• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synonymous codon usage pattern in model legume Medicago truncatula

    2018-08-06 10:40:44SONGHuiLIUJingCHENTaoNANZhibiao
    Journal of Integrative Agriculture 2018年9期

    SONG Hui , LIU Jing CHEN Tao NAN Zhi-biao

    1 State Key Laboratory of Grassland Agro-ecosystems, College of Pastoralagriculture Science and Technology, Lanzhou University, Lanzhou 730000, P.R.China

    2 Grassland Agri-husbandry Research Center, Qingdao Agriculturaluniversity, Qingdao 266109, P.R.China

    Abstract Synonymous codon usage pattern presumably re fl ects gene expression optimization as a result of molecular evolution.Though much attention has been paid to various modelorganisms ranging from prokaryotes to eukaryotes, codon usage has yet been extensively investigated for model legume Medicago truncatula. In present study, 39 531 available coding sequences (CDSs) from M. truncatula were examined for codon usage bias (CUB). Based on analyses including neutrality plots, effective number of codons plots, and correlations between optimal codons frequency and codon adaptation index,we conclude that natural selection is a major driving force in M. truncatula CUB. We have identified 30 optimal codons encoding 18 amino acids based on relative synonymous codon usage. These optimal codons characteristically end with A or T, except for AGG and TTG encoding arginine and leucine respectively. Optimal codon usage is positively correlated with the GC content at three nucleotide positions of codons and the GC content of CDSs. The abundance of expressed sequence tag is a proxy for gene expression intensity in the legume, but has no relatedness with either CDS length or GC content. Collectively, we unravel the synonymous codon usage pattern in M. truncatula, which may serve as the valuable information on genetic engineering of the model legume and forage crop.

    Keywords: codon usage, gene expression, Medicago truncatula, natural selection, optimal codon

    1. Introduction

    The central dogma of molecular biology describes 61 codons that encode 20 amino acids in the process of translation.Fifty-nine out of the 61 codons are synonymous, i.e.,several different codons encode the same amino acid.Bias in synonymous codon usage may arise as a result of evolutionary forces such as natural selection and mutation pressure (Hershberg and Petrov 2008). Studies have shown that selection favours specific codons that promote efficient and accurate translation of genes expressed at high levels (Duret 2000; Hershberg and Petrov 2008). Thus, an effective method to identify codons favoured by selection(i.e., optimal codons) is the comparison of codon usages for each amino acid encoded by both highly and lowly expressed genes (Ingvarsson 2008; Qiu et al. 2011a; Whittle and Extavour 2015). Under mutation pressure, in contrast,preference is given to codons that tend to demonstrate lower equilibrium toward particular nucleotides (i.e., GC vs. AT) at codon positions, especially at the third nucleotide position(Sueoka 1988; Hershberg and Petrov 2008). In addition,mutation pressure can act upon genes encoding common and uncommon amino acids (Hershberg and Petrov 2008).Furthermore, many other factors can also be associated with codon usage bias (CUB). For example, base composition,relative transfer ribonucleic acid (tRNA) abundance, gene length, intron number and length, gene expression level,translation initiation efficiency, protein structure, codon and anticodon binding energy, and alternative splicing are allassociated with CUB (Rao et al. 2011; Novoa and de Pouplana 2012; Williford and Demuth 2012; Chaney and Clark 2015; Liu et al. 2015; Song et al. 2017b).

    CUB in unicellular eukaryotes is relatively simple because offewer introns and fewer alternative transcripts in the organisms (Akashi 2001; Plotkin 2011). In contrast, CUB in higher plants is complex (Ikemura 1985; Ingvarsson 2007; Camiolo et al. 2012; Liu et al. 2015). Studies have demonstrated that both mutation pressure and/or selection forces are associated with CUB in various multicellular organisms (Hershberg and Petrov 2008; Plotkin 2011; Li et al. 2016). Though so far researchers have examined CUB in plants including Arabidopsis thaliana, Arachis ssp., Oryza sativa, Picea spp., Populus tremula, Silene latifolia, Triticum aestivum and Zea mays (Morton and Wright 2007; Whittle et al. 2007; Zhang et al. 2007; Ingvarsson 2010; Qiu et al.2011a; Camiolo et al. 2015; Liu et al. 2015; De La Torre et al.2015; Song et al. 2017a, c), CUB in Medicago truncatula,a model legume species, remains poorly understood.In this study, we analysed CUB in M. truncatula using 39 531 available coding sequences (CDSs). We found that natural selection is a major driving force behind CUB in M. truncatula. Furthermore, we identified 30 optimal codons for 18 amino acids, most of which characteristically end with A or T. In addition, we found that optimal codons are present frequently in CDSs with higher GC content. Thesefindings not only unravel molecular evolution in terms of synonymous codon usage in the model legume, but also serve as the valuable information on genetic improvement of the forage crop.

    2. Materials and methods

    2.1. Sequence data

    The CDSs of M. truncatula were downloaded from the M. truncatula genome website (http://jcvi.org/medicago/display.php?pageName=General§ion=Download)(Young et al. 2011). To avoid biases caused by short sequence fragments, wefiltered the CDSs using the following criteria: (1) CDSs start with ATG and end with TAA, TAG or TGA; (2) CDSs lengths exceed 300 bp; and (3)CDSs lack premature stop codons or ambiguous codons.Data of M. truncatula tRNA abundance were obtained from GtRNAdb (version 3.0, http://gtrnadb.ucsc.edu).

    2.2. Codon bias indices

    We calculated the content of each of the four bases at the third synonymous codon positions (i.e., A3s, C3s, G3s, and T3s), GC content at the third synonymous codon positions(GC3s), codon adaptation index (CAI), effective number of codons (ENC), frequency of optimal codons (Fop), and relative synonymous codon usage (RSCU) using the Codon W Program (version 1.4, http://codonw.sourceforge.net).

    CAI and Fop are directional measures of CUB, which quantify the degree of selection acting upon a gene (Ikemura 1985; Sharp and Li 1987). CAI values are between 0 and 1.Values close to 1 suggest that a given gene has experienced increasing intense selection to maintain a specific codon optimized for efficient translation (Sharp and Li 1987).ENC is a non-directional measure depending upon the nucleotide composition of genes. ENC values range from 20 to 61. Twenty indicates that one codon is exclusively used to encode a given amino acid, whereas 61 indicates all codons are used equally (Wright 1990). RSCU values greater than 1 indicate that a particular codon is used more frequently than expected, while RSCU values less than 1 indicate that a codon is used less frequently than expected(Sharp and Li 1987).

    CDS and genomic DNA sequence lengths and the GC content at the first (GC1), second (GC2), and third (GC3)nucleotide positions of codon were calculated using an inhouse Perl script.

    2.3. Data analyses

    Many methods that identify optimal codons have been reported (Hershberg and Petrov 2009; Wang et al. 2011).However, RSCU value calculation is particularly popular for assessing optimal codons (Whittle et al. 2011; Whittle and Extavour 2015). Optimal codons are defined as described by Whittle and Extavour (2015). Briefly, the CDS sequences were sorted based on ENC value, and the top and bottom 5% of sequences were defined as the genes with high and low expression, respectively. ΔRSCU equals RSCUmeanhighlyexpressedCDSminus RSCUmeanlowlyexpressedCDS. A statistically significant and positive ΔRSCU value indicates that more than one codon matches this criterion per amino acid; the codon with the largest ΔRSCU for a particular amino acid is defined as the primary optimal codon (Ingvarsson 2008;Whittle et al. 2011).

    A totalof 256 975 M. truncatula expressed sequence tag(EST) sequences were downloaded from the National Center for Biotechnology Information (NCBI) database on January 19, 2016. EST abundance has been used to estimate gene expression intensity (Ohlrogge and Benning 2000). In this study, we surveyed allavailable EST sequences for each M. truncatula CDSs using a local BLAST program (Altschul et al. 1997). The number of EST sequences that match a specific CDS defines the expression intensity of a given gene (Ohlrogge and Benning 2000; Song and Nan 2014).The following evaluation criteria were used as thresholds to determine sequences subjected to further analyses (Song et al. 2015): (1) length of aligned sequences>200 bp; (2)identity>96%; and (3) E-value≤10-10.

    Correlation analyses were carried out using JMP 9.0(SAS Institute Inc., Cary, NC, USA), and results were depicted using Origin 9.0 (OriginLab, Northampton, MA,USA).

    3. Results

    3.1. Base composition of M. truncatula

    A totalof 62 319 CDSs have been previously identified in the sequenced M. truncatula genome (Young et al. 2011). The total number of CDSs used in the present study was reduced to 39 531 using thefiltering criteria described in Materials and methods. The GC content in these CDSs varied from 23.9 to 69.7% (SD=3.77, Appendix A). Moreover, the GC contents at three nucleotide positions of codons were different. The GC1 was the highest (47.6%), followed by that of GC2 (38.5%) and GC3 (36.3%). The average GC contents across the three positions were 40.9%, indicating that CDSs in M. truncatula have higher AT content (59.1%).

    RSCU is expressed as the observed frequency of a codon divided by its expected frequency. Thirty-one codons were less frequently used than expected (i.e., RSCU<1) and 26 codons were used more frequently (i.e., RSCU>1) in CDSs of M. truncatula, indicating the 26 codons are used preferentially among all CDSs M. truncatula (Appendix B).Furthermore, the RSCU analysis demonstrated that CDSs in M. truncatula are biased towards codons ending with A or T, except for AGG (Arg) and TTG (Leu) (Appendix B).

    3.2. Factors associated with codon usage in M. truncatula

    A significant correlation between the average of GC1 and GC2 (GC12) and GC3 with a slope value close to 1 suggests that mutation pressure is the major force in shaping codon usage pattern (Sueoka 1988). If natural selection is the dominant factor, in contrast, the slope value is close to 0(Sueoka 1988). In this study, a significant positive correlation(r=0.12, P<0.01, and slope=0.08) between GC12 and GC3 with a slope close to 0 was observed (Fig. 1), suggesting that natural selection has shaped the codon usage pattern in M. truncatula.

    Gene spots occur along the curves of ENC plots if codons are constrained by neutral pressure (Wright 1990; Zhang et al. 2007). Other pressures in fluence codon usage if all gene spots occur below or above the ENC curve. In addition,Kawabe and Miyashita (2003) demonstrated that natural selection shapes codon usage if the GC3s across genes is narrow. Our analysis showed that in M. truncatula, most genes analysed fell below the ENC curve and GC3s values were distributed within a narrow range (0.2-0.5, Fig. 2),suggesting that natural selection plays a substantial role in the codon usage pattern.

    A comparison between ENC and CAI can assess the relationship between the nucleotide composition and the natural selection (Sharp and Li 1987; Wright 1990). In this study, we found ENC and CAI had no correlation (r=0.06) in M. truncatula. There were significantly negative correlations between ENC and either A or T content at synonymous third codon positions (A3s, r=-0.26, P<0.01; and T3s, r=-0.37,P<0.01), and significantly positive correlations between ENC and either C or G content at synonymous third codon positions (C3s, r=0.40, P<0.01; and G3s, r=0.24, P<0.01).These patterns indicated that in M. truncatula, CUB was featured with high A3s and T3s (AT3s) or low G3s and C3s(GC3s) values. The reasonable explanation is that natural selection acts on the third codon position to increase the A and T content (AT3, 63.7%), instead of the G and C content(GC3, 36.3%).

    Fig. 1 Correlation between GC12 (GC1 and GC2) and GC3.GC content at the first (GC1), second (GC2), and third (GC3)codon positions were calculated using an in-house Perl script.Correlation analyses were executed in JMP 9.0, and thefigure was generated using Origin 9.0.

    Fig. 2 Effective number of codons (ENC) plot. The ENC values shown in this plot were generated using codon W. Thefigure was generated using Origin 9.0. The continuous curve indicates the relationship between ENC and GC3s values under neutral selection. Each dot indicates a gene. GC3, GC content at the third position of synonymous codons.

    3.3. ldentification of optimal codon

    We identified 30 optimal codons that encode 18 amino acids in M. truncatula using the ΔRSCU method (Table 1).These optimal codons, except AGG (Arg) and TTG (Leu),preferentially end with A or T. This is consistent with the RSCU result. Furthermore, RSCU and optimal codons analyses led to the identification of 26 optimal codons with high frequency and 4 optimal codons without high frequency, whereas 28 codons are neither high frequent nor optimal.

    To define the factors that determine optimal codons, we selected the Fop as an evaluation index for a correlation analysis. There was no correlation between Fop and CDS length and genomic DNA (exon and intron) length(Table 2). Significant positive correlations were observed between Fop and the GC content from different CDS and genomic DNA sequences (Table 2). These results indicated that the GC content across the three codon positions had similar effects on optimal codon usage. Moreover, optimal codon usage is associated with higher GC content in CDSs and intronic (Table 2). There was a significant positive correlation between Fop and CAI (r=0.76, P<0.01). High CAI values indicate high levels of gene expression. Thisfinding is consistent with previous studies, which showed that optimal codons were used in highly expressed genes under the impact of natural selection (Ingvarsson 2007; Qiu et al. 2011a). In general, low ENC values indicate CUB.In this study, Fop and ENC exhibited a significant positive correlation (r=0.21, P<0.01), indicating that highly optimal codons have low CUB.

    3.4. Correlation between gene length, GC content and gene expression

    Various factors have been examined for their association with gene expression, including GC content, intron size,and protein sequence length (Rao et al. 2011; Williford and Demuth 2012; De La Torre et al. 2015). Based on EST data analysis, gene expression intensity in M. truncatula was not correlated with CDS and genomic DNA length, and the GC content of both CDS and genomic DNA sequences (Table 2).The results indicate that CDS length and the GC content do not in fluence the gene expression in M. truncatula.

    4. Discussion

    As far as codon usage study is concerned, plants have remained well behind prokaryotic models. One major reason is the limited number of completely sequenced genomes in plants comparatively. Hordium vulgare,Nicotiana tabacum, Pisum sativum, T. aestivum, and Z. mays were pioneeringly investigated for their codon usage utilizing their EST or partial genome sequences(Fennoy and Bailey-Serres 1993; Kawabe and Miyashita 2003). Following the completion of A. thaliana genome sequencing in 2000, other plant genome sequences have also become available increasingly. So far codon usage has been analysed for several sequenced model plants including A. thaliana, Brachypodium distachyon, and O. sativa (Morton and Wright 2007; Qiu et al. 2011b; Liu et al. 2015). However, codon usage patterns in M. truncatula remain unexamined. In this study, we analysed codon usage patterns in M. truncatula utilizing 39 531 CDSs. Our results suggest that: (1) natural selection acts on codon usage pattern in M. truncatula; (2) for 18 out of 20 amino acids, the optimal codons characteristically end with A or T;(3) optimal codons are more widely present in genes with higher GC content; and (4) no correlation between gene expression intensity and either gene length or GC content.

    In Populous and Arabidopsis, tRNA abundance is positively correlated with optimal codon usage (Wright et al. 2004; Ingvarsson 2007). However, we found that nine optimal codons (TTT, TAT, CAT, AAT, AAA, GAT, AGT,TGT and GGT) with high RSCU are associated with the low abundance of corresponding tRNA in M. truncatula (Table 1).Williford and Demuth (2012) explained this phenomenon through two hypotheses: (1) Codon-anticodon recognition heavily depends on post-transcriptional modifications of tRNA sequences. It has been confirmed that nucleotide A is always modified into I (inosine), and nucleotide U at the first anticodon position experiences extensive changes that could expand or restrict the number of recognized codons(Agris et al. 2007); (2) codons that correspond to highlyabundant tRNA cannot be translated most accurately based on 73 bacterial genomes from 20 different genera (Shah and Gilchrist 2010). Besides these hypotheses, other factors may also explain these results. First, optimal codons with low tRNA abundance may encode conserved domains.Purifying selection acts on codons with low-abundent tRNAs, many of which encode conserved domains that play a crucial role in physiological development (Zhou et al.2013; Chaney and Clark 2015). As such, proteins encoded by genes with low-abundant tRNAs have experienced purifying selection, and these proteins may play a vital role in M. truncatula. Secondly, codons with low-abundant corresponding tRNAs may be used in more frequency.In vivo analyses in Saccharomyces cerevisiae indicated that codons preferentially used in highly expressed genes are not translated faster than those highly expressed genes with non-optimal codon usage (Novoa and de Pouplana 2012;Qian et al. 2012).

    Table 1 Optimal codons and transfer ribonucleic acid (tRNA) abundance in Medicago truncatula1)

    Table 1 (Continued from preceding page)

    Table 2 Correlation analysis between coding sequence architecture features and gene expression based on expressed sequence tag (EST) abundance in Medicago truncatula1)

    Recent studies have focused on identifying factors that act on CUB, but some resulting conclusions are inconsistent. In this study, we performed correlation analyses between Fop and a number of variables, including sequence length, GC content, CAI, and ENC. We found that optimal codon use(i.e., Fop) is not correlated with CDS length, but positively correlated with the GC content and CAI. However, Wang and Hickey (2007) found that CUB is negatively correlated with gene length, and that short genes have high GC content compared to long genes in rice. Ingvarsson (2007) showed that Fop values are negatively correlated with protein lengths, but strongly and positively correlated with the GC3 content in P. tremula. Note that CAI, which indicates CUB in genes with high expression levels, is the major factor associated positively with optimal codon usage. A strongly positive correlation has been found between CUB and gene expression in many species, including Cardamine spp.,P. tremula, S. latifolia, and Tribolium castaneum (Ingvarsson 2007; Qiu et al. 2011a; Ometto et al. 2012; Williford and Demuth 2012). When average gene expression intensities within a given tissue type are examined, Fop is not correlated with gene expression; however, when maximal gene expressions across tissues are under survey, Fop is weakly correlated with gene expression (De La Torre et al. 2015).

    In M. truncatula, gene expression is not correlated with CDS length and GC content. Similar results were also observed previously in rice. Liu et al. (2004) confirmed that natural selection is one major driving force behind gene expression level, whereas CDS length only plays a minor role in rice. However, Qiu et al. (2011a) found that gene expression is positively correlated with the GC3 content, but strongly and negatively correlated with the intron GC content. GC3 is not positively correlated with gene expression in A. thaliana and A. lyrata, but there is a weak positive correlation between gene expression and intron GC content (Wright et al. 2004). The studies of the correlation between CDS or genomic DNA length and gene expression have led to controversial results. Long gene sequences actually improve gene expression in species such as T. castaneum and Picea spp. (Williford and Demuth 2012; De La Torre et al. 2015). By contrast, Camiolo et al.(2015) confirmed that short and higher-GC DNA sequences are always positively correlated with gene expression and optimalusage bias in four monocots, 15 dicots and two mosses. Some studies have proposed that short proteincoding sequences with high expression levels are less costly in terms of metabolism (Williford and Demuth 2012; Whittle and Extavour 2015). However, Yang (2009) argued that short sequences with high expression levels hardly support the energy-cost hypothesis, but may be better reconciled with the time-cost hypothesis, in which rapidly rather than highly expressed genes, tend to be expressed well in timecost efficient manner.

    5. Conclusion

    Our results support that nature selection played a pivotal role in forming codon usage pattern, and no relatedness between gene expression and either CDS length or GC content in M. truncatula. In addition, we have identified a totalof 30 optimal codons for the model legume. These results could provide valuable information on genetic engineering of the model legume and forage crop.

    Acknowledgements

    We thank Dr. Wen Jiangqi (Noble Research Institute, USA)and Dr. Wang Hongliang (United States Department of Agriculture-Agricultural Research Service, Tifton) for critical reviews and comments. This study was supported by the National Basic Research Program of China (2014CB138702)and the National Natural Science Foundation of China(31502001).

    Appendices associated with this paper can be available on http://www.ChinaAgriSci.com/V2/En/appendix.htm

    精品卡一卡二卡四卡免费| www日本在线高清视频| 国产成人精品福利久久| 男人添女人高潮全过程视频| 肉色欧美久久久久久久蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 国产一区有黄有色的免费视频| 国产成人av激情在线播放| 国产一卡二卡三卡精品 | 肉色欧美久久久久久久蜜桃| 国产亚洲精品第一综合不卡| 国产成人av激情在线播放| 男女边摸边吃奶| 午夜福利网站1000一区二区三区| 国产片特级美女逼逼视频| 中文天堂在线官网| 精品久久久精品久久久| 老司机影院成人| 亚洲国产最新在线播放| svipshipincom国产片| 在线天堂最新版资源| 男女无遮挡免费网站观看| 欧美精品亚洲一区二区| 欧美激情高清一区二区三区 | 视频区图区小说| 色视频在线一区二区三区| 精品亚洲成a人片在线观看| 久久精品亚洲av国产电影网| 高清视频免费观看一区二区| 欧美在线一区亚洲| 久久久久精品国产欧美久久久 | 水蜜桃什么品种好| 不卡av一区二区三区| 女人被躁到高潮嗷嗷叫费观| 国产在线一区二区三区精| 色播在线永久视频| 午夜福利在线免费观看网站| 男人添女人高潮全过程视频| 亚洲精品国产一区二区精华液| 亚洲欧洲国产日韩| 80岁老熟妇乱子伦牲交| 老司机深夜福利视频在线观看 | 中文字幕制服av| 少妇 在线观看| 99九九在线精品视频| 可以免费在线观看a视频的电影网站 | 最黄视频免费看| 啦啦啦 在线观看视频| 亚洲精品国产色婷婷电影| 69精品国产乱码久久久| 亚洲av欧美aⅴ国产| 99久久99久久久精品蜜桃| 搡老岳熟女国产| av在线播放精品| 国产野战对白在线观看| av天堂久久9| 高清视频免费观看一区二区| 国产黄频视频在线观看| 69精品国产乱码久久久| 亚洲精品久久成人aⅴ小说| 国产精品一区二区在线观看99| 黄色 视频免费看| 狂野欧美激情性bbbbbb| 日韩 欧美 亚洲 中文字幕| 男男h啪啪无遮挡| 亚洲精品美女久久久久99蜜臀 | www.自偷自拍.com| 男男h啪啪无遮挡| 电影成人av| 亚洲精品日本国产第一区| 免费看不卡的av| 国产精品国产三级国产专区5o| 91国产中文字幕| 人妻一区二区av| 国产极品粉嫩免费观看在线| 亚洲国产日韩一区二区| 国产精品久久久久久久久免| 中文字幕最新亚洲高清| av国产精品久久久久影院| 欧美日韩成人在线一区二区| 久久精品国产a三级三级三级| 久久精品亚洲熟妇少妇任你| 亚洲五月色婷婷综合| 在线天堂最新版资源| 美女视频免费永久观看网站| 精品一区二区三区四区五区乱码 | 亚洲自偷自拍图片 自拍| 亚洲少妇的诱惑av| a级毛片在线看网站| av电影中文网址| 777米奇影视久久| 久久久久网色| 亚洲av在线观看美女高潮| 中文字幕制服av| 又黄又粗又硬又大视频| 狂野欧美激情性xxxx| 九草在线视频观看| 日韩不卡一区二区三区视频在线| 久久精品久久久久久久性| 精品午夜福利在线看| 另类亚洲欧美激情| 色精品久久人妻99蜜桃| 国产一卡二卡三卡精品 | 巨乳人妻的诱惑在线观看| 日日摸夜夜添夜夜爱| 精品国产国语对白av| 亚洲精品乱久久久久久| 久久狼人影院| 欧美人与性动交α欧美精品济南到| 人人妻人人添人人爽欧美一区卜| 亚洲国产精品一区二区三区在线| 在线精品无人区一区二区三| 熟女少妇亚洲综合色aaa.| 亚洲av成人不卡在线观看播放网 | 我要看黄色一级片免费的| 久久午夜综合久久蜜桃| 亚洲国产av新网站| 亚洲成国产人片在线观看| 在线看a的网站| 国产成人一区二区在线| 久久av网站| 在线免费观看不下载黄p国产| 麻豆av在线久日| 电影成人av| 国产黄色视频一区二区在线观看| 90打野战视频偷拍视频| 国产精品香港三级国产av潘金莲 | 夜夜骑夜夜射夜夜干| 亚洲欧美日韩另类电影网站| 蜜桃国产av成人99| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产日韩一区二区| 啦啦啦啦在线视频资源| 亚洲精品成人av观看孕妇| 国产毛片在线视频| 精品国产一区二区三区久久久樱花| 国产国语露脸激情在线看| 黄色一级大片看看| 久久人人爽人人片av| 精品国产国语对白av| 国产一区二区三区综合在线观看| 国产1区2区3区精品| 精品一区二区免费观看| 人人妻人人澡人人爽人人夜夜| 国产一区亚洲一区在线观看| 999精品在线视频| 国产精品亚洲av一区麻豆 | 亚洲专区中文字幕在线 | 欧美日韩综合久久久久久| 色网站视频免费| 亚洲美女搞黄在线观看| 最新的欧美精品一区二区| 久久久久国产精品人妻一区二区| 七月丁香在线播放| 你懂的网址亚洲精品在线观看| 国产一卡二卡三卡精品 | 最近2019中文字幕mv第一页| 在线观看www视频免费| 免费不卡黄色视频| 亚洲成人国产一区在线观看 | 国产日韩欧美亚洲二区| 国产成人免费无遮挡视频| 国产伦理片在线播放av一区| 这个男人来自地球电影免费观看 | 捣出白浆h1v1| 一本一本久久a久久精品综合妖精| 久久精品国产亚洲av涩爱| av女优亚洲男人天堂| 国产日韩一区二区三区精品不卡| 91国产中文字幕| 嫩草影视91久久| 欧美中文综合在线视频| 中国三级夫妇交换| 视频区图区小说| 亚洲精品美女久久av网站| 精品一区在线观看国产| 视频区图区小说| 欧美日韩国产mv在线观看视频| 人人妻人人澡人人看| 国产麻豆69| 大码成人一级视频| 老熟女久久久| 久久精品国产综合久久久| 久久精品久久久久久噜噜老黄| 如日韩欧美国产精品一区二区三区| 久久av网站| 久久久久精品人妻al黑| 女人爽到高潮嗷嗷叫在线视频| 美女福利国产在线| 激情视频va一区二区三区| 亚洲国产看品久久| 欧美精品一区二区大全| 亚洲免费av在线视频| av国产久精品久网站免费入址| 欧美日韩亚洲高清精品| 在线观看人妻少妇| 赤兔流量卡办理| av有码第一页| 99热网站在线观看| 一边摸一边做爽爽视频免费| videosex国产| 国产视频首页在线观看| 伊人久久大香线蕉亚洲五| 亚洲七黄色美女视频| 两个人看的免费小视频| 天天影视国产精品| 日本一区二区免费在线视频| 亚洲一区中文字幕在线| 色94色欧美一区二区| 免费久久久久久久精品成人欧美视频| 国产深夜福利视频在线观看| 汤姆久久久久久久影院中文字幕| 午夜福利视频精品| 亚洲成人国产一区在线观看 | 亚洲欧美清纯卡通| 欧美黑人欧美精品刺激| 午夜激情久久久久久久| 久久人人97超碰香蕉20202| 精品一区二区三区四区五区乱码 | 欧美人与性动交α欧美软件| 欧美激情 高清一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色视频在线播放观看不卡| 99国产综合亚洲精品| 亚洲欧洲日产国产| 精品亚洲成国产av| 欧美人与性动交α欧美精品济南到| 又黄又粗又硬又大视频| 欧美日本中文国产一区发布| 欧美国产精品一级二级三级| 一个人免费看片子| 99精品久久久久人妻精品| 99久国产av精品国产电影| 欧美激情 高清一区二区三区| 国产97色在线日韩免费| 国产精品久久久久久精品古装| 中文字幕人妻丝袜制服| 久久 成人 亚洲| 亚洲欧美色中文字幕在线| 日韩大码丰满熟妇| www日本在线高清视频| 精品少妇黑人巨大在线播放| 国产激情久久老熟女| 中文字幕制服av| 国产成人精品久久二区二区91 | 午夜福利一区二区在线看| 日本一区二区免费在线视频| 国产乱来视频区| 亚洲成人av在线免费| 欧美精品av麻豆av| 久久国产精品男人的天堂亚洲| 一区在线观看完整版| 亚洲精品日本国产第一区| 在线天堂中文资源库| 国产男女内射视频| 久久久国产欧美日韩av| 日韩精品有码人妻一区| 韩国高清视频一区二区三区| 亚洲av欧美aⅴ国产| 久久国产亚洲av麻豆专区| 欧美黑人精品巨大| 爱豆传媒免费全集在线观看| 九九爱精品视频在线观看| 亚洲精品自拍成人| 免费日韩欧美在线观看| 国产高清不卡午夜福利| 久久精品久久精品一区二区三区| 国产不卡av网站在线观看| e午夜精品久久久久久久| 丰满饥渴人妻一区二区三| 男女之事视频高清在线观看 | 日韩免费高清中文字幕av| 午夜福利,免费看| 久久久久国产一级毛片高清牌| 国产成人欧美| 亚洲av中文av极速乱| 日韩欧美精品免费久久| av有码第一页| 啦啦啦中文免费视频观看日本| 秋霞伦理黄片| 久久久久视频综合| 精品人妻一区二区三区麻豆| 婷婷色综合大香蕉| 久久久精品区二区三区| 日韩av不卡免费在线播放| 丰满少妇做爰视频| 国产免费现黄频在线看| 久久精品久久精品一区二区三区| 国产成人一区二区在线| 国产视频首页在线观看| 国产av一区二区精品久久| 国产精品秋霞免费鲁丝片| 麻豆乱淫一区二区| 老鸭窝网址在线观看| 日韩欧美精品免费久久| 久久女婷五月综合色啪小说| 久久精品久久精品一区二区三区| 欧美人与善性xxx| 又粗又硬又长又爽又黄的视频| 熟妇人妻不卡中文字幕| 日本午夜av视频| 97精品久久久久久久久久精品| 国产男女超爽视频在线观看| 一二三四中文在线观看免费高清| 精品少妇黑人巨大在线播放| 欧美日韩视频高清一区二区三区二| 在线观看免费视频网站a站| 日韩一卡2卡3卡4卡2021年| 亚洲成人一二三区av| 欧美精品一区二区大全| 在线 av 中文字幕| 成年美女黄网站色视频大全免费| 天天躁日日躁夜夜躁夜夜| 看免费成人av毛片| 色视频在线一区二区三区| 久久精品aⅴ一区二区三区四区| 最新在线观看一区二区三区 | 午夜影院在线不卡| 成人国语在线视频| 精品亚洲成a人片在线观看| 婷婷色综合大香蕉| 久久久久久久大尺度免费视频| 日韩av在线免费看完整版不卡| 欧美 亚洲 国产 日韩一| 女人久久www免费人成看片| 久久久久久久久免费视频了| 黄片小视频在线播放| 国产成人啪精品午夜网站| 在线观看一区二区三区激情| 国产精品亚洲av一区麻豆 | 国产亚洲欧美精品永久| 在线观看一区二区三区激情| 国产精品人妻久久久影院| 老熟女久久久| 国产麻豆69| 丝袜在线中文字幕| 午夜av观看不卡| 亚洲精品成人av观看孕妇| 亚洲一码二码三码区别大吗| 免费日韩欧美在线观看| 久久99一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 久久久久久久久久久免费av| 大码成人一级视频| 久久精品亚洲熟妇少妇任你| 精品国产一区二区三区四区第35| 视频在线观看一区二区三区| 一区二区三区四区激情视频| 看免费成人av毛片| 国产免费视频播放在线视频| 大香蕉久久网| 亚洲成人手机| 亚洲av电影在线进入| 啦啦啦中文免费视频观看日本| 亚洲,欧美,日韩| 国产人伦9x9x在线观看| 国产毛片在线视频| 日韩成人av中文字幕在线观看| 午夜福利,免费看| 中国国产av一级| 人妻 亚洲 视频| √禁漫天堂资源中文www| 巨乳人妻的诱惑在线观看| 日韩大片免费观看网站| 日日啪夜夜爽| 18禁裸乳无遮挡动漫免费视频| 亚洲伊人色综图| 亚洲欧洲国产日韩| 久久精品国产a三级三级三级| 国产极品粉嫩免费观看在线| 韩国精品一区二区三区| 桃花免费在线播放| 国产精品麻豆人妻色哟哟久久| 免费不卡黄色视频| 丝袜喷水一区| 国产精品人妻久久久影院| tube8黄色片| 狂野欧美激情性xxxx| 一个人免费看片子| 2018国产大陆天天弄谢| 欧美黑人精品巨大| 国产精品一区二区在线不卡| 久久av网站| 91老司机精品| 九草在线视频观看| 亚洲婷婷狠狠爱综合网| av.在线天堂| 亚洲自偷自拍图片 自拍| 人体艺术视频欧美日本| 我要看黄色一级片免费的| 国产熟女欧美一区二区| 不卡av一区二区三区| 男女免费视频国产| 久久久久国产一级毛片高清牌| 在线观看一区二区三区激情| 国产精品三级大全| 国产成人午夜福利电影在线观看| 91老司机精品| 伦理电影大哥的女人| 高清不卡的av网站| 久久女婷五月综合色啪小说| 亚洲精品国产av成人精品| 国产av码专区亚洲av| 日韩欧美精品免费久久| 亚洲一码二码三码区别大吗| 侵犯人妻中文字幕一二三四区| 亚洲激情五月婷婷啪啪| 另类精品久久| av免费观看日本| 久久久久久人人人人人| 亚洲美女视频黄频| 亚洲成人免费av在线播放| 一本色道久久久久久精品综合| 欧美精品高潮呻吟av久久| 国产一区亚洲一区在线观看| 考比视频在线观看| 男女国产视频网站| a级片在线免费高清观看视频| 久久久久人妻精品一区果冻| 99re6热这里在线精品视频| 亚洲精品久久午夜乱码| 国产成人精品在线电影| 我要看黄色一级片免费的| 成人毛片60女人毛片免费| 亚洲欧美精品综合一区二区三区| av在线观看视频网站免费| 久久久精品区二区三区| 日韩精品有码人妻一区| 波多野结衣av一区二区av| 免费高清在线观看视频在线观看| 精品国产超薄肉色丝袜足j| 青草久久国产| 黑人巨大精品欧美一区二区蜜桃| 十分钟在线观看高清视频www| 日韩视频在线欧美| 搡老乐熟女国产| 人妻一区二区av| 一区二区三区四区激情视频| 丝袜美腿诱惑在线| 久久久久精品性色| 一区二区三区精品91| 婷婷色av中文字幕| 亚洲国产av影院在线观看| 国产亚洲av片在线观看秒播厂| 国产成人欧美在线观看 | 伊人亚洲综合成人网| 亚洲精品第二区| 哪个播放器可以免费观看大片| 熟妇人妻不卡中文字幕| 精品午夜福利在线看| 欧美黑人精品巨大| 看免费av毛片| 叶爱在线成人免费视频播放| 美女国产高潮福利片在线看| 国产极品天堂在线| 999久久久国产精品视频| 99久久精品国产亚洲精品| 巨乳人妻的诱惑在线观看| 久久久久精品国产欧美久久久 | 美女视频免费永久观看网站| 亚洲国产av新网站| 日韩视频在线欧美| 天堂8中文在线网| 日韩熟女老妇一区二区性免费视频| 精品久久久精品久久久| 国产精品 国内视频| 免费看av在线观看网站| 国产麻豆69| 亚洲国产看品久久| 黄色怎么调成土黄色| 国产免费现黄频在线看| av女优亚洲男人天堂| 黄片无遮挡物在线观看| 老熟女久久久| 国产成人啪精品午夜网站| 中文字幕人妻丝袜一区二区 | 久久免费观看电影| 悠悠久久av| 99热网站在线观看| 赤兔流量卡办理| 亚洲 欧美一区二区三区| 美女脱内裤让男人舔精品视频| 久久久久网色| 香蕉国产在线看| 女人高潮潮喷娇喘18禁视频| 欧美另类一区| 精品酒店卫生间| 高清欧美精品videossex| 日韩人妻精品一区2区三区| 超碰97精品在线观看| 亚洲伊人久久精品综合| 亚洲精品久久成人aⅴ小说| 久久综合国产亚洲精品| 久久国产精品大桥未久av| 国产 精品1| 欧美日韩视频精品一区| videos熟女内射| 国产精品欧美亚洲77777| 99re6热这里在线精品视频| 女人爽到高潮嗷嗷叫在线视频| 久久久亚洲精品成人影院| 欧美成人精品欧美一级黄| 七月丁香在线播放| 久久天堂一区二区三区四区| 国产成人a∨麻豆精品| 亚洲七黄色美女视频| 啦啦啦啦在线视频资源| 七月丁香在线播放| 亚洲成人国产一区在线观看 | 日日啪夜夜爽| 欧美精品av麻豆av| 夫妻性生交免费视频一级片| 97人妻天天添夜夜摸| 在线观看免费午夜福利视频| 久久精品熟女亚洲av麻豆精品| 日韩成人av中文字幕在线观看| 国产熟女欧美一区二区| 丰满饥渴人妻一区二区三| 女人精品久久久久毛片| 黄片小视频在线播放| 咕卡用的链子| 丝袜人妻中文字幕| 精品亚洲乱码少妇综合久久| 国产人伦9x9x在线观看| 欧美日韩综合久久久久久| 777久久人妻少妇嫩草av网站| 欧美人与性动交α欧美精品济南到| 国产成人系列免费观看| 天堂8中文在线网| 免费女性裸体啪啪无遮挡网站| 天堂俺去俺来也www色官网| 色婷婷av一区二区三区视频| 久久毛片免费看一区二区三区| 国产免费视频播放在线视频| 一级片免费观看大全| 欧美日韩亚洲高清精品| 国产男女内射视频| av有码第一页| 一二三四在线观看免费中文在| 欧美日韩一级在线毛片| 日韩 欧美 亚洲 中文字幕| 校园人妻丝袜中文字幕| av.在线天堂| 亚洲精品国产区一区二| 久久久久国产一级毛片高清牌| 亚洲在久久综合| 中文字幕精品免费在线观看视频| 亚洲一区二区三区欧美精品| www.自偷自拍.com| 一边亲一边摸免费视频| 黄色视频不卡| 777久久人妻少妇嫩草av网站| 国产国语露脸激情在线看| avwww免费| 啦啦啦视频在线资源免费观看| 久久99一区二区三区| 中文字幕制服av| 多毛熟女@视频| 午夜福利免费观看在线| 秋霞在线观看毛片| 最近最新中文字幕免费大全7| 国产精品二区激情视频| 老司机深夜福利视频在线观看 | 亚洲精品自拍成人| 涩涩av久久男人的天堂| 成人漫画全彩无遮挡| 精品国产乱码久久久久久男人| 久久精品久久久久久久性| 在线观看三级黄色| 五月开心婷婷网| 国产精品99久久99久久久不卡 | 午夜免费观看性视频| 啦啦啦视频在线资源免费观看| a级毛片在线看网站| 亚洲av在线观看美女高潮| 制服人妻中文乱码| 在线天堂最新版资源| 亚洲精品国产区一区二| 亚洲精品国产一区二区精华液| 色94色欧美一区二区| 亚洲熟女毛片儿| 大码成人一级视频| 女性生殖器流出的白浆| 亚洲欧美日韩另类电影网站| 99热网站在线观看| 亚洲精品美女久久久久99蜜臀 | 欧美变态另类bdsm刘玥| 国语对白做爰xxxⅹ性视频网站| 国产一区二区三区av在线| 国产日韩欧美在线精品| 91精品国产国语对白视频| a级毛片在线看网站| videos熟女内射| 久久99热这里只频精品6学生| 中文天堂在线官网| 久久久精品区二区三区| 人人妻人人澡人人看| 巨乳人妻的诱惑在线观看| 久久午夜综合久久蜜桃| 在线天堂最新版资源| 久久久久久人人人人人| 久久ye,这里只有精品| 欧美激情高清一区二区三区 | 可以免费在线观看a视频的电影网站 | 色网站视频免费| 亚洲精品国产区一区二| √禁漫天堂资源中文www| 精品国产露脸久久av麻豆| 亚洲精品中文字幕在线视频| 多毛熟女@视频| av.在线天堂| 999久久久国产精品视频| 亚洲国产精品一区三区| 国产免费福利视频在线观看| 男人舔女人的私密视频|