• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Advanced Quantum-Resistant Signature Scheme for Cloud Based on Eisenstein Ring

    2018-08-15 10:38:22FaguoWuXiaoZhangWangYaoZhimingZhengLipengXiangandWanpengLi
    Computers Materials&Continua 2018年7期

    Faguo Wu , Xiao Zhang , Wang Yao , Zhiming Zheng , Lipeng Xiang and Wanpeng Li

    Abstract: Signature, widely used in cloud environment, describes the work as readily identifying its creator. The existing signature schemes in the literature mostly rely on the Hardness assumption which can be easily solved by quantum algorithm. In this paper, we proposed an advanced quantum-resistant signature scheme for Cloud based on Eisenstein Ring (ETRUS) which ensures our signature scheme proceed in a lattice with higher density. We proved that ETRUS highly improve the performance of traditional lattice signature schemes. Moreover, the Norm of polynomials decreases significantly in ETRUS which can effectively reduce the amount of polynomials convolution calculation.Furthermore, storage complexity of ETRUS is smaller than classical ones. Finally,according to all convolution of ETRUS enjoy lower degree polynomials, our scheme appropriately accelerate 56.37% speed without reducing its security level.

    Keywords: Signature, quantum-resistant, Eisenstein Ring, ETRUS.

    1 Introduction

    In recent years, there is growing interest in cryptography based on hard lattice problems,classical signature schemes, such as discrete algorithm [ElGamal (1985)], security sensitive applications and encrypted searching, have been proved unsafe based on the quantum computing capacity [Gerjuoy (2005)], it is meaningful to research unbreakable signature schemes under quantum computer’s model. Lattice-based signature schemes’construction hold a great promise for post-quantum cryptography, as they enjoy very strong security proofs based on worst-case hardness [Bi and Cheng (2014)]. Besides,lattice signature schemes’ calculation mostly relate to the polynomials convolution, so compared with some classical algorithm (like RSA-1024 ECDSA-163), Latticed based signature schemes need a smaller amount of calculations. In this way, lattice-based digital signature algorithm technologies are initially developed for resource-constrained devices[Oder, P? ppelmann and Gü neysu (2014)], for example, embedded devices and IC card.In 1997, Goldreich et al. [Goldreich, Goldwasser and Halevi (1997)] proposed the first lattice-based (GGH cryptography system) signature scheme which has no strict security proof. In 2001, Hoffstein et al. [Hoffstein, Pipher and Silverman (2001)] proposed NSS which security based on the closest vector problem (CVP), however, it was broken by[Mironov (2001)]. In 2002, a modified signature scheme R-NSS is proposed based on NSS which was proved unsafe by Stern [Stern (2001)] in the same year. In 2003,Hoffstein et al. [Hoffstein, Howgrave-Graham, Pipher et al. (2003)] proposed NTRUSIGN signature schemes which security are based on the approximate the closest vector problem(APPR-CVP) [Goldreich, Micciancio, Safra et al. (1999)]. Compared with the former signature schemes, NTRUSIGN enjoy higher security, and in recent years, many new signature schemes are being proposed based on NTRU-lattice.

    As a family of classical quantum-resist signature schemes, NTRUSIGN are worth being improved. In 2004, Min et al. [Min, Yamamoto and Kim (2004)] make the signing transformation one-to-one correspondent on a given secret key to improve security of NTRUSIGN. In 2005, Hoffstein et al. [Hoffstein, Howgrave-Graham and Pipheretal(2005)] provided a specific parameter generation algorithm to improve their performance.In 2009, Zhang et al. [Zhang and Ji (2009)] improved NTRUSign-based by anonymous multi-proxy signature scheme. In 2013, Stehle et al. [Stehlé and Steinfeld (2011)]improved their security over ideal lattice by extending it is provably category. In 2014,Melchor et al. [Melchor, Boyen, Deneuville et al. (2014)] gave a set of concrete parameters to gauge the efficiency of the signature scheme by sealing the leak on Classical NTRU Signatures. However, due to a large number of polynomials convolution calculation in each part of NTRUSIGN, the speed of them can still be improved.

    In this paper, we improve the performance of NTRUSIGN by replacing the integer ring Z with the ring of Eisenstein Z[ω] at the first time. In Section 2, we introduce some necessary properties of Eisenstein integer and ring. In Section 3, we introduce our advanced signature scheme ETRUS, re-choose parameters. In rest sections, we analyze the security, storage complexity, implement performance of ETRUS, and compare it with NTRUSIGN.

    2 Preliminaries

    In this paper, we proposed an advanced signature scheme based on Eisenstein ring in rest section, so in this section, we discuss some necessary properties of Eisenstein integer and Eisenstein ring to be used as lattice signature base.

    Eisenstein integer is an integer of complex, its basis are 1 and,is the non-real root of x3? 1 =0, all the element of it can be represented as a + bω(a, b ∈). Eisenstein ring is denoted as [ω], and some properties of Eisenstein integer and Eisenstein ring are presented as follow.

    Let a+bωand c + dω∈ [ω], it is easy to get some properties as follow.

    (1) Norm2(a+bω) = (a+bω) (a +bω2) = a2?ab+b2.

    (2) [ω]has greater density (has more points) thanin same dimension of space.

    Proof

    It is obviously that Eisenstein integer have greater density than integer in 2-Dimension, and it is easy to calculate that when r=20, Eisenstein integer=36295,integer=31417, Eisenstein space is “tighter” than integer space.

    (3) The amount of multiplication and addition between two Eisenstein integers.

    (a + bω ) *(c + dω ) =(a c ?bd ) +(b ? a)( c ? d )ω+ acω

    Wherein (3) shows that (a + bω) (c +dω)cost three multiplication and four addition, (4) is very important for reducing the amount of calculation in ETRUS, we will discuss it in Section 6.

    (4) Eisenstein ring is an Euclidean domain.

    Proof

    According to (4), we can easily have following property.

    (5) For any a+bωandc+dω∈, there existt , r∈such thateither r=0 or Norm

    (6) 2N dimensional vectors inan form a lattice.

    Proof

    According to the following signature scheme’s construction, 2N dimensional vectorin [ω]is consist of N Eisenstein integers as

    In order to form a 2N-dimensional lattice by these vectors, we choose 2N linearly independent vectors as

    Indeed, [ω]is isomorphism to [x], it can easily form a 2N-dimensional lattice.

    3 The proposed signature scheme on Eisenstein ring

    In this section, we introduce our advanced quantum-resistant signature scheme for Cloud Based on Eisenstein Ring, we named it for ETRUS. Compared with NTRUSIGN, we choose suitable parameters for our signature scheme.

    The steps to construct ETRUS are as follow.

    3.1 Public parameters selection

    3.2 Public key generation

    3.3 Signing

    We store document (after hash) as Eisenstein integer to accelerate signing and verification speed in Section 6.

    3.4 Verification

    Combine with (1), so we can easily obtain following expressions

    From (5), as our construction, A and ahave coefficients e+fωin [ω], and coefficients of A/ qand a/ q between (,). We can easily have following expression

    Therefore Norm2(ε) is calculated as follow

    We now can estimate norm of ( S? m1, T ?m2).

    In ETRUS, according to the above mentioned calculation, we would better letWhile in NTRUSIGN,In ETRUS, through above calculation.However,in NTRUSIGN.So in ETRUS,signer should choose one suitable Appr-CVPthe verifier calculate || S ? m1||2+||T ?m2||2, if the result is smaller than N ormBound2,then the verification is succeed, otherwise failed.

    We can also use the new perturbation [Hu, Wang and He (2008)] in 2008 to avoid the flaw [Nguyen and Regev (2006)] found in 2006.

    According to the above construction, we proposed an advanced signature scheme ETRUS by replacing the ring Z in NTRUSIGN with the ring Z[ω]. Compared to NTRUSIGN, we can realize a simpler process for ETRUS by suitable parameters.

    4 Security analysis of ETRUS

    4.1 Lattice reduction attack

    Lattice reduction attack is to trying to find a very short non-zero vector inLh, since(f, g)and rotations are probably the shortest such vectors. According to the above description in Section 3, lattice dimension is N’=2N, according to Gaussian heuristic[Gama, Nguyen and Regev (2010)], a general convolution modular lattice Lhhas dimension $2N$ and determinant qN, it is probable shortest vector and closest vectors have approximate size.

    λGauss(Lh)In ETRUS, we take (f, g)as the probably shortest vectors, they have shortest vector approximately asaccording to Hoffstein et al.[Hoffstein, Howgrave-Graham, Pipher et al. (2010)], the ratio ofis proved small enough to resist Lattice reduction attack to find probably the shortest vector(f, g).

    Forger can also use lattice reduction to directly locate signature(S, T), in signature scheme, ||S ? m1||2+ ||T ? m2||2≤NormBound2, it indicates (S, T)is close to(m1, m2). From the Gaussian heuristic, we can find that potential forger select a random point in 2N dimensional lattice which distance to (m1,m2)must no more than NormBound /λGauss(Lh)times the expected distance to the actual closest point in lattice. In ETRUS, when we choose appropriate parameters satisfyIn particular, we can choose N = N′/2 = 251/2 ≈126, when r=2/3, the Gaussian heuristic of ETRUS isapproximately to 123. Hence setting NormBound=300 means that forger needs to find a point is no more than 2.43 times the expected the shortest distance, when we choose NormBound =250, this ratio goes down to 2.03.When we choose satisfy small NormBound in ETRUS close to 1. This appropriate closest vector problem (App-CVP) proved to be NP-hard [Dinur (2002)].

    Therefore, in ETRUS, it is more difficult to get (f, g)than NTRUSIGN due to preliminaries. When we choose suitable NormBound which discussed in verification.ETRUS can avoid this type adversary. So ETRUS can effectively resist Lattice reduction attack.

    4.2 Exhaustive search attack

    Exhaustive search attack is trying to find the other half (m1? S, m2?T ). In Section 3,

    In particular, compared with classical NTRUSIGN, we chooseNormBound = 300. N = N′/2 ≈126.

    Therefore, we have P(|| Y ||2<NormBound2) ≈2?121.44. When we choose (N, q),P(||Y ||2)which is small enough to prevent exhaustive search attack.

    4.3 GCD lattice attack

    GCD lattice attack is an effective way to break lattice signature scheme, like NSS. In ETRUS, attacker want use GCD lattice attack to get some f*xiwithout mod q in,and f*xiprobably generate the closest vector in lattice. However, due to ETRUS signature scheme S = f* B + F *b (mod q), it is difficult for attacker to get independentf*xi. Furthermore, even attacker can get(xi) ,(xj), (|xi|,|xj|)=1, he cannot break ETRUS down, as in ETRUS,|xi|,|xj|∈ R[ω], (|xi|,|xj|) =1cannot get a* xi+b* xj=1, so attacker finally can't get GCD(f * xi, f * xj) = (f ).

    Due to special structure of R[ω]and Eisenstein integer. ETRUS can effectively resist GCD lattice attack

    4.4 Averaging attack

    Averaging attack is trying to getthrough thousands of signatures, in ETRUS,adversary uses following average equation to get

    According to the above mentioned analysis, ETRUS can effectively resist four typical attack with suitable parameters.

    5 Storage complexity analysis

    In this section, we analyze the storage complexity of ETRUS and NTRUSIGN under the same security level. In order to achieve this goal, we have presented the Public key size,Document size and Signature size of ETRUS and NTRUSIGN, and choose the parameters as discussed in previous sections 2 N = N′,||q ||≈ q'/2.

    In the actual process of signature, computer store Eisenstein integer a+bωas a pair of integer(a, b), so in ETRUS, we store every Eisenstein integer a +bω (m od ?q)size asbits from Jarvis et al. [Jarvis and Nevins (2015)], in NTRUSIGN, we store every integer c(mod ?q′)size as

    (1) Public Key Size Public key is h=f?1*g(mod q).In ETRUS, according to the above mentioned discussion, it is easy to calculate the

    SizehE<SizehN′. Therefore, ETRUS have smaller public key size than NTRUSIGN.

    (2) Document Size In this comparison, as we described in Section 3, document size is the size stored in computer after Hash.In ETRUS, we have a transform of documentHm=(m1, m2), so document size is

    S i z edocumentE<S i z edocumentN, therefore,ETRUS have smaller document size than NTRUSIGN.

    (3) Signature Size

    The signature is S = f* B + F *b (mod q).

    Size( s iganatureE) <Size( s iganatureN). Therefore, ETRUS have smaller signature size than NTRUSIGN.

    When we combine lattice dimension with document size, it is surprising means that when lattice dimension have a linear extension, the number of signature points in lattice also increase at linear level.

    In particular, when we compared to classical NTRUSIGN with N ′= 251,q ′=128, and we choose ETRUS almost at same security level withN=127, q = 67 + 0, ω =67(in order to simplify calculation Process, we let q=67), then we have appropriate comparison Tab. 1 as follow.

    Table 1: Size of Classical NTRUSIGN and ETRUS

    According to the above Tab. 1. Document and Signature size almost double times than Public Key size, and it is bigger than current signature schemes (RSA, DSA) to resist quantum computer's attack.

    Through above analysis, ETRUS need smaller computer storage space than NTRUSIGN,and size of each part reduce

    6 Performance analysis

    In this section, we presented the performance analysis of ETRUS and NTRUSIGN.Without affecting the safety of the two signature schemes, we compare ETRUS, for parameters (N, q ,NormBound ) with NTRUSIGN, for parameters(N '=2N , q',NormBound’).

    There are many different ways to get the complexity of implement performance of NTRUSIGN and ETRUS. Obviously, it closely relies on the hardware platform and the implementation details, so if we only implement this algorithm on a computer, our results do not have the universality and persuasiveness, hence the main purpose of this section is to give a universality and persuasiveness implement performance comparison between NTRUSIGN and ETRUS.

    We split the entire implement performance into three part: Key Generation, Signing and Verification, convert the implement performance comparison to speed comparison of Key Generation,Signing, Verification. We simplify the algorithmic process into elementary operations like addition, subtraction, multiplication, or division integers.

    The more advanced the CPU use internal microinstruction fast multiplication algorithm,for example, in reg32, addition(A) consume 1 to 3 clock cycles, multiplying(M)consumption 13 to 26 clock cycles, and according to Jarvis et al. [Jarvis and Nevins(2015)], module(D) in [ω]consumed almost the 27 times than multiplying, in ,module(D)=multiplying(M). In order to obtain a uniform result, we unify all the operation time as approximately multiplying time, so M=5A, M=D’ in NTRUSIGN and 27M=D in ETRUS, and computation in the array to store large Number is also ignored.

    (1) Key Generation Speed Firstly, Key Generation need signer to compute public key h=f?1*g(mod q). In ETRUS scheme, the convolution of two polynomial with degree N?1cost 3 N2*M multiplication, and each coefficient of polynomial h cost 4(N?1)*A addition, so totally cost ( 4 N2? 4 N )*A addition, and N*Dmodular. In NTRUSIGN scheme, the convolution of two polynomial of degree N'?1cost N′2*M =4 N2*M multiplication, N ′( N ′?1)*A = (4 N2? 2 N )*A addition,and N′*D′modular.

    Secondly, in ETRUS, signer should calculate two small polynomials as previously mentioned (F, G) ∈ [ω][X ]/ XN?1satisfyingf*G ?g *F =q , the process of its implementation in the need for hundreds of large numbers of operation, because of this, secret key generation rate is greatly reduced. In order to find suitable(F, G),we should findsatisfy the following equation

    In order to find F1andG1, we should find two polynomial uand v satisfy

    Where Rfand Rgare the (integer) resultants of (f, xN?1) and (g, xN?1), and we know thatIn order to get RfandRg. In ETRUS, we need 2 n*N*(N ?1)times convolution (where n is non-zero coefficient number off) to compute RfandRg, so it costs6 n*N * (N ?1)*M multiplication, and 8n *N * (N ?1)*A addition, same in NTRUSIGN, it cost 4 n ′N (2 N ? 1)*M multiplication (where n’ is non-zero coefficient number of f’) and 2 n′* N * (N ? 1)*A addition. We use Rfand Rgto solve Eqs. (4) and (5). In order to get polynomial uand v. We need to solve the following linear equation

    Then in NTRUSIGN, we should use Extended Euclidean algorithm to get m’, n’satisfy m′Rf′? n′Rg′=q′, and according to Stark [Stark (2005)], algorithm complexity of Extended Euclidean algorithm is O( l og2(Rf′)* log2(Rg′)). According to Section 3 verification step, in ETRUS, the time of this step can be ignored.

    In order to have a more intuitive expression, we let n=N/4, n'=N'/4=N/2, then we have appropriate Key Generation Speed of NTRUSIGN and ETRUS as following Tab. 2(Unify all operations as multiplication in verification step).

    Table 2: Key Generation Speed of NTRUSIGN and ETRUS

    C is a constant in NTRUSIGN.

    According to the Tab. 2, we can easily find that ETRUS costs much less time than NTRUSIGN in Public Key Generation.

    Compared with the NTRUSIGN, Key Generation Speed approximately accelerate 56.37\% in ETRUS when N trends to∞, according to algorithm of ETRUS, Key Generation needs much less polynomial convolution at each step than NTRUSIGN, and due to special properties of Eisenstein integer, it also eliminate a number of timeconsuming steps (like Extended Euclidean algorithm), so ETRUS’s speed has been improved a lot.

    (2) Signing and Verification Speed According the same analysis method as the above Key Generation Speed, we can easily have the comparison of Signing and Verification in following Tab. 3.

    Table 3: Signing Speed of NTRUSIGN and ETRUS

    Compared with NTRUSIGN, Signing and Verification Speed approximately accelerate 20.83\% and 22.73\% when N trends to, respectively.

    (3) Total Comparison According to the above analysis and calculation, it is not difficult to have a total speed comparison between NTRUSIGN and ETRUS by combining Key Generation speed, signing speed, and Verification speed.

    Table 2: Speed Comparision of NTRUSIGN and ETRUS

    It is not surprising that whole signature scheme and Public Key Generation speed accelerate almost the same percentage at 56.37\% when N trends to, because in ETRUS and NTRUSIGN, 99.51\% of the calculation is occupied by Public Key Generation when N’=251, and this ratio will increase when N becomes bigger.

    When we implemented the ETRUS(N = 127,q =67), NTRUSIGN(N = 251,q =128)(appropriate parameters) in practice for average time, we have following Tab. 5.

    Table 5: Comparision with concrete parameters

    Tab. 5 shows that Key Generation Speed, Signing Speed, and Verification Speed accelerate significantly in practice. We can easily calculate that Key Generation Speed appropriately accelerate 38.18\%, Signing Speed appropriately accelerate 12.06\%,Verification Speed appropriately accelerate 12.42\%, growth rate of Key Generation,Signing, and Verification speed consistent with the theoretical result. However, due to N∞in practice, accelerate rate is smaller than the theoretical value.

    6 Conclusion

    With the surprising development of quantum computer, lattice-based signature schemes,which are constructed to resist quantum attack, become more and more attractive. In this paper, we introduce an advanced signature scheme, namely ETRUS. By discussing the essential properties of [ω]to be used as signature base, selecting appropriate parameters and complex polynomials convolution, we have reduced. Norm of (f, g)from, Norm of (F, G)fromFurthermore,we have proved that ETRUS is secure under four typical attacks: Lattice Reduction attack,Exhausting attack, GCD attack, and averaging attack. When compared with NTRUSIGN at same security level, ETRUS has smaller storage complexity, whole size reduces ■10 N*log2(3/2)■. Besides, by theoretical analysis and performance comparison, compared with NTRUSIGN, ETRUS has 56.37\% speed improvement.(Public key Generation 56.37%, signing and verification 20.83%). Therefore, the proposed scheme on Eisenstein lattice is proved to be a secure signature scheme based on NTRU-lattice, with less storage complexity and higher speed than classical lattice-based signature scheme.

    Acknowledgement:The authors wish to express their appreciation to the reviewers for their helpful suggestions which greatly improved the presentation of this paper. This work was supported by the Major Program of National Natural Science Foundation of China (11290141).

    夜夜爽天天搞| 可以在线观看毛片的网站| 国产人伦9x9x在线观看| 看黄色毛片网站| 搡老熟女国产l中国老女人| 看免费av毛片| 精品一区二区三区av网在线观看| 怎么达到女性高潮| 久久草成人影院| 欧美另类亚洲清纯唯美| 国产97色在线日韩免费| 性少妇av在线| 久久久久九九精品影院| 久久伊人香网站| 久久精品亚洲熟妇少妇任你| 欧美在线黄色| 欧美在线一区亚洲| 久久久久国产一级毛片高清牌| 亚洲av片天天在线观看| 大型黄色视频在线免费观看| 黄色视频不卡| 精品无人区乱码1区二区| 亚洲精品av麻豆狂野| 精品国产亚洲在线| 日本精品一区二区三区蜜桃| 一区在线观看完整版| 国产aⅴ精品一区二区三区波| 中文字幕精品免费在线观看视频| 亚洲欧美日韩无卡精品| 国产成人精品久久二区二区91| 女人精品久久久久毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 母亲3免费完整高清在线观看| 久久久久久亚洲精品国产蜜桃av| 9191精品国产免费久久| 亚洲国产毛片av蜜桃av| 久久久久久久精品吃奶| 高清在线国产一区| 日本黄色视频三级网站网址| 国产精品,欧美在线| 国产精品 国内视频| 久久草成人影院| 欧美乱色亚洲激情| 精品人妻1区二区| 91成年电影在线观看| 女警被强在线播放| 搡老熟女国产l中国老女人| av中文乱码字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 高清在线国产一区| 老汉色∧v一级毛片| 欧美黑人欧美精品刺激| 久久性视频一级片| 黄色毛片三级朝国网站| av天堂在线播放| 淫秽高清视频在线观看| e午夜精品久久久久久久| 色播在线永久视频| 婷婷精品国产亚洲av在线| 久久久国产精品麻豆| 欧美日韩一级在线毛片| 国产亚洲精品av在线| 国产精品久久久久久亚洲av鲁大| 丝袜美腿诱惑在线| 亚洲avbb在线观看| 久久国产精品影院| 国产欧美日韩精品亚洲av| 后天国语完整版免费观看| 黄色a级毛片大全视频| 一区二区三区激情视频| 美女高潮到喷水免费观看| 久9热在线精品视频| 夜夜躁狠狠躁天天躁| 999久久久精品免费观看国产| 国产一卡二卡三卡精品| 18禁黄网站禁片午夜丰满| 成人精品一区二区免费| 神马国产精品三级电影在线观看 | 美女高潮喷水抽搐中文字幕| 午夜精品在线福利| 多毛熟女@视频| 国产熟女xx| 999精品在线视频| 婷婷精品国产亚洲av在线| 在线播放国产精品三级| 欧美最黄视频在线播放免费| 咕卡用的链子| 欧美亚洲日本最大视频资源| 岛国视频午夜一区免费看| 丝袜人妻中文字幕| 亚洲天堂国产精品一区在线| 黄色成人免费大全| 啦啦啦免费观看视频1| 国产精品九九99| 欧美日韩乱码在线| 国产精品美女特级片免费视频播放器 | 高清毛片免费观看视频网站| 99在线视频只有这里精品首页| 亚洲一区高清亚洲精品| svipshipincom国产片| 久久 成人 亚洲| 亚洲国产欧美日韩在线播放| 亚洲精品国产精品久久久不卡| 操出白浆在线播放| 精品一区二区三区av网在线观看| 欧美精品亚洲一区二区| 免费无遮挡裸体视频| 亚洲中文日韩欧美视频| 老熟妇乱子伦视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久人人做人人爽| 俄罗斯特黄特色一大片| 99精品久久久久人妻精品| 我的亚洲天堂| 亚洲成人免费电影在线观看| av在线播放免费不卡| 亚洲人成网站在线播放欧美日韩| 久久欧美精品欧美久久欧美| 国产一区二区三区综合在线观看| 亚洲精品粉嫩美女一区| 美女高潮喷水抽搐中文字幕| 亚洲国产精品999在线| 精品国产超薄肉色丝袜足j| 日韩欧美国产一区二区入口| 亚洲第一青青草原| 午夜福利免费观看在线| 亚洲国产欧美一区二区综合| 国产精品秋霞免费鲁丝片| 十分钟在线观看高清视频www| 可以免费在线观看a视频的电影网站| 可以免费在线观看a视频的电影网站| 亚洲男人的天堂狠狠| 一本综合久久免费| 岛国在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 91成人精品电影| 91av网站免费观看| 老司机午夜十八禁免费视频| 桃色一区二区三区在线观看| 中文字幕高清在线视频| 999精品在线视频| 国产黄a三级三级三级人| tocl精华| 精品一区二区三区四区五区乱码| 国产成人av激情在线播放| 欧美一区二区精品小视频在线| 国产aⅴ精品一区二区三区波| 又黄又爽又免费观看的视频| 日韩 欧美 亚洲 中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 亚洲国产欧美日韩在线播放| 国产精品久久久人人做人人爽| cao死你这个sao货| 桃色一区二区三区在线观看| 国产成人精品久久二区二区免费| 99国产极品粉嫩在线观看| 国产精品一区二区三区四区久久 | 亚洲狠狠婷婷综合久久图片| 日本撒尿小便嘘嘘汇集6| 又黄又粗又硬又大视频| 国产精品久久久av美女十八| 欧美日韩乱码在线| 男女床上黄色一级片免费看| 国产欧美日韩一区二区精品| 91九色精品人成在线观看| 麻豆久久精品国产亚洲av| 18禁国产床啪视频网站| 天天添夜夜摸| 可以在线观看的亚洲视频| av福利片在线| 看片在线看免费视频| 国产欧美日韩一区二区三区在线| 亚洲成人免费电影在线观看| 91精品国产国语对白视频| 久久久久久人人人人人| 欧美老熟妇乱子伦牲交| 又大又爽又粗| 最新美女视频免费是黄的| 国产精品一区二区在线不卡| 亚洲人成网站在线播放欧美日韩| 久热这里只有精品99| 国产精品精品国产色婷婷| 中文字幕色久视频| 亚洲人成伊人成综合网2020| 国产激情欧美一区二区| 久久婷婷成人综合色麻豆| 丰满的人妻完整版| 黄片大片在线免费观看| 国产日韩一区二区三区精品不卡| 国产成人免费无遮挡视频| 亚洲av片天天在线观看| 人人妻人人澡欧美一区二区 | 国产免费男女视频| 欧美av亚洲av综合av国产av| 久久中文字幕一级| 狂野欧美激情性xxxx| 亚洲色图综合在线观看| 精品电影一区二区在线| 成人亚洲精品一区在线观看| 久久性视频一级片| 人妻丰满熟妇av一区二区三区| 99久久99久久久精品蜜桃| 久久精品亚洲熟妇少妇任你| 咕卡用的链子| 91精品国产国语对白视频| 麻豆久久精品国产亚洲av| 亚洲熟妇熟女久久| 一进一出抽搐动态| 久久 成人 亚洲| 777久久人妻少妇嫩草av网站| 免费av毛片视频| 免费搜索国产男女视频| 最新美女视频免费是黄的| 悠悠久久av| 一二三四社区在线视频社区8| 亚洲人成电影免费在线| 久久精品国产综合久久久| 97人妻精品一区二区三区麻豆 | 女生性感内裤真人,穿戴方法视频| cao死你这个sao货| 久久人妻av系列| 日本黄色视频三级网站网址| 亚洲成av片中文字幕在线观看| 午夜福利在线观看吧| 99久久精品国产亚洲精品| 久久久久国产一级毛片高清牌| 国产视频一区二区在线看| 91麻豆精品激情在线观看国产| 亚洲成av人片免费观看| 波多野结衣巨乳人妻| 最好的美女福利视频网| 欧美成人性av电影在线观看| 日本在线视频免费播放| 午夜福利高清视频| 丰满的人妻完整版| tocl精华| 熟妇人妻久久中文字幕3abv| 在线观看舔阴道视频| 日本 av在线| 色精品久久人妻99蜜桃| 久久久久久久久免费视频了| 亚洲国产欧美日韩在线播放| 久久中文字幕一级| 成熟少妇高潮喷水视频| 久久久久国产精品人妻aⅴ院| 久久精品国产清高在天天线| 欧美色视频一区免费| 欧美乱码精品一区二区三区| 精品国产超薄肉色丝袜足j| 国产一区二区三区在线臀色熟女| 中文字幕色久视频| 一边摸一边做爽爽视频免费| 亚洲av成人av| 黄片大片在线免费观看| 久久久久久久久免费视频了| 日韩精品青青久久久久久| 日韩欧美免费精品| 老司机福利观看| 啦啦啦韩国在线观看视频| 国产在线观看jvid| 国产色视频综合| 99精品久久久久人妻精品| 在线观看舔阴道视频| 精品一品国产午夜福利视频| 久久性视频一级片| 国产熟女xx| 国产一卡二卡三卡精品| 国产麻豆69| 午夜激情av网站| 国产午夜精品久久久久久| 国产97色在线日韩免费| 国产精品1区2区在线观看.| 国产三级黄色录像| 久久久国产成人精品二区| 看免费av毛片| 亚洲第一av免费看| 精品欧美国产一区二区三| 一本综合久久免费| 91麻豆精品激情在线观看国产| 亚洲五月天丁香| 国产激情欧美一区二区| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 一级毛片女人18水好多| 午夜影院日韩av| 成在线人永久免费视频| 精品日产1卡2卡| 欧美 亚洲 国产 日韩一| 日本欧美视频一区| 丝袜人妻中文字幕| 久久久久久久久免费视频了| 精品人妻1区二区| 老鸭窝网址在线观看| 看免费av毛片| 老司机在亚洲福利影院| 免费高清视频大片| 成人国语在线视频| 又紧又爽又黄一区二区| 变态另类丝袜制服| 人妻久久中文字幕网| 每晚都被弄得嗷嗷叫到高潮| 免费观看人在逋| 女人被狂操c到高潮| 亚洲最大成人中文| 国产精品影院久久| 视频在线观看一区二区三区| 在线国产一区二区在线| avwww免费| 99香蕉大伊视频| 两性午夜刺激爽爽歪歪视频在线观看 | 精品国产乱子伦一区二区三区| 91成人精品电影| 麻豆av在线久日| 中文字幕精品免费在线观看视频| 男女床上黄色一级片免费看| 精品欧美一区二区三区在线| av电影中文网址| 久久天堂一区二区三区四区| 国产精品美女特级片免费视频播放器 | 黄网站色视频无遮挡免费观看| 宅男免费午夜| 性少妇av在线| 久久久久久免费高清国产稀缺| 久久中文字幕一级| 国产精品一区二区免费欧美| 亚洲精品国产区一区二| 精品乱码久久久久久99久播| 国产区一区二久久| 精品少妇一区二区三区视频日本电影| 免费高清视频大片| 精品久久蜜臀av无| 看黄色毛片网站| 男女床上黄色一级片免费看| 精品午夜福利视频在线观看一区| 国产精品亚洲一级av第二区| 日韩 欧美 亚洲 中文字幕| bbb黄色大片| 九色亚洲精品在线播放| 亚洲片人在线观看| 可以在线观看的亚洲视频| 少妇 在线观看| 国产一区二区三区在线臀色熟女| 欧美久久黑人一区二区| 久热爱精品视频在线9| 美女高潮到喷水免费观看| 精品日产1卡2卡| 97碰自拍视频| 久久精品成人免费网站| 精品久久久精品久久久| 欧美一区二区精品小视频在线| 夜夜爽天天搞| 国产亚洲精品一区二区www| 亚洲av美国av| 国产成人av教育| 国产精品乱码一区二三区的特点 | 高潮久久久久久久久久久不卡| 一a级毛片在线观看| 最新在线观看一区二区三区| 国产99白浆流出| 男女下面插进去视频免费观看| 在线国产一区二区在线| 国产一卡二卡三卡精品| 精品午夜福利视频在线观看一区| 午夜日韩欧美国产| 在线免费观看的www视频| 国产精品久久电影中文字幕| 日韩精品青青久久久久久| 亚洲七黄色美女视频| 欧美最黄视频在线播放免费| 国产成人系列免费观看| 这个男人来自地球电影免费观看| 精品久久久久久久人妻蜜臀av | 欧美日韩乱码在线| 亚洲天堂国产精品一区在线| 亚洲欧美激情在线| 亚洲一码二码三码区别大吗| 免费在线观看日本一区| 久久精品国产亚洲av香蕉五月| 国产97色在线日韩免费| 国产99白浆流出| 18禁美女被吸乳视频| 国产成人av激情在线播放| 日本 av在线| 精品日产1卡2卡| 97人妻精品一区二区三区麻豆 | 真人一进一出gif抽搐免费| 在线十欧美十亚洲十日本专区| 久久久国产欧美日韩av| 可以在线观看的亚洲视频| 一边摸一边做爽爽视频免费| 午夜福利免费观看在线| 成人亚洲精品av一区二区| av天堂在线播放| 一区二区三区精品91| 亚洲欧美精品综合一区二区三区| 欧美激情高清一区二区三区| 可以在线观看毛片的网站| 亚洲熟妇中文字幕五十中出| 如日韩欧美国产精品一区二区三区| 好看av亚洲va欧美ⅴa在| 他把我摸到了高潮在线观看| 美女扒开内裤让男人捅视频| 亚洲美女黄片视频| 久99久视频精品免费| 久久国产精品影院| 亚洲久久久国产精品| 亚洲精品国产一区二区精华液| 美女大奶头视频| 99久久国产精品久久久| 亚洲精品国产区一区二| 欧美成人一区二区免费高清观看 | 久久婷婷人人爽人人干人人爱 | 日韩欧美一区视频在线观看| 日本vs欧美在线观看视频| 亚洲国产欧美日韩在线播放| 91国产中文字幕| 国产免费男女视频| 黑丝袜美女国产一区| 一级毛片精品| 宅男免费午夜| 欧美国产日韩亚洲一区| 动漫黄色视频在线观看| 久久久久国内视频| 欧美国产精品va在线观看不卡| 搡老妇女老女人老熟妇| 亚洲国产精品成人综合色| 黄片播放在线免费| 91成人精品电影| av片东京热男人的天堂| 亚洲专区中文字幕在线| 男人操女人黄网站| 在线观看www视频免费| 18美女黄网站色大片免费观看| 日韩精品中文字幕看吧| 深夜精品福利| 99久久综合精品五月天人人| 午夜免费成人在线视频| x7x7x7水蜜桃| www.自偷自拍.com| 亚洲一卡2卡3卡4卡5卡精品中文| 老汉色∧v一级毛片| 午夜福利在线观看吧| 国产精品1区2区在线观看.| 色精品久久人妻99蜜桃| 久热爱精品视频在线9| 中国美女看黄片| 亚洲五月色婷婷综合| 亚洲人成电影观看| 黑人巨大精品欧美一区二区mp4| 色精品久久人妻99蜜桃| 亚洲专区国产一区二区| 国产精品久久久久久人妻精品电影| 天天一区二区日本电影三级 | 两性午夜刺激爽爽歪歪视频在线观看 | 一本综合久久免费| 黄色视频,在线免费观看| 啦啦啦韩国在线观看视频| 97人妻精品一区二区三区麻豆 | 91av网站免费观看| 国产亚洲欧美精品永久| 欧美av亚洲av综合av国产av| 国产成人欧美在线观看| 在线视频色国产色| 中出人妻视频一区二区| 丁香欧美五月| e午夜精品久久久久久久| 每晚都被弄得嗷嗷叫到高潮| 亚洲黑人精品在线| 国产亚洲精品一区二区www| 久久精品人人爽人人爽视色| 级片在线观看| 国产精品久久久av美女十八| 亚洲欧美激情综合另类| 中文亚洲av片在线观看爽| 大型av网站在线播放| 国产99久久九九免费精品| 国产成年人精品一区二区| 色av中文字幕| 久久久国产欧美日韩av| tocl精华| 丝袜在线中文字幕| 桃红色精品国产亚洲av| 少妇熟女aⅴ在线视频| 国产精品av久久久久免费| 欧美久久黑人一区二区| 日韩精品免费视频一区二区三区| 精品无人区乱码1区二区| 久久香蕉精品热| 一夜夜www| 日韩大尺度精品在线看网址 | 女人精品久久久久毛片| 亚洲熟女毛片儿| 真人一进一出gif抽搐免费| 久久婷婷成人综合色麻豆| 国产亚洲av嫩草精品影院| 不卡一级毛片| 色综合站精品国产| 在线国产一区二区在线| 国内毛片毛片毛片毛片毛片| 老司机午夜福利在线观看视频| 日韩精品青青久久久久久| 操出白浆在线播放| 成人av一区二区三区在线看| 在线观看午夜福利视频| 亚洲熟女毛片儿| 在线观看午夜福利视频| 国产视频一区二区在线看| 18禁裸乳无遮挡免费网站照片 | netflix在线观看网站| 视频区欧美日本亚洲| 丁香六月欧美| 欧美日韩中文字幕国产精品一区二区三区 | 国产亚洲精品av在线| 制服丝袜大香蕉在线| 女性被躁到高潮视频| 亚洲精品粉嫩美女一区| 超碰成人久久| 国产av又大| 成人三级黄色视频| 高潮久久久久久久久久久不卡| 欧美激情高清一区二区三区| 动漫黄色视频在线观看| 国产单亲对白刺激| 深夜精品福利| 久久精品亚洲熟妇少妇任你| 99在线视频只有这里精品首页| 成人三级黄色视频| 中文字幕久久专区| 久久久久久久精品吃奶| 日本免费一区二区三区高清不卡 | 人人妻人人爽人人添夜夜欢视频| 欧美乱码精品一区二区三区| 男人的好看免费观看在线视频 | 久久久久久人人人人人| 免费久久久久久久精品成人欧美视频| 久久香蕉国产精品| av免费在线观看网站| 午夜精品久久久久久毛片777| 久热爱精品视频在线9| 国产成人一区二区三区免费视频网站| 两个人免费观看高清视频| 精品高清国产在线一区| 在线观看午夜福利视频| 欧美日本亚洲视频在线播放| 午夜久久久久精精品| av在线天堂中文字幕| 中文亚洲av片在线观看爽| 亚洲免费av在线视频| 男女做爰动态图高潮gif福利片 | 日本精品一区二区三区蜜桃| 亚洲最大成人中文| 日韩有码中文字幕| 在线永久观看黄色视频| 日日摸夜夜添夜夜添小说| 精品免费久久久久久久清纯| 女人被躁到高潮嗷嗷叫费观| 亚洲av电影不卡..在线观看| 日韩三级视频一区二区三区| 97人妻天天添夜夜摸| 久久这里只有精品19| 国产主播在线观看一区二区| 免费一级毛片在线播放高清视频 | 男人舔女人的私密视频| 在线播放国产精品三级| 国内毛片毛片毛片毛片毛片| 亚洲精品中文字幕在线视频| 校园春色视频在线观看| 亚洲无线在线观看| 亚洲中文字幕日韩| 可以免费在线观看a视频的电影网站| 天堂√8在线中文| 老司机在亚洲福利影院| 日韩一卡2卡3卡4卡2021年| 精品乱码久久久久久99久播| 久久精品亚洲熟妇少妇任你| 免费在线观看黄色视频的| 色综合亚洲欧美另类图片| 国产亚洲精品一区二区www| 久久午夜亚洲精品久久| 精品一品国产午夜福利视频| 9191精品国产免费久久| 久久性视频一级片| 国产不卡一卡二| 午夜日韩欧美国产| 成人手机av| 啦啦啦免费观看视频1| 真人做人爱边吃奶动态| 久久久久九九精品影院| 国产xxxxx性猛交| 亚洲精品av麻豆狂野| 一边摸一边抽搐一进一小说| 亚洲国产精品999在线| 久久 成人 亚洲| 18禁裸乳无遮挡免费网站照片 | 国产成年人精品一区二区| 日韩精品中文字幕看吧| x7x7x7水蜜桃| 91精品三级在线观看| 欧美精品亚洲一区二区| 欧美黄色淫秽网站| 国产午夜精品久久久久久| 在线观看免费视频日本深夜| 久久久久国产一级毛片高清牌| 国产亚洲欧美在线一区二区| 精品少妇一区二区三区视频日本电影| 国产单亲对白刺激| 亚洲av日韩精品久久久久久密| 日韩中文字幕欧美一区二区| 午夜福利成人在线免费观看| 亚洲狠狠婷婷综合久久图片| 久久婷婷成人综合色麻豆| 国内久久婷婷六月综合欲色啪| 国产伦人伦偷精品视频| 伊人久久大香线蕉亚洲五| 天堂影院成人在线观看|