陳祥和,李世昌,孫 朋,陳愛國,馬 濤,牟其林
?
游泳和下坡跑通過CN/NFAT信號(hào)途徑對2型糖尿病小鼠骨吸收代謝的影響
陳祥和1,李世昌2,孫 朋2,陳愛國1,馬 濤3,牟其林4
1. 揚(yáng)州大學(xué) 體育學(xué)院, 江蘇 揚(yáng)州 225127; 2. 華東師范大學(xué), 上海 200241 “青少年健康評(píng)價(jià)與運(yùn)動(dòng)干預(yù)”教育部重點(diǎn)實(shí)驗(yàn)室 ; 3. 齊魯師范學(xué)院 體育學(xué)院, 山東 濟(jì)南 250200; 4. 貴陽學(xué)院 體育學(xué)院, 貴州 貴陽 550000.
目的:探究游泳和下坡跑通過鈣調(diào)磷酸酶(CN)/活化T細(xì)胞核因子(NFAT)途徑對T2DM小鼠骨吸收代謝的影響。方法:采用6周高脂膳食和一次性注射鏈脲佐菌素(STZ)進(jìn)行T2DM造模,成功后隨機(jī)分為T2DM對照組(TC)、T2DM游泳組(TS)和T2DM下坡跑組(TD),另選C57小鼠為正常對照組(ZC)。T2DM小鼠繼續(xù)高脂膳食,ZC小鼠飼以普通飼料。TS和TD小鼠分別進(jìn)行8周游泳和下坡跑訓(xùn)練。末次訓(xùn)練24 h后處死小鼠并取材,應(yīng)用Micro-CT、細(xì)胞原代培養(yǎng)、ELISA、RT-PCR及West-blotting等技術(shù)方法對骨組織形態(tài)計(jì)量學(xué)指標(biāo)、OC數(shù)量、離子濃度、細(xì)胞因子mRNA和蛋白表達(dá)等進(jìn)行檢測。結(jié)果:TC組股骨中TRAF6、CN、Src-3、PLC、NFATc1、TRAP mRNA及脛骨中Src1和NFATc1蛋白表達(dá)上調(diào)(<0.05),血清IP3和Ca2+濃度升高(<0.05),BMM分化產(chǎn)生的OC總數(shù)量和≥10個(gè)核OC數(shù)量增多(<0.01)。股骨遠(yuǎn)端松質(zhì)骨和皮質(zhì)骨骨組織形態(tài)計(jì)量學(xué)指標(biāo)顯著下降(<0.05)。與TC比,TS組股骨中TRAF6、CN、PLC和TRAPmRNA及Src1蛋白表達(dá)下調(diào),血清Ca2+濃度下降(<0.05或<0.01)。TD組股骨中TRAF6、CN、Src-3、PLC、NFATc1和TRAPmRNA及脛骨中Src1和NFATc1蛋白表達(dá)下調(diào),血清IP3和Ca2+濃度下降(<0.05)。OC總數(shù)量和≥10個(gè)核OC數(shù)量顯著減少(<0.05),松質(zhì)骨和皮質(zhì)骨骨組織形態(tài)計(jì)量學(xué)指標(biāo)顯著改善(<0.05)。與TS比,TD組股骨中TRAF6、Src-3、PLC和TRAP mRNA表達(dá)下調(diào)及血清IP3和Ca2+濃度下降(<0.05),OC總數(shù)量(<0.05)下降,松質(zhì)骨BS/TV增加(<0.05)。結(jié)論:T2DM小鼠骨吸收增強(qiáng)。下坡跑通過抑制T2DM小鼠骨中CN/NFAT途徑,減少OC數(shù)量,降低骨吸收,改善骨組織形態(tài)結(jié)構(gòu),且其作用效果優(yōu)于游泳。
運(yùn)動(dòng);CN/NFAT;2型糖尿?。黄乒羌?xì)胞;骨吸收;骨組織形態(tài)計(jì)量學(xué)
2型糖尿病(Type2 diabetes mellitus,T2DM)機(jī)體骨代謝發(fā)生紊亂,骨吸收大于骨形成,骨密度(Bone mineral density, BMD)降低、骨組織形態(tài)結(jié)構(gòu)退化,導(dǎo)致骨質(zhì)疏松發(fā)生[26]。T2DM小鼠松質(zhì)骨的骨形成速率、骨小梁形態(tài)結(jié)構(gòu)和生物力學(xué)性能顯著下降[15]。人體研究中,T2DM患者骨代謝紊亂,股骨頸等BMD降低,骨質(zhì)疏松及骨折發(fā)生率顯著增加[19]。運(yùn)動(dòng)作為抑制骨吸收的有效干預(yù)方式,可顯著提高T2DM人或動(dòng)物的BMD、骨組織形態(tài)結(jié)構(gòu)、骨生物力學(xué)等骨表型指標(biāo),改善骨健康[7,13]。但運(yùn)動(dòng)方式不同對骨產(chǎn)生的力學(xué)刺激方式(分為直接力學(xué)刺激,即地面反作用力和間接力學(xué)刺激,即肌肉牽拉力)存在較大差異,直接力學(xué)刺激抑制骨吸收的作用效果優(yōu)于間接力學(xué)刺激[1]。鈣調(diào)磷酸酶(Calcineurin, CN)/活化T細(xì)胞核因子(Nuclear factor of activated T cell, NFAT)是介導(dǎo)骨吸收的關(guān)鍵途徑[20],其可調(diào)控OC分化產(chǎn)生、融核及其骨吸收能力。但有關(guān)運(yùn)動(dòng)影響該途徑進(jìn)而調(diào)控T2DM骨吸收代謝的相關(guān)研究尚待探究。本研究擬利用游泳和下坡跑對T2DM小鼠進(jìn)行干預(yù),探究兩種運(yùn)動(dòng)方式對T2DM骨吸收代謝的影響及CN/NFAT信號(hào)途徑在此過程中的調(diào)控機(jī)制,為運(yùn)動(dòng)改善糖尿病骨健康提供科學(xué)依據(jù)。
40只4周齡C57BL/6雄性小鼠購自上海西普爾—必凱公司(生產(chǎn)證號(hào):SYXX(滬)2015-0011),初始體重19±0.24g,適應(yīng)性喂養(yǎng)1周后,隨機(jī)分為正常對照組(ZC,10只)和高脂飼料組(30只)。高脂飼料組小鼠喂飼高脂飼料(購自上海斯萊克公司,配方:繁殖鼠料54.6%、豬油16.9%、蔗糖14.0%、酪蛋白10.2%、預(yù)混料2.1%和麥芽糊精2.2%。其中碳水化合物、脂肪和蛋白質(zhì)3大物質(zhì)的供能百分比分別為40%、40%和20%。),6周末空腹12h后,利用注射器于小鼠下腹部離腹白線約0.5cm處刺入,針頭與小鼠腹部成30°角,一次性注射鏈脲佐菌素(Streptozotocin, STZ, 80 mg/kg),ZC組注射檸檬酸/檸檬酸鈉溶液。2周后,利用Roche血糖儀(型號(hào)ACCU-CHECK?Active)和血糖試紙檢測小鼠空腹血糖濃度,≥8 mmol/L為T2DM小鼠[17],共27只。隨機(jī)將T2DM小鼠分為T2DM對照組(TC,9只)、T2DM游泳組(TS,9只)和T2DM下坡跑組(TD,9只)。ZC組小鼠喂以普通飼料,T2DM小鼠繼續(xù)高脂飼養(yǎng),均自由飲水,晝夜比為1:1。該實(shí)驗(yàn)方案通過華東師范大學(xué)動(dòng)物實(shí)驗(yàn)倫理委員會(huì)批準(zhǔn)(動(dòng)物倫理編號(hào):M20150311)。
利用游泳和下坡跑分別對TS和TD小鼠進(jìn)行干預(yù),方案如下:游泳:將小鼠放于長度(42 cm)×寬度(40 cm)×水深(36 cm)水箱中進(jìn)行游泳訓(xùn)練,水溫為32±1oC,50 min/次,6天/周,共計(jì)8周(第1周為適應(yīng)訓(xùn)練,前兩天30 min/天,第3~4天40 min/天,第5~6天50 min/天,從第2周開始按50 min/天進(jìn)行訓(xùn)練)。下坡跑:0.8 km/h、50 min/次,1次/天、坡度-9°、6天/周,共計(jì)8周(第1周為適應(yīng)訓(xùn)練,前兩天30 min/天,第3~4天40 min/天,第5~6天50 min/天,從第2周開始按50 min/天進(jìn)行訓(xùn)練)。
摘除小鼠眼球,利用1.5ml離心管收集全血,4℃過夜后,按1000 rpm×10 min離心,取血清并存于-80℃冰箱中以備ELISA檢測相關(guān)指標(biāo);取小鼠左股骨并將肌肉等去除干凈,以備利用微計(jì)算機(jī)斷層掃描技術(shù)(Micro computed tomography, Micro-CT)檢測股骨遠(yuǎn)端骨組織形態(tài)計(jì)量學(xué)指標(biāo);取小鼠骨髓巨噬細(xì)胞(Bone marrow-derived macrophage, BMM),進(jìn)行細(xì)胞原代培養(yǎng)并誘導(dǎo)其向破骨細(xì)胞(Osteoclast, OC)分化;取小鼠右側(cè)后肢骨用于相關(guān)因子mRNA(股骨)和蛋白(脛骨)表達(dá)檢測。
1.4.1 股骨骨組織形態(tài)計(jì)量學(xué)指標(biāo)檢測
股骨4%多聚甲醛(Paraformaldehyde, PFA)固定24 h后,利用Skyscan Micro-CT系統(tǒng)(型號(hào): 1076)按18 μm/幀對其遠(yuǎn)端進(jìn)行掃描,并利用CT An軟件對松/皮質(zhì)骨骨組織形態(tài)計(jì)量學(xué)指標(biāo)進(jìn)行分析,以獲得三維結(jié)構(gòu)圖和骨組織形態(tài)計(jì)量學(xué)指標(biāo)相關(guān)數(shù)據(jù)。
1.4.2 誘導(dǎo)BMM向OC分化及相關(guān)檢測
取小鼠股骨和脛骨骨髓來制備單細(xì)胞懸液。離心、棄上清且重懸加入紅細(xì)胞裂解液,再離心、棄上清和重懸后。加到6 cm培養(yǎng)皿并置于培養(yǎng)箱中。24 h后對貼壁細(xì)胞進(jìn)行消化、計(jì)數(shù),按3萬/孔接于48孔板中。24 h后,培養(yǎng)基中加入核因子-κB受體活化因子配體(Receptor activator of nuclear factor-kB ligand, RANKL)誘導(dǎo)BMM向OC分化,每隔2天換液。第5天,4% PFA固定OC后,進(jìn)行抗酒石酸酸性磷酸酶(Tartrate-resistant acid phosphatase,TRAP)染色,利用Canon相機(jī)和Leica顯微鏡進(jìn)行拍照并利用Blindness法進(jìn)行計(jì)數(shù)[21]。
1.4.3 股骨中相關(guān)細(xì)胞因子mRNA表達(dá)檢測
按標(biāo)準(zhǔn)步驟[1]提取右側(cè)股骨中RNA,并按反轉(zhuǎn)試劑盒步驟(購自Takara Bio)將RNA反轉(zhuǎn)為cDNA。按實(shí)時(shí)熒光定量PCR試劑盒(購自Takara Bio)步驟對相關(guān)因子的mRNA表達(dá)進(jìn)行檢測。利用Primer premer引物設(shè)計(jì)軟件對相關(guān)引物進(jìn)行設(shè)計(jì)后,由上海生工生物工程有限公司合成。引物序列見表1。
表1 引物序列
1.4.4 骨中Src1和NFATc1的蛋白表達(dá)檢測
按標(biāo)準(zhǔn)步驟[21]提取骨中蛋白,利用BCA法[23]測定濃度后,蛋白變性。10%和12%分離膠電泳后將蛋白轉(zhuǎn)至PVDF膜。5%脫脂奶粉封閉,分別Ⅰ抗4℃和Ⅱ抗室溫孵育。TBST洗膜后,利用Alpha凝膠成像系統(tǒng)對PVDF膜進(jìn)行顯影拍照并利用自帶軟件進(jìn)行數(shù)據(jù)分析。
1.4.5 血清中三磷酸肌醇(Inositoltriphosphate, IP3 )和Ca2+濃度檢測
按酶聯(lián)免疫試劑盒(IP3 ELISA Kit購自CSB;Ca2+ELISA Kit購自SIGMA)步驟要求進(jìn)行血清IP3和Ca2+濃度檢測,每個(gè)樣品做一平行樣。
利用Excel、GraphPad Prism 5和SPSS18.0對實(shí)驗(yàn)檢測的數(shù)據(jù)進(jìn)行統(tǒng)計(jì)、分析(ZC和TC兩組之間進(jìn)行獨(dú)立樣本檢驗(yàn),TC、TS和TD 3組之間進(jìn)行單因素方差分析),<0.05和<0.01分別表示差異具有顯著性和差異具有非常顯著性。
圖1 T2DM小鼠運(yùn)動(dòng)后股骨遠(yuǎn)端松質(zhì)骨骨組織形態(tài)結(jié)構(gòu)變化
Figure 1 Changes of Morphological Structure of Trabecular after Exercises
表2 T2DM小鼠運(yùn)動(dòng)后股骨遠(yuǎn)端松質(zhì)骨形態(tài)計(jì)量學(xué)指標(biāo)的變化
注:與ZC組相比,“*”表示<0.05,“**”表示<0.01;與TC組相比,“★”表示<0.05,“★★”表示<0.01;與TS組相比,“●”表示<0.05。
由圖1和表2可知,與ZC組相比,TC組小鼠股骨遠(yuǎn)端松質(zhì)骨BMD、BV、BV/TV、BS、IS、BS/BV、BS/TV、Tb.Th和Tb.N均顯著下降,而BS/BV和Tb.Sp顯著升高(<0.05或<0.01)。與TC組相比,TD組小鼠股骨遠(yuǎn)端松質(zhì)骨BMD、BV、BV/TV、BS、IS、BS/BV、BS/TV、Tb.Th和Tb.N均呈現(xiàn)顯著性變化(<0.05或<0.01)。與TS組相比,TD組小鼠股骨遠(yuǎn)端松質(zhì)骨BS/TV顯著性增加(<0.05)。TS組與TC組之間沒有顯著差異。
分析表3可知,與ZC組相比,TC組小鼠股骨遠(yuǎn)端皮質(zhì)骨BMD、IS和Tb.Th均顯著下降(<0.05或<0.01)。與TC組相比,TD組小鼠股骨遠(yuǎn)端皮質(zhì)骨BV/TV、BS/BV和Tb.Th均出現(xiàn)顯著變化(<0.05)。TS組與TC組之間沒有顯著差異。
表3 T2DM小鼠運(yùn)動(dòng)后股骨遠(yuǎn)端皮質(zhì)骨骨形態(tài)計(jì)量學(xué)指標(biāo)變化
注:與ZC組相比,“*”表示<0.05,“**”表示<0.01;與TC組相比,“★”表示<0.05。
圖2 T2DM小鼠運(yùn)動(dòng)后OC分化產(chǎn)生數(shù)量的影響
Figure 2 Changes of OC Number in T2DM Mice after Exercises
表4 T2DM小鼠運(yùn)動(dòng)后骨髓BMM分化產(chǎn)生OC數(shù)量的變化
注:與ZC組相比,“**”表示<0.05;與TC組相比,“★”表示<0.05,“★★”表示<0.01;與TS組相比,“●”表示<0.05。
由圖2和表4可知,與ZC組相比,TC組小鼠骨髓中BMM分化產(chǎn)生的OC總數(shù)量和≥10個(gè)核OC數(shù)量顯著增多(<0.01),TD組小鼠BMM分化產(chǎn)生的OC總數(shù)量和≥10個(gè)核OC數(shù)量顯著少于TC組和TS組(<0.05或<0.01);TS組與TC組無顯著差異。
表5 T2DM小鼠運(yùn)動(dòng)后股骨中相關(guān)因子mRNA表達(dá)變化(±SD,n=6)
注:與ZC組相比,“*”表示<0.05,“**”表示<0.01;與TC組相比,“★”表示<0.05,“★★”表示<0.01;與TS組相比,“●”表示<0.05,“●●”表示<0.01。
分析表5可知,與ZC組相比,TC組小鼠股骨中腫瘤壞死因子受體相關(guān)因子6(Tumor necrosis factor receptor-related factor, TRAF6)、類固醇受體輔助激活因子-3(Steroid receptor coactivator-3, Src3)、CN、磷脂酶C (Phospholipase C, PLC)、NFATc1和TRAP的mRNA表達(dá)均顯著上調(diào)(<0.05或<0.01)。與TC組相比,TS組小鼠股骨中TRAF6、PLC、CN和TRAP的mRNA表達(dá)顯著下調(diào)(<0.05或<0.01),TD組小鼠股骨中TRAF6、Src-3、PLC、CN、NFATc1和TRAP mRNA表達(dá)均顯著下調(diào)(<0.05或<0.01)。與TS組相比,TD組小鼠股骨中TRAF6、Src-3、PLC和TRAP mRNA表達(dá)均顯著下調(diào)(<0.05或<0.01)。
圖3 T2DM小鼠運(yùn)動(dòng)后脛骨中Src1和NFATc1蛋白表達(dá)變化
Figure 3 Changes of Src1and NFATc1 Protein Expression after Exercises
表6 T2DM小鼠運(yùn)動(dòng)后脛骨中Src1和NFATc1蛋白表達(dá)變化
注:與ZC組相比,“**”表示<0.01;與TC組相比,“★”表示<0.05;“★★”表示<0.01。
由圖3和表6可知,與ZC組相比,TC組小鼠脛骨中Src1和NFATc1蛋白表達(dá)顯著上調(diào)(<0.01)。與TC組相比,TS組小鼠脛骨中Src1蛋白表達(dá)顯著下調(diào)(<0.01);TD 組小鼠脛骨中Src1和NFATc1蛋白表達(dá)均顯著下調(diào)<0.05或<0.01),TD組與TS組之間無差異。
表7 T2DM小鼠運(yùn)動(dòng)后血清IP3和Ca2+濃度變化
注:與ZC組相比,“*”表示<0.05;與TC組相比,“★”表示<0.05;與TS組相比,“●”表示<0.05。
表7可知,與ZC組相比,TC組小鼠血清中IP3和Ca2+濃度均顯著升高(<0.05)。與TC組相比,TS組小鼠血清中Ca2+濃度顯著下降(<0.05);TD組小鼠血清中IP3和Ca2+濃度均顯著下降(<0.05)。與TS組相比,TD組小鼠血清中IP3和Ca2+濃度均顯著下降(<0.05)。
T2DM作為一內(nèi)分泌代謝性疾病,其骨代謝紊亂,骨組織形態(tài)結(jié)構(gòu)退化,骨小梁參數(shù):BV/TV、Tb.N、Tb.Th和BMD等均顯著下降[27,28]。人體研究發(fā)現(xiàn),T2DM老年男性股骨頸和第3腰椎BMD下降,導(dǎo)致骨質(zhì)疏松發(fā)生[8]。利用磁共振成像(Magnetic Resonance Imaging, MRI)對37名(平均年齡70.8歲)T2DM女性2年間脛骨遠(yuǎn)端松質(zhì)骨骨小梁結(jié)構(gòu)變化進(jìn)行檢測,發(fā)現(xiàn)BV/TV、Tb.Th、Tb.N等顯著下降,導(dǎo)致骨質(zhì)疏松發(fā)生[16]。無論動(dòng)物還是人體研究均證實(shí),T2DM骨代謝紊亂,導(dǎo)致骨組織形態(tài)結(jié)構(gòu)退化及骨質(zhì)疏松發(fā)生。本研究T2DM小鼠造模成功8周后,其股骨遠(yuǎn)端的松質(zhì)骨BMD、BV/TV、BS/TV、Tb.Th和Tb.N等及皮質(zhì)骨BMD、Tb.Th和BS/BV均顯著下降,BS/BV和Tb.Sp顯著升高,這與以上文獻(xiàn)報(bào)道相一致。表明,本研究T2DM小鼠造模成功,另一方面,說明T2DM小鼠骨吸收超過骨形成,使得骨組織形態(tài)結(jié)構(gòu)退化,而松質(zhì)骨骨組織形態(tài)結(jié)構(gòu)退化速度快于皮質(zhì)骨,這與骨代謝發(fā)生變化時(shí),先表現(xiàn)在松質(zhì)骨有關(guān)[24]。
運(yùn)動(dòng)是改善T2DM骨代謝的重要手段。8周中等強(qiáng)度游泳顯著提高T2DM大鼠股骨BMD和最大載荷等生物力學(xué)指標(biāo)[4]。而8周跑臺(tái)訓(xùn)練亦可提高T2DM大鼠BMD和骨生物力學(xué)性能[2]。人體研究證實(shí),長時(shí)間、規(guī)律的體育鍛煉顯著提高T2DM患者(男/女性)股骨頸、Ward's三角等部位BMD,改善骨質(zhì)疏松[10,13]。本研究發(fā)現(xiàn),TD組松質(zhì)骨BMD、BV/TV、Tb.Th、Tb.N等指標(biāo)顯著升高,皮質(zhì)骨僅BV/TV、BS/BV和Tb.Th出現(xiàn)變化;而TS組松質(zhì)骨和皮質(zhì)骨的其他指標(biāo)均無顯著變化。提示,下坡跑顯著改善T2DM小鼠骨組織形態(tài)結(jié)構(gòu),尤其是松質(zhì)骨。這與下坡跑運(yùn)動(dòng)中,T2DM小鼠骨組織受到較大強(qiáng)度的地面反作用力(亦稱直接力學(xué)刺激)有關(guān)[1],直接力學(xué)刺激促進(jìn)成骨細(xì)胞分化及其骨形成能力,并抑制OC分化、融核及骨吸收能力[3],進(jìn)而改善骨組織形態(tài)結(jié)構(gòu),并首先表現(xiàn)在松質(zhì)骨上[24]。TS組松質(zhì)骨和皮質(zhì)骨的骨組織形態(tài)計(jì)量學(xué)指標(biāo)均無顯著變化,說明游泳對T2DM小鼠骨組織形態(tài)結(jié)構(gòu)的改善作用不顯著,這與趙劍等研究結(jié)果不一致。分析原因,與本研究游泳運(yùn)動(dòng)強(qiáng)度較小有關(guān),強(qiáng)度較小的游泳運(yùn)動(dòng)對T2DM小鼠骨產(chǎn)生的力學(xué)刺激(即肌肉牽拉力)未能達(dá)到提高骨代謝的閾值,使得骨組織形態(tài)結(jié)構(gòu)未顯著改善。還可能與本研究中游泳訓(xùn)練時(shí)間較短有關(guān)。
OC由BMM分化產(chǎn)生后,通過融核形成具有較強(qiáng)骨吸收能力的多核OC來主導(dǎo)骨吸收,并表達(dá)骨吸收生化標(biāo)志物——TRAP[14]。T2DM小鼠BMM分化產(chǎn)生的OC和多核OC數(shù)量增多,骨吸收能力增強(qiáng),導(dǎo)致骨質(zhì)疏松發(fā)生[11]。本研究中,發(fā)現(xiàn)T2DM小鼠OC總數(shù)量和≥10個(gè)核OC數(shù)量顯著增多。表明,T2DM促進(jìn)小鼠BMM向OC分化、融核及其骨吸收能力,這與前人研究結(jié)果相一致。究其原因,T2DM可激活骨中骨保護(hù)素(Osteoprotegerin, OPG)/RANKL/核因子-κB受體活化因子(Receptor activator of nuclear factor-κB, RANK)分子軸,上調(diào)核轉(zhuǎn)錄因子κB(nuclear factor-κB, NF-κB)、c-Fos、NFATc1等靶基因表達(dá),促進(jìn)OC分化、融核及其骨吸收能力。并且,T2DM小鼠骨組織形態(tài)結(jié)構(gòu)退化與分化產(chǎn)生的OC數(shù)量增加及其活性升高密切相關(guān),OC會(huì)在骨基質(zhì)Howship陷窩內(nèi)形成酸性微環(huán)境,以吞噬泡形式降解骨質(zhì),使得松質(zhì)骨和皮質(zhì)骨形態(tài)結(jié)構(gòu)退化[34]。
T2DM骨質(zhì)疏松發(fā)生,與BMM分化產(chǎn)生的OC數(shù)量增加及骨吸收能力升高密切相關(guān)。運(yùn)動(dòng)訓(xùn)練作為改善骨組織形態(tài)結(jié)構(gòu)的重要手段,其在抑制OC分化、融核及骨吸收能力上亦扮演關(guān)鍵角色[35]。但體育科學(xué)領(lǐng)域內(nèi),有關(guān)運(yùn)動(dòng)抑制T2DM小鼠BMM向OC分化及融核的相關(guān)研究尚待揭示。8周運(yùn)動(dòng)結(jié)束后,TD組OC總數(shù)量和≥10個(gè)核OC數(shù)量均顯著下降,而TS組變化不顯著。并且,TD組OC總數(shù)量顯著低于TS組。說明下坡跑顯著抑制T2DM小鼠OC分化產(chǎn)生、融核及骨吸收能力,而游泳效果不顯著。這與下坡跑對T2DM小鼠骨產(chǎn)生的直接力學(xué)刺激可抑制其骨中OPG/ RANKL/RANK分子軸、IL-6和腫瘤壞死因子-α(Tumor necrosis factor-α, TNF-α)、NF-κB等激活或表達(dá)有關(guān)[30,31]。以上信號(hào)途徑或細(xì)胞因子表達(dá)被抑制后,促進(jìn)BMM向單核OC分化及單核OC融核形成具有較強(qiáng)骨吸收功能的多核OC[32]。游泳作用效果不顯著,與其對T2DM小鼠骨產(chǎn)生的肌肉牽拉力強(qiáng)度較小,不能對BMM形成有效的力學(xué)刺激有關(guān),從而抑制其向OC分化。然而,作為調(diào)控骨吸收代謝關(guān)鍵信號(hào)途徑的CN/NFAT途徑,其在調(diào)控OC分化及其骨吸收能力上具有重要調(diào)控作用。Ayse BC等[5]在研究間質(zhì)液體剪切力和拉伸應(yīng)變對骨細(xì)胞的影響時(shí),發(fā)現(xiàn)這兩種力學(xué)刺激均能抑制CN/NFAT途徑激活。然而,目前有關(guān)運(yùn)動(dòng)抑制CN/NFAT途徑,進(jìn)而調(diào)控T2DM小鼠OC分化、融核及其骨吸收能力的相關(guān)研究尚待補(bǔ)充。
CN/NFAT是調(diào)控骨吸收的關(guān)鍵途徑。TRAF6磷酸化后,活化Src1/3 (Src1起主要調(diào)控作用),并作用于PLC及IP3,促進(jìn)胞內(nèi)Ca2+濃度升高引起CN活化,激活NFATc1并迅速轉(zhuǎn)移入核,調(diào)控OC前體細(xì)胞向OC分化及單核OC向多核OC融核,增強(qiáng)骨吸收[6]。T2DM小鼠分化產(chǎn)生的OC和多核OC數(shù)量顯著增加,該過程受CN/NFAT途徑調(diào)控,當(dāng)其關(guān)鍵因子NFATc1激活后,促進(jìn)BMM向OC分化及單核OC融核,使得骨吸收增強(qiáng)[18]。本研究顯示,T2DM小鼠骨中TRAF6、Src3、CN和NFATc1的mRNA表達(dá)上調(diào),IP3和Ca2+濃度升高,且關(guān)鍵因子Src1和NFATc1蛋白表達(dá)及骨吸收標(biāo)志因子TRAP表達(dá)亦上調(diào),這與前人研究結(jié)果相一致。提示,T2DM小鼠骨中CN/NFAT途徑被激活,從而促進(jìn)BMM向OC分化產(chǎn)生及融核,導(dǎo)致骨組織形態(tài)結(jié)構(gòu)退化。
運(yùn)動(dòng)是改善T2DM骨代謝的重要手段,而目前相關(guān)研究集中在骨表型上。作為調(diào)控T2DM骨吸收的重要信號(hào)途徑—CN/NFAT,運(yùn)動(dòng)影響T2DM小鼠骨中該途徑表達(dá)的相關(guān)研究尚待揭示。本研究中,TD組小鼠骨中TRAF6、Src3、PLC、CN、NFATc1、TRAP的mRNA和Src1、NFATc1蛋白表達(dá)下調(diào),IP3和Ca2+濃度下降。TS組TRAF6、PLC、CN、TRAP的mRNA和Src1蛋白表達(dá)及Ca2+濃度均下降,NFATc1 mRNA和蛋白表達(dá)不顯著。而研究證實(shí),NFATc1是評(píng)價(jià)CN/NFAT途徑激活與否的關(guān)鍵靶基因,當(dāng)其被激活后促進(jìn)OC分化及其活性[25,33]。并且,與TS組相比,TD組TRAF6、Src3、PLC、TRAPmRNA和NFATc1蛋白表達(dá)及IP3和Ca2+濃度均低于TS組。表明,下坡跑抑制T2DM小鼠骨中CN/NFAT信號(hào)途徑激活,而游泳卻不能。證實(shí),直接力學(xué)刺激改善T2DM骨吸收的作用效果優(yōu)于間接力學(xué)刺激。直接力學(xué)刺激可抑制T2DM小鼠骨中OPG/RANKL/RANK分子軸,而TRAF6與RANK胞質(zhì)區(qū)結(jié)合去磷酸化后抑制CN/NFAT途徑激活[36]。再者與其抑制T2DM小鼠骨中Rho/蛋白激酶C1(Protein kinase C1, PKC1)信號(hào)通路和肌動(dòng)蛋白聚合、肌球蛋白重鏈(Myosin heavy chain, MyHC)、骨形成蛋白-2(Bone morphogenetic protein 2, BMP-2)、白介素3(Interleukin 3, IL-3)和激活細(xì)胞表面糖蛋白147(Cell surface glycoprotein147, CD147)等有關(guān)[22,37]。以上信號(hào)途徑或關(guān)鍵分子的抑制或激活均可抑制T2DM小鼠骨中鈣調(diào)神經(jīng)磷酸酶調(diào)節(jié)因子(Calcineurin-regulating factor, RCANs)與CN上由7個(gè)外顯子編碼的PxIxxT區(qū)域結(jié)合[29],進(jìn)而抑制下游分子及靶基因NFATc1表達(dá)。而直接力學(xué)刺激激活Wnt5a與其膜上受體復(fù)合物結(jié)合后,可活化胞內(nèi)散亂蛋白2(Dishevelled, DVL2),抑制CN及其下游NFATc1等基因表達(dá)[9,12]。
T2DM小鼠骨吸收增強(qiáng),導(dǎo)致骨質(zhì)疏松發(fā)生;下坡跑通過抑制T2DM小鼠骨中CN/NFAT途徑,導(dǎo)致OC及多核OC數(shù)量下降,骨吸收降低,進(jìn)而改善骨組織形態(tài)結(jié)構(gòu),且其作用效果優(yōu)于游泳對骨產(chǎn)生的間接作用力。
[1] 陳祥和, 李世昌, 嚴(yán)偉良, 等. 不同方式運(yùn)動(dòng)對生長期雄性小鼠骨形成和骨吸收代謝影響的研究[J]. 西安體育學(xué)院學(xué)報(bào), 2015, 32(2):205-211.
[2] 高海寧, 王艷杰, 趙丹玉, 等. 2型糖尿病發(fā)病不同階段的運(yùn)動(dòng)干預(yù)對大鼠骨代謝及骨髓瘦素和瘦素受體蛋白表達(dá)的影響[J]. 沈陽體育學(xué)院學(xué)報(bào), 2015, 34(1):73-77.
[3] 馬濤, 李世昌, 梁曉霞, 等. 上、下坡跑臺(tái)運(yùn)動(dòng)對去卵巢小鼠骨密度及骨組織形態(tài)計(jì)量學(xué)指標(biāo)的影響[J]. 體育科學(xué), 2011, 31(1):48-55.
[4] 趙劍. 有氧運(yùn)動(dòng)對2型糖尿病大鼠骨密度和骨生物力學(xué)指標(biāo)的影響[D]. 上海:上海體育學(xué)院, 2010.
[5] AYSE B C, HIROSHI M, THOMAS R G,Nuclear factor of activated T cells mediates fluid shear stress-and tensile strain-induced Cox2 in human and murine bone cells [J]. Bone, 2010, 46(1): 167.
[6] ASAGIRI M, TAKAYANAGI H.The molecular understanding of osteoclast differentiation [J]. Bone, 2007, 40(2):251-264.
[7] BELLO M, SOUSA MC, NETO G,. The effect of a long-term, community- based exercise program on bone mineral density in postmenopausalwomen with pre- diabetes and type 2 diabetes [J]. J Hum Kinet, 2014, 43(13):43-48.
[8] B.SIDDHARTHA K, RAVISANKAR A, ALLADI M,Effect of oral hypoglycaemic agents on bone metabolism in patie-nts with type 2 diabetes mellitus & occurrence of osteoporosis [J]. Indian J Med Res, 2015, 141(90): 431-437.
[9] CHATTOPADHYAY S, CHATTERJEE R, LAW S. Noncanoni-cal Wnt5a- Ca(2+) -NFAT signaling axis in pesticide induced bone marrow aplasia mouse model: A study to explore the novel mechanism of pesticide toxicity[J]. Environ Toxicol,2016,31(10): 1163-1175.
[10] DE LUIS R D, ALLER R, PEREZ C J,. Effects of dietary intake and life style on bone density in patients with diabetes mellitus type 2[J]. Ann Nutr Metab, 2004, 48(3):141-145.
[11] ERJAVEC I, BORDUKALO-NIKSIC T, BRKLJACIC J,. Constitutively elevated blood serotonin is associated with bone loss and type 2 diabetes in rats[J]. PLoS One, 2016, 11(2):e0150102.
[12] FROMIGUé O, HA? E, BARBARA A,Essential role of nuclear factor of activated T cells (NFAT)-mediated Wnt signal-ing in osteoblast differentiation induced by strontium ranelate[J]. J Biol Chem, 2010, 285(33):25251-25258.
[13] GUSHIKEN M, KOMIYA I, UEDA S,Heel bone strength is related to lifestyle factors in Okinawan men with type 2 diabetes mellitus[J]. J Diabetes Investig, 2015, 6(2):150-157.
[14] HYEON S, LEE H, YANG Y,. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differe-ntiation[J]. Free Radic Biol Med, 2013, 65(11):789-799.
[15] JEYABALAN J, VIOLLET B, SMITHAM P,The anti-diabetic drug metformin does not affect bone mass in vivo or fracture healing[J]. Osteoporos Int, 2013, 24(10): 2659-2670.
[16] JANET M P, LORA M G,STEPHANIE A A,Changes in trabecular bone microarchitecture in postmenopausal women with and without type 2 diabetes: a two year longitudinal study [J]. BMC Musculoskelet Disord, 2013,14(5): 114.
[17] KANAZAWA I, YAMAGUCHI T, YAMAUCHI M,. Serum under- carboxylated osteocalcin was inversely associated with plasma glucose level and fat mass in type 2 diabetes mellitus [J]. Osteoporos Int, 2011, 22(1):187-194.
[18] KAMIO N, KAWATO T, TANABE N,.Vaspin attenuates RANKL-induced osteoclast formation in RAW264.7 cells[J]. Connect Tissue Res, 2013, 54(2):147-152.
[19] LOPES L S, SCHWARTZ R P, FERRAZ-DE-SOUZA B,The role of enteric hormone GLP-2 in the response of bone markers to a mixed meal in postmenopausal women with type 2 diabetes mellitus[J]. Diabetol Metab Syndr, 2015, 7(2):13-18.
[20] LI X, HE L, HU Y,. Sinomenine suppresses osteoclast formation and Mycobacterium tuberculosis H37Ra-induced bone loss by modulating RANKL signaling pathways [J]. PLoS One, 2013, 8(9):e74274.
[21] LUO J, YANG Z, MA Y,LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption [J]. Nat Med, 2016, 22(5): 539 -546.
[22] LOMONOSOVA Y N, TURTIKOVA O V, SHENKMAN B S.Reduced expression of MyHC slow isoform in rat soleus during unloading is accompanied by alterations of endogenous inhibitors of calcineurin/NFAT signaling pathway[J]. J Muscle Res Cell Motil, 2015, 37(1-2):7-16.
[23] MARILINA P, MELDA O, JINHU X,Suppression of autophagy in osteocytes does not modify the adverse effects of glucocorticoids on cortical bone [J]. Bone, 2015, 75(6):18-26.
[24] NEUMANN AJ, GARDNER OF, WILLIAMS R,. Human articular cartilage progenitor cells are responsive to mechanical stimulation and adenoviral-mediated over-expression of bone morphogenetic protein 2[J].PLoS One,2015,10(8): e0136229.
[25] NATSUKO T, BENJAMIN D W, JIYUN K,Osteopontin signals through calcium and nuclear factor of activated T cells (NFAT) in osteoclasts [J]. J Biol Chem, 2011, 286(46): 39871-39881.
[26] OCHIAI M, KURODA T, GOHTANI S,Dietary protein derived from dried bonito fish improves type 2 diabetes mellitus-induced bone frailty in to Goto- Kakizaki rats [J]. J Food Sci, 2015, 80(4):848-856.
[27] PEREZ-CASTRILLON J L, RIANCHO J A, DE LUIS D,. The deleterious effect of bariatric surgery on cortical and trabecular bone density in the femurs of non-obese, type 2 diabetic Goto-Kakizaki rats[J]. Obes Surg, 2012,22(11):1755-1760.
[28] QIAN C, ZHU C, YU W,. High-fat diet/low-dose streptozotocin-induced type 2 diabetes in rats impacts osteogene-sis and Wnt signaling in bone marrow stromal cells [J]. PLoS One, 2015, 10(8):e136390.
[29] RAO A. Signaling to gene expression: calcium, calcineurin and NFAT [J]. Nat Immunol, 2009, 10(1):3-5.
[30] TROIB A, GUTERMAN M, RABKIN R,. Endurance exercise and growth hormone improve bone formation in young and growth-retarded chronic kidney disease[J]. Nephrol Dial Transplant, 2015, Epub ahead of print.
[31] WANG QS, ZHANG XC, LI RX,. A comparative study of mechanical strain, icariin and combination stimulations on impro-ving osteoinductive potential via NF-kappaB activation in osteobl-ast-like cells[J]. Biomed Eng Online, 2015, 14(2): 46.
[32] XIE W, LORENZ S, DOLDER S,Extracellular iron is a modulator of the differentiation of osteoclast lineage cells[J]. Calcif Tissue Int, 2015, 15(3):25-31.
[33] YARILINA A, XU K, CHEN J,. TNF activates calcium-nuclear factor of activated T cells (NFAT)c1 signaling pathways in human macrophages[J]. Proc Natl Acad Sci U S A, 2011,108(4):1573-1578.
[34] YUUKI I, YOUN MY, KAZUKI I,Nuclear receptors in bone physiology and diseases [J]. Physiol Rev, 2013, 93(2): 481-488.
[35] ZHANG M,SHINTARO I,TOMOKO I,Influence of mechanical force on bone matrix proteins in ovariectomised mice and osteoblast-like MC3T3-E1 cells [J]. Vivo, 2017, 31(1):87-96.
[36] ZHOU L, LIU Q, YANG M,Dihydroartemisinin, an anti-malaria drug, suppresses estrogen deficiency-induced osteoporo-sis,osteoclast formation, and RANKL-induced signaling pathways[J]. J Bone Miner Res, 2016, 31(5):964-974.
[37] ZHANG M, SARA JD, WANG FL,. Increased plasma BMP-2 levels are associated with atherosclerosis burden and coronary calcification in type 2 diabetic patients[J]. Cardiovasc Diabetol, 2015, 14(7):64-69.
Effects of Swimming and Downhill Running on Bone Absorption Metabolism in Type 2 Diabetic Mice via CN/NFAT Signal Pathway
CHEN Xiang-he1, LI Shi-chang2, SUN Peng2, CHEN Ai-guo1, MA Tao3, MOU Qi-lin4
1.Yangzhou University, Yangzhou 225127, China; 2. East China Normal University, Shanghai 200241, China; 3. Qilu Normal University, Jinan 250200, China; 4.Guiyang University, Guiyang 550000, China.
Objective: The purpose of this study was to explore the effect of swimming and downhill running on bone resorption and metabolism in T2DM mice through calcineurin (CN)/activated T-cell nuclear factor (NFAT) pathway. Methods: Six-week high-fat diet and one-time injection of streptozotocin (STZ) were used to make T2DM models. After it, the mice were randomly divided into T2DM control group (TC), T2DM swimming group (TS) and T2DM downhill running group ( TD), C57 mice were selected as normal control group (ZC). T2DM mice continued to have a high-fat diet and mice of ZC group were fed normal diets. The mice of TS and TD group were trained for 8 weeks swimming and downhill running. After 24 hours of the last training, the mice were sacrificed and each bone samples were harvested. Microscopy, primary cell culture, ELISA, RT-PCR, and West-blotting techniques were used to measure bone histomorphometry, OC number, ion concentration , mRNA and protein expression of cytokine were detected. Results: The expressions of TRAF6, CN, Src-3, PLC, NFATc1, TRAP mRNA and Src1, NFATc1 protein were up-regulated in TC group (<0.05), and the concentrations of IP3 and Ca2+were increased (<0.05). The total number of OC and the number of ≥10 nuclear OCs were increased (<0.01). Histological indicators of cancellous bone and cortical bone were significantly decreased (<0.05). Compared with TC, the expression of TRAF6, CN, PLC, TRAP mRNA and Src1 protein in TS group were down-regulated, and Ca2+concentration was also decreased (<0.05 or<0.01). The expression of TRAF6, CN, Src-3, PLC, NFATc1, TRAP mRNA and Src1, NFATc1 protein were down-regulated in the TD group, and the IP3 and Ca2+ concentrations were also decreased (<0.05). The total number of OC and ≥10 nuclear OC were significantly decreased (<0.05), and histomorphometric indexes of cancellous bone and cortical bone were significantly improved (<0.05). Compared with TS, the expression of TRAF6, Src-3, PLC, TRAP mRNA were down-regulated and the concentration of IP3 and Ca2+ were decreased (<0.05). The total number of OC decreased (<0.05) and the BS/TV of cancellous bone were increased (<0.05). Conclusion: The bone resorption of T2DM mice was enhanced. Downhill running inhibited the CN/NFAT pathway in bone of T2DM mice, reduced the number of OC, decreased the bone resorption, and improved the morphological structure of bone, and its effect was better than swimming.
G804.5
A
1002-9826(2018)04-0113-07
10.16470/j.csst.201804013
2017-07-21;
2018-06-06
江蘇省高等學(xué)校自然科學(xué)研究面上項(xiàng)目(17KJB180017)。
陳祥和,男,講師,博士,主要研究方向?yàn)檫\(yùn)動(dòng)與骨適應(yīng)的機(jī)制, E-mail:huashixh@163.com。