| 色综合色国产| 精品一区二区免费观看| 毛片女人毛片| 免费大片黄手机在线观看| 亚洲av福利一区| 欧美日韩亚洲高清精品| 亚洲人成网站在线观看播放| 亚洲欧美成人综合另类久久久| 久久久久九九精品影院| 免费看不卡的av| 婷婷色综合大香蕉| 亚洲国产最新在线播放| 国产伦理片在线播放av一区| 又大又黄又爽视频免费| 国产淫片久久久久久久久| 国产精品国产av在线观看| 免费观看a级毛片全部| 亚洲av免费高清在线观看| 人妻 亚洲 视频| 日韩制服骚丝袜av| 一本一本综合久久| 欧美激情久久久久久爽电影| 97超视频在线观看视频| 51国产日韩欧美| 久久久久久久久久人人人人人人| 麻豆国产97在线/欧美| 91精品国产九色| 高清午夜精品一区二区三区| 五月伊人婷婷丁香| 老司机影院成人| 日本黄大片高清| 国产亚洲最大av| 国产一级毛片在线| 欧美精品人与动牲交sv欧美| 午夜亚洲福利在线播放| 99热这里只有精品一区| 亚洲精品视频女| 国产免费视频播放在线视频| 欧美高清成人免费视频www| 街头女战士在线观看网站| 亚洲最大成人av| 成人美女网站在线观看视频| 神马国产精品三级电影在线观看| 国产亚洲av嫩草精品影院| 在线播放无遮挡| 五月伊人婷婷丁香| 美女cb高潮喷水在线观看| 亚洲精品一二三| 久久国产乱子免费精品| 卡戴珊不雅视频在线播放| 干丝袜人妻中文字幕| 性插视频无遮挡在线免费观看| 久久人人爽人人片av| 亚洲天堂国产精品一区在线| 老司机影院毛片| 看非洲黑人一级黄片| 在线观看美女被高潮喷水网站| 三级国产精品片| 日韩欧美一区视频在线观看 | 午夜视频国产福利| 91精品一卡2卡3卡4卡| 亚洲激情五月婷婷啪啪| 听说在线观看完整版免费高清| 麻豆乱淫一区二区| 久久亚洲国产成人精品v| 在线观看av片永久免费下载| 国精品久久久久久国模美| 天堂网av新在线| 交换朋友夫妻互换小说| 97热精品久久久久久| 精品视频人人做人人爽| 99热网站在线观看| av女优亚洲男人天堂| 国产熟女欧美一区二区| 国产一区二区亚洲精品在线观看| 国产成人aa在线观看| 欧美三级亚洲精品| 欧美一区二区亚洲| 午夜视频国产福利| 国内揄拍国产精品人妻在线| 色视频www国产| 1000部很黄的大片| 舔av片在线| 亚洲人成网站高清观看| 亚洲成人精品中文字幕电影| 亚洲精品成人av观看孕妇| 亚洲成人av在线免费| 久久6这里有精品| 国产伦精品一区二区三区四那| 99热网站在线观看| 99热全是精品| 久久久久久久久久人人人人人人| 少妇的逼好多水| 亚洲国产成人一精品久久久| 国产精品无大码| 国产美女午夜福利| 男女啪啪激烈高潮av片| 插阴视频在线观看视频| 人人妻人人看人人澡| 日韩精品有码人妻一区| 乱系列少妇在线播放| 免费大片黄手机在线观看| 国产高清国产精品国产三级 | 日日撸夜夜添| 丝瓜视频免费看黄片| 国产欧美亚洲国产| 日韩成人av中文字幕在线观看| 男女那种视频在线观看| 国产伦精品一区二区三区视频9| 最近2019中文字幕mv第一页| 国产免费一级a男人的天堂| 天天躁日日操中文字幕| 人妻一区二区av| 亚洲国产欧美在线一区| 国产成人a区在线观看| 亚洲精品成人久久久久久| 韩国高清视频一区二区三区| 纵有疾风起免费观看全集完整版| 亚洲国产最新在线播放| 国产探花极品一区二区| 国产综合精华液| a级一级毛片免费在线观看| 亚洲国产欧美人成| 在线观看人妻少妇| 亚洲国产精品专区欧美| 亚洲精品国产av蜜桃| 美女主播在线视频| 国产黄色视频一区二区在线观看| 人妻一区二区av| 亚洲av福利一区| 99久国产av精品国产电影| 久久久久久久久久人人人人人人| 欧美性感艳星| 色5月婷婷丁香| 黄片wwwwww| 嘟嘟电影网在线观看| 亚洲电影在线观看av| 黄色怎么调成土黄色| 国产高清三级在线| 99久久中文字幕三级久久日本|