• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Calculate Joint Probability Distribution of Steady Directed Cyclic Graph with Local Data and Domain Casual Knowledge

    2018-07-24 00:46:50QinZhangKunQiuZhanZhang
    China Communications 2018年7期

    Qin Zhang*, Kun Qiu Zhan Zhang

    1 School of Computer Science and Engineering, Beihang University, Beijing 100191, China

    2 Tsingrui Intelligence Technology, Ltd., Beijing 100191, China

    Abstract: It is desired to obtain the joint probability distribution (JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has been done when all variables are in a known directed acyclic graph (DAG). However,steady directed cyclic graphs (DCGs) may be involved when we simply combine modules containing local data together, where a module is composed of a child variable and its parent variables. So far, the physical and statistical meaning of steady DCGs remain unclear and unsolved. This paper illustrates the physical and statistical meaning of steady DCGs, and presents a method to calculate the JPD with local data, given that all variables are in a known single-valued Dynamic Uncertain Causality Graph (S-DUCG), and thus de fines a new Bayesian Network with steady DCGs.The so-called single-valued means that only the causes of the true state of a variable are speci fied, while the false state is the complement of the true state.

    Keywords: directed cyclic graph; probabilistic reasoning; parameter learning; causality;complex network

    I. INTRODUCTION

    Bayesian network (BN) is a well-known model to represent uncertain causalities and make probabilistic reasoning [1]-[15]. As being defined, a BN is based on a DAG and represents a JPD over a set of random variablesX1,X2,…,Xn. According to DAG, JPD is factorized as the multiplication of a group of conditional probabilities contained in the corresponding conditional probability tables (CPTs) as shown in (1), in whichxiis an instance ofXi,pa(xi)denotes the parents ofxi, and P(xi|pa(xi)) denotes the conditional probability ofxi.

    A CPT corresponds to a module composed of a child variable and its parent variables, and can be obtained from the local statistical data within the module. A DAG is composed of a set of modules. Each module corresponds to a CPT that is equivalent to a local JPD over the variables included in the module. In [16],module is called family, which means that the modules are in an order and cannot form any steady/static DCG when they are combined together by fusing the same variables in dif-ferent modules, i.e. family can only be used in DAGs. When steady DCGs are involved during the module combination, family is not a proper word. For a known DAG, once we collect the local statistical data for modules respectively, we can easily obtain the local CPTs or JPDs, and thus get the final JPD over all variables according to (1). It is not necessary to collect the statistical data in the scale of all variables, because according to(1), we need only to know the local CPTs or JPDs of modules. This makes the collection of statistical data much easier than to collect the statistical data with regard to all variables,because the latter means to exponentially increase the amount and difficculty of collecting statistical data. For example, suppose 1) there are 100 variables contained in 20 modules,2) each module has 10 variables (there are some variable overlap among modules), 3)every variable has two states, and 4) each state combination appears 10 times in the statistical data. The number of samples to get the final JPD over the 100 variables directly is 2100×10>1.267×1031. If we can calculate the final JPD from the local JPDs of modules, the number of samples is reduced to 20×210×10=2.048×105.

    A lot of work has been done in this area[17]-[22]. They are all DAGs, or extended as DAGs with time tags in dynamic cases. However, steady DCGs may appear in some cases[23]-[24]. An example is as shown in figure 1,which is a SOS DNA repair network, in which nodes represent genes and directed arcs represent the regulatory relationships [24].

    One of the reasons of steady DCGs is that measurements cannot be so accurate to distinguish the earlier cause and later consequence when feedback loops exist [25]. Another reason is that the cause and consequence may be immediate (static), e.g. action force and reaction force, while the cause and consequence are reversal in different instances. Some work related to steady DCGs has been done. Ref.[26] presents that DCG is a family of probabilistic distributions rather than a single distribution, and gives only the consistency checking without calculations. Ref. [27] proposes to use the conditional independence and non-recursive linear structural equation to handle DCGs, without showing the detail how to calculate JPD. Ref. [28] de fines a dependence network (DN) allowing DCGs, in which the Gibbs sampling method is used to get the samples of DN, and then the samples are used to represent a JPD over random variables. However, DN is viewed as a group of conditional probability distributions rather than a unique joint distribution. Ref. [29] regards DCG as a re- parameterization of an undirected model and represents the joint distribution as a normalized product of non-negative interventional potential functions. Ref. [30] uses Gibbs sampling to generate data, and then calculate the frequency of samples (JPD), in which a sample ordering has to be determined, because different sampling sequence may result in different distributions, and even cannot get equilibrium distribution. In general, the physical and statistical meanings of DCGs remain unclear and unsolved.

    This paper demonstrates the physical and statistical meaning of steady DCGs, and presents a method to calculate the JPD with only local statistical data in modules composing steady DCGs.

    Fig. 1. Regulatory interactions of a repair network.

    Fig. 2. Illustration to S-DUCG model.

    Fig. 3. S-DUCG with DCG.

    Fig. 4. Three modules contained in figure 3.

    In [31]-[38], a model called Dynamic Uncertain Causality Graph (DUCD) is presented to represent the uncertain causalities explicitly, which is composed of single-valued DUCG (S-DUCG) and multiple-valued DUCG (M-DUCG). The so calledS-DUCG means that only the causes of the true state of a variable can be speci fied, while the false state is the complement of the true state and the causes of the false state cannot be specified separately. The so calledM-DUCG may have more than two states and the causes of all states can be speci fied separately. Usually,a DUCG corresponds to a BN. But as shown in [34], DUCG allows steady/static DCGs,which is not allowed in BN. Therefore, DUCG is more flexible than BN. However, so far the parameters in a DUCG are assumed known or be given by domain experts. How to use local data to obtain the JPD over all variables is still unsolved.

    The purpose of this paper is to model the local data in terms ofS-DUCG and calculate the JPD over all variables in steady DCG cases, given thatS-DUCG is the causal structure based on domain expert knowledge. The realistic/physical and statistical meanings of steady DCGs are also illustrated. Note that theS-DUCG with steady DCGs corresponds to a BN with DCGs, which is not allowed in the de finition of BN. This means that theS-DUCG with steady DCGs defines a new type BN allowing DCGs and provides an approach to solve this newly de fined BN.

    Section II introducesS-DUCG model briefly. Section III provides an accurate example with steady DCG, which illustrates the reality and statistical meaning of steady DCGs. Section IV presents how to learn the parameters in anS-DUCG given by domain experts, and then calculate the JPD over all variables. Section V brie fly summarizes this paper and outlines the future work.

    II. BRIEF INTRODUCTION TO S-DUCG

    The simplifiedS-DUCG model is introduced as follows (see [32] for the wholeS-DUCG model): DenoteXnas the child event of modulen,Vias parent eventiofXn, whereV∈{B,X}. In general,Bdenotes a basic/root event that does not have any input/cause;Xdenotes an event that has at least one input and may or may not have output/consequence. As assumed, there must be at least oneB-type event as the ancestor of anyX-type event. The simpli fied model ofS-DUCG is illustrated as shown in figure 2 and (2) in terms of modulen.

    The corresponding equation inM-DUCG is as shown in (2’) and the explanation is ignored in this paper (see [32]-[38] for the explanation), because it is out of the scope of this paper.

    Figure 2(b) illustrates figure 2(a): eventXnis divided as a set of eventsXn;icaused byVirespectively, the uncertain causality betweenXn;iandViis modeled as a virtual random eventPn;i, i.e.Xn;i=Pn;iVi, andXn;iare in OR relationship, which is actually the Noisy-OR case in [1].

    III. REALITY AND STATISTICAL MEANING OF S-DUCG WITH STEADY DCGS

    Suppose the local statistical data of the three modules in figure 3 or figure 4 are as shown in table 1, in which the first column indicates the state combination, the second column indicates the number of samples, and the third column indicates the corresponding local JPD.The three groups of data are collected by three domain experts concerning three subjects respectively:X1and its causes/parentsB5andX2,X2and its causes/parentsB4andX3, andX3and its causes/parentsX1andX2. According to (2),we have

    We can further expand (3) as (4)-(6) by substituting the equations in (3) into each other,while applying Assumption 41Assumption 4: Any state of a variable cannot be the cause of any state of the same variable at a same time.Where a state of a variable is equivalent to an event. For simplicity, the assumptions of DUCG are indexed in a series of papers.[34] to discard logic cycles.

    In which, “+” means XOR, where the disjoint cut-set techniques expressed as two equations2Where is the second subscript of variable Vi, and C is usually called cut-set that is an event product.in [32] are applied. Meanwhile, accordingto the de finition ofS-DUCG, we have (7)-(9).

    Table. I. Local samples and JPDs of three modules respectively.

    On the left and right sides of (4)-(9), by replacing the upper case letters with lower case letters, we get the corresponding probability expressions, in which,It is seen that only eight parametersp1;2,p1;5,p2;3,p2;4,p3;1,p3;2,b4andb5need to be obtained from the local statistical data in table 1.

    To find the eight parameters, we can have the local JPD expressions equal to the corresponding local JPDs in table 1. For example,by applying (4) and (5), we have

    Similarly, we have additional 23 equations as shown in (11)-(33) in the supplementary material. It is validated that whenp1;2=0.8,p1;5=0.5,p2;3=0.5,p2;4=0.9,p3;1=0.5,p3;2=0.6,b4=0.5 andb5=0.5, (10)-(33) are exactly satisfied. We will discuss how to obtain the eight parameters from (10)-(33) in the next section.

    Based on the obtained eight parameters and(4)-(9), or equivalently, based on either figure 3 or figure 4 with the obtained eight parameters, we can calculate the JPD over all five variables exactly as shown in table 2.

    For example, from (4)-(6), we have

    The other similar equations (35)-(65) are given in the supplementary material of this paper.

    It is easy to see that the local JPDs shown in table 1 are just the marginal distributions in table 2. For example,from table 2, we can easily calculate the marginal distributionequal to the local JPD in table 1(a) exactly.

    This example exhibits the realistic and the statistical meanings of steady DCGs. Note that the local data or JPDs observed as shown in table 1 are actually the results affected by the other two modules through the steady DCGs.Therefore, we must have the expression corresponding to the local JPD with the wholeS-DUCG structure and parameters as illustrated in (10).

    The corresponding BN with steady DCGs newly defined by theS-DUCG in figure 3 is shown in figure 3’, in which, the CPTs can be obtained either from table 1 directly or calculated from theS-DUCG with parameters learned from table 1. The results are shown in table 3. Meanwhile, the probability distributions ofB4andB5remain the same, i.e. {0.5,0.5} and {0.5, 0.5} respectively.

    For example, according to table 1(a), we have

    While according to theS-DUCG shown in figure 3 and (5), (10) with the 8 learned parameters, we have

    They are the same. However, the BN shown in figure 3’ is not defined before, because it includes DCGs. In other words, (1) is not satis fied.

    IV. PARAMETER LEARNING FROM LOCAL DATA

    Given a knownS-DUCG by domain experts,the left task is to learn the parameters of theS-DUCG from the local data collected in the modules composing theS-DUCG. The meth-ods are many, such as those in [39]-[41]. As an example, we may use the least-square method.For our example shown in Section III, the goal functiong(p, b) to be minimized in the learning process is de fined as in (66).

    Table II. JPD over all the five variables in fig. 3 or fig. 4.

    Table III. CPTs of the newly de fined BN with steady DCGs in fig. 3.

    Fig. 3’. The newly de fined BN with steady DCGs corresponding to Fig. 3.

    In whichyiis the local JPD in table 1 indexed byi∈{1,…,24} corresponding to the 24 equations (10)-(33) respectively, e.g.y1=0.237 in (10), while the left side of (10) isf1(p, b)calculated from the eight parameters denotedas (p, b), where p≡{p1;2,p1;5,p2;3,p2;4,p3;1,p3;2} and b≡{b4,b5}. Our purpose is to find a set of (p, b) that makesg(p, b) the least.Whenmin{g(p, b)}=0, we find the exact (p,b) satisfying both the 24 local JPDs and the 24 equations. Whenmin{g(p, b)}≠0, the (p,b) is an approximation. The error can be either the inexactness of local statistical data or theS-DUCG given by domain experts. In this paper, we assume that theS-DUCG shown in figure 3 is exact.

    Table IV. Local samples and JPDs of three modules respectively with 10% disturbance to table 1.

    Fig. 5. Comparison between table 2 and table 5.

    We choose MatLab as the tool of learning(p, b), LM (Levenberg-Marquardt) [42] as the gradient descent iterative optimization algorithm for findingmin{g(p, b)}, and the convergence error ofg(p, b) as 10?5. To start the learning process, we take p={0.5, 0.5, 0.5, 0.5,0.5, 0.5} and b={0.5, 0.5} as the initial (p, b).

    Two experiments are performed: 1) with the local data shown in table 1, and 2) with the local data shown in table 4 that is a result of disturbing the data in table 1 at a ratio of 10%randomly.

    In experiment 1, we get p={0.8, 0.5, 0.5,0.9, 0.5, 0.6} and b={0.5, 0.5}, which are the exact parameters mentioned in Section III. In experiment 2, we get p={0.7871,0.4891, 0.4899, 0.8728, 0.5008, 0.6004}and b={0.4944, 0.4584} withmin{g(p,b)}=0.0016.

    According to (34)-(65) and the parameters in experiment 2, we calculate the JPD over all the five variables as shown in table 5. The comparison between table 2 and table 5 is as shown in figure 5.

    V. CONCLUSION

    This paper demonstrates the reality and statistical meaning of steady DCGs, in the case that the causal structure is inS-DUCG model. By combining statistical data and domain casual knowledge, this paper also presents the method to calculate the JPD over all variables with only local statistical data in modules composing steady DCGs through an example, which provides a great convenience in data collection. The BN with steady DCGs is de fined in this paper as the correspondingS-DUCG. This methodology may help to solve the feedback loop problems in such areas as “biological sys-tems involving multiple cell populations” [25],and is therefore with a signi ficant importance.Note that theS-DUCG model introduced in this paper is simplified. The original is more complex, including logic gates and conditional directed arcs additionally [32]. We believe that the originalS-DUCG is also applicable in solving similar problems.

    Unfortunately, we do not have the domain knowledge to provide a more realistic example to apply this methodology. We expect that someone knowable may find it useful to solve his/her domain problems.

    It should be mentioned that theM-DUCG without DCGs (i.e. DAG) is also applicable to model the JPD over all variables with only local statistical data, although we do not discuss this case due to the limited length of the paper.It should also be mentioned that we fail to validate theM-DUCG with DCGs, which might be the future work.

    ACKNOWLEDGEMENT

    This work was supported by the National Natural Science Foundation of China under Grant 71671103.

    Supporting Information

    The supplementary materials are available online at ieeexplore.ieee.org. The supplementary materials are published as submitted, without typesetting or editing. The responsibility for scienti fic accuracy and content remains entirely with the authors.

    亚洲av片天天在线观看| av欧美777| 岛国毛片在线播放| 国产av又大| 午夜激情久久久久久久| 中文字幕精品免费在线观看视频| 交换朋友夫妻互换小说| 色综合欧美亚洲国产小说| 午夜91福利影院| 国产一级毛片在线| 女人久久www免费人成看片| 免费看十八禁软件| 久久人人爽av亚洲精品天堂| 妹子高潮喷水视频| 人人妻人人爽人人添夜夜欢视频| 久久精品亚洲av国产电影网| 久久青草综合色| 久久人人爽人人片av| 日韩电影二区| 免费高清在线观看日韩| 亚洲伊人久久精品综合| 99久久综合免费| 国产一级毛片在线| 美女高潮到喷水免费观看| 在线观看免费日韩欧美大片| 国产精品 欧美亚洲| 看免费av毛片| 国产精品一二三区在线看| 日韩中文字幕欧美一区二区| 国产亚洲av高清不卡| 真人做人爱边吃奶动态| 中文字幕最新亚洲高清| 大码成人一级视频| 一本色道久久久久久精品综合| 亚洲欧洲精品一区二区精品久久久| 又黄又粗又硬又大视频| 又紧又爽又黄一区二区| 亚洲国产成人一精品久久久| 妹子高潮喷水视频| 国产成人系列免费观看| 亚洲视频免费观看视频| 五月开心婷婷网| 久久人妻福利社区极品人妻图片| 国产av精品麻豆| 午夜福利在线观看吧| 嫁个100分男人电影在线观看| 嫁个100分男人电影在线观看| 十八禁人妻一区二区| 欧美激情高清一区二区三区| 啪啪无遮挡十八禁网站| 青草久久国产| 精品一区二区三区四区五区乱码| 大片电影免费在线观看免费| 精品少妇内射三级| 少妇 在线观看| 国产野战对白在线观看| 精品人妻熟女毛片av久久网站| 久久99一区二区三区| 精品久久久久久电影网| 久久人人爽av亚洲精品天堂| 女性生殖器流出的白浆| 性色av一级| 久久狼人影院| 国产精品.久久久| 天天操日日干夜夜撸| 人人妻人人澡人人看| 欧美黄色淫秽网站| 国产人伦9x9x在线观看| 美女福利国产在线| 美国免费a级毛片| 九色亚洲精品在线播放| 妹子高潮喷水视频| 97在线人人人人妻| 久久国产精品男人的天堂亚洲| 国产av一区二区精品久久| 人妻一区二区av| www.av在线官网国产| 大陆偷拍与自拍| 满18在线观看网站| 欧美日韩视频精品一区| 女人精品久久久久毛片| 青青草视频在线视频观看| 手机成人av网站| 久久国产精品男人的天堂亚洲| 亚洲久久久国产精品| 在线 av 中文字幕| 下体分泌物呈黄色| 午夜激情av网站| 极品少妇高潮喷水抽搐| 国产真人三级小视频在线观看| 精品一区二区三卡| 亚洲国产毛片av蜜桃av| 在线永久观看黄色视频| 国产欧美日韩精品亚洲av| 国产av精品麻豆| 中亚洲国语对白在线视频| 麻豆国产av国片精品| 18禁裸乳无遮挡动漫免费视频| 欧美另类一区| 免费一级毛片在线播放高清视频 | 国产精品av久久久久免费| 国产国语露脸激情在线看| 精品卡一卡二卡四卡免费| 国产日韩欧美亚洲二区| 国产精品 国内视频| 伦理电影免费视频| 热re99久久精品国产66热6| 亚洲精品美女久久av网站| 99热国产这里只有精品6| 精品卡一卡二卡四卡免费| 免费黄频网站在线观看国产| 午夜福利在线观看吧| 久久综合国产亚洲精品| 精品亚洲乱码少妇综合久久| 啪啪无遮挡十八禁网站| 啦啦啦在线免费观看视频4| 日韩欧美国产一区二区入口| 国产福利在线免费观看视频| 多毛熟女@视频| 亚洲欧美激情在线| 国产成人精品在线电影| 欧美国产精品一级二级三级| 亚洲全国av大片| 黄色视频,在线免费观看| 各种免费的搞黄视频| 久久久久网色| 久久久久精品人妻al黑| 91麻豆av在线| 蜜桃国产av成人99| 亚洲av日韩精品久久久久久密| 亚洲免费av在线视频| 亚洲一区中文字幕在线| 国产在线视频一区二区| 亚洲精品乱久久久久久| 精品国产超薄肉色丝袜足j| 男女床上黄色一级片免费看| 一本色道久久久久久精品综合| 在线 av 中文字幕| 国产一区二区三区综合在线观看| 人人妻人人澡人人看| 色视频在线一区二区三区| 99久久综合免费| 这个男人来自地球电影免费观看| 69精品国产乱码久久久| 国产男人的电影天堂91| 午夜免费鲁丝| 欧美精品亚洲一区二区| 亚洲专区国产一区二区| 天天躁夜夜躁狠狠躁躁| 一区二区日韩欧美中文字幕| 久久国产精品大桥未久av| 亚洲精品日韩在线中文字幕| 少妇的丰满在线观看| 窝窝影院91人妻| 国产精品1区2区在线观看. | 亚洲国产精品一区二区三区在线| 99热国产这里只有精品6| 亚洲av电影在线观看一区二区三区| 九色亚洲精品在线播放| 久久精品熟女亚洲av麻豆精品| 男女下面插进去视频免费观看| 亚洲av电影在线观看一区二区三区| 久久人人97超碰香蕉20202| 成年美女黄网站色视频大全免费| 国产日韩一区二区三区精品不卡| 无遮挡黄片免费观看| 亚洲国产欧美一区二区综合| 亚洲精品久久午夜乱码| 国产亚洲av片在线观看秒播厂| av网站免费在线观看视频| 黄片播放在线免费| 巨乳人妻的诱惑在线观看| 超色免费av| 亚洲中文日韩欧美视频| 精品人妻在线不人妻| 久久香蕉激情| 色婷婷久久久亚洲欧美| 免费在线观看完整版高清| 精品一区二区三区四区五区乱码| 国产精品一二三区在线看| 国产精品一区二区在线观看99| 高清av免费在线| 亚洲五月色婷婷综合| 性高湖久久久久久久久免费观看| 亚洲精品国产色婷婷电影| 亚洲专区中文字幕在线| 视频在线观看一区二区三区| 国产亚洲精品一区二区www | 啦啦啦免费观看视频1| 欧美亚洲 丝袜 人妻 在线| 9191精品国产免费久久| 99精品欧美一区二区三区四区| 色婷婷av一区二区三区视频| 男人爽女人下面视频在线观看| 欧美97在线视频| 国产成+人综合+亚洲专区| 国产精品熟女久久久久浪| 秋霞在线观看毛片| 国产精品国产av在线观看| 成年人黄色毛片网站| 亚洲中文日韩欧美视频| 国产在线观看jvid| 欧美日韩亚洲综合一区二区三区_| 18禁黄网站禁片午夜丰满| 高潮久久久久久久久久久不卡| 久久久精品区二区三区| 欧美av亚洲av综合av国产av| 亚洲国产日韩一区二区| av超薄肉色丝袜交足视频| 中文精品一卡2卡3卡4更新| 色播在线永久视频| 亚洲国产成人一精品久久久| 精品少妇黑人巨大在线播放| 免费人妻精品一区二区三区视频| 日韩中文字幕视频在线看片| 欧美乱码精品一区二区三区| 亚洲全国av大片| a级片在线免费高清观看视频| 欧美精品一区二区大全| 大片电影免费在线观看免费| 手机成人av网站| 午夜福利一区二区在线看| 1024视频免费在线观看| 午夜福利影视在线免费观看| 国产精品.久久久| 免费av中文字幕在线| www.自偷自拍.com| 波多野结衣一区麻豆| 国产老妇伦熟女老妇高清| 啦啦啦 在线观看视频| √禁漫天堂资源中文www| 好男人电影高清在线观看| 日韩人妻精品一区2区三区| 亚洲中文日韩欧美视频| 捣出白浆h1v1| 夫妻午夜视频| 国产在线观看jvid| 99久久精品国产亚洲精品| 一边摸一边做爽爽视频免费| 亚洲国产精品一区二区三区在线| 亚洲欧美一区二区三区久久| 国产三级黄色录像| 色视频在线一区二区三区| 青春草视频在线免费观看| 亚洲人成电影免费在线| 国产亚洲一区二区精品| 日韩人妻精品一区2区三区| 久久精品国产综合久久久| 欧美黄色片欧美黄色片| 夫妻午夜视频| 男人添女人高潮全过程视频| 久久久久久亚洲精品国产蜜桃av| 日韩制服丝袜自拍偷拍| 99香蕉大伊视频| 亚洲欧美精品综合一区二区三区| 亚洲欧美一区二区三区黑人| 亚洲欧美一区二区三区久久| 午夜老司机福利片| 秋霞在线观看毛片| 亚洲国产欧美一区二区综合| 国产老妇伦熟女老妇高清| 色94色欧美一区二区| 丰满迷人的少妇在线观看| 久久国产精品男人的天堂亚洲| 国产极品粉嫩免费观看在线| 美女视频免费永久观看网站| 电影成人av| 一区二区三区乱码不卡18| 中文字幕人妻丝袜一区二区| 欧美精品av麻豆av| 精品国产一区二区三区四区第35| 成人国语在线视频| 亚洲少妇的诱惑av| 国产一区二区在线观看av| 妹子高潮喷水视频| 黄片大片在线免费观看| 亚洲欧美日韩另类电影网站| 日韩欧美免费精品| 91九色精品人成在线观看| 中文字幕人妻丝袜一区二区| 9色porny在线观看| 国产在线观看jvid| 亚洲人成电影观看| 男人操女人黄网站| 最近最新免费中文字幕在线| 女人精品久久久久毛片| 夜夜骑夜夜射夜夜干| 少妇被粗大的猛进出69影院| bbb黄色大片| a 毛片基地| 国产三级黄色录像| 熟女少妇亚洲综合色aaa.| 国产精品免费视频内射| 久久精品人人爽人人爽视色| 欧美精品av麻豆av| 天天躁狠狠躁夜夜躁狠狠躁| 久9热在线精品视频| 国产成人av激情在线播放| 自线自在国产av| 91av网站免费观看| 精品国产乱子伦一区二区三区 | 国产免费福利视频在线观看| 成人国产av品久久久| 黑人操中国人逼视频| 国产淫语在线视频| 久9热在线精品视频| 我要看黄色一级片免费的| 宅男免费午夜| 国产精品亚洲av一区麻豆| 国产老妇伦熟女老妇高清| 男人添女人高潮全过程视频| 中文欧美无线码| netflix在线观看网站| 亚洲国产看品久久| 国产一区二区三区av在线| 99久久综合免费| 在线观看免费视频网站a站| 如日韩欧美国产精品一区二区三区| 亚洲自偷自拍图片 自拍| 一二三四社区在线视频社区8| 国产成人欧美在线观看 | 久久久久久亚洲精品国产蜜桃av| 国产精品一二三区在线看| 亚洲欧美精品自产自拍| √禁漫天堂资源中文www| 亚洲精品第二区| 91精品三级在线观看| 人妻久久中文字幕网| av线在线观看网站| 亚洲av日韩在线播放| 黄片播放在线免费| 亚洲专区中文字幕在线| 十八禁人妻一区二区| 真人做人爱边吃奶动态| 午夜影院在线不卡| 日韩人妻精品一区2区三区| 9色porny在线观看| 12—13女人毛片做爰片一| 国产三级黄色录像| 色综合欧美亚洲国产小说| 老汉色∧v一级毛片| 狠狠狠狠99中文字幕| 天堂8中文在线网| 午夜福利视频在线观看免费| a在线观看视频网站| 久久人人爽av亚洲精品天堂| 嫩草影视91久久| 麻豆av在线久日| 精品卡一卡二卡四卡免费| 人妻 亚洲 视频| 精品国产乱码久久久久久小说| 美女福利国产在线| 免费少妇av软件| 亚洲色图 男人天堂 中文字幕| 黄色视频在线播放观看不卡| www.999成人在线观看| 欧美日韩视频精品一区| 老司机亚洲免费影院| 岛国毛片在线播放| 少妇的丰满在线观看| 午夜福利影视在线免费观看| 欧美激情 高清一区二区三区| 免费不卡黄色视频| 国产精品一二三区在线看| 男女下面插进去视频免费观看| 亚洲情色 制服丝袜| 国产日韩欧美在线精品| 久9热在线精品视频| 国产精品免费视频内射| 99国产综合亚洲精品| 91老司机精品| 亚洲国产毛片av蜜桃av| 后天国语完整版免费观看| 色婷婷久久久亚洲欧美| 国产不卡av网站在线观看| 一区二区三区精品91| 人人澡人人妻人| 精品国产超薄肉色丝袜足j| 99国产精品免费福利视频| 黄片大片在线免费观看| 亚洲欧洲精品一区二区精品久久久| 久久久久国产精品人妻一区二区| 久久精品熟女亚洲av麻豆精品| 国产成人精品久久二区二区91| 国产激情久久老熟女| 欧美国产精品va在线观看不卡| 天天影视国产精品| 国产亚洲精品久久久久5区| 大片电影免费在线观看免费| 免费在线观看影片大全网站| 黄色视频不卡| e午夜精品久久久久久久| 久久久久久免费高清国产稀缺| 最近中文字幕2019免费版| 国产精品亚洲av一区麻豆| 久久久久国产精品人妻一区二区| 国产91精品成人一区二区三区 | 99国产精品一区二区蜜桃av | 亚洲 国产 在线| 亚洲人成77777在线视频| 国产97色在线日韩免费| 亚洲欧美清纯卡通| 日韩电影二区| av线在线观看网站| cao死你这个sao货| 国产成人啪精品午夜网站| 亚洲全国av大片| 亚洲精华国产精华精| 亚洲中文日韩欧美视频| 人妻一区二区av| 欧美中文综合在线视频| 精品亚洲成a人片在线观看| 一区在线观看完整版| 精品福利观看| 国产男女超爽视频在线观看| 91老司机精品| 国产真人三级小视频在线观看| 久久这里只有精品19| 蜜桃国产av成人99| 满18在线观看网站| 男女国产视频网站| 啦啦啦啦在线视频资源| 成在线人永久免费视频| 午夜激情久久久久久久| 亚洲精品中文字幕在线视频| 久久99一区二区三区| 窝窝影院91人妻| 久久狼人影院| 欧美黄色淫秽网站| 婷婷成人精品国产| 亚洲av欧美aⅴ国产| 精品高清国产在线一区| 国产在线一区二区三区精| 欧美精品一区二区免费开放| 免费在线观看视频国产中文字幕亚洲 | 丝瓜视频免费看黄片| 男女免费视频国产| 日本av手机在线免费观看| 日本欧美视频一区| 亚洲国产av影院在线观看| 国产成人欧美| 久久久久国内视频| 不卡av一区二区三区| 午夜福利在线免费观看网站| 我的亚洲天堂| av视频免费观看在线观看| 日韩大码丰满熟妇| netflix在线观看网站| 亚洲成av片中文字幕在线观看| 精品欧美一区二区三区在线| 自线自在国产av| 别揉我奶头~嗯~啊~动态视频 | 在线看a的网站| 女人爽到高潮嗷嗷叫在线视频| 1024香蕉在线观看| 精品乱码久久久久久99久播| 免费人妻精品一区二区三区视频| 人妻人人澡人人爽人人| 大香蕉久久网| 亚洲综合色网址| 国产在线一区二区三区精| 日韩人妻精品一区2区三区| 中文字幕精品免费在线观看视频| 精品一品国产午夜福利视频| 18禁裸乳无遮挡动漫免费视频| 好男人电影高清在线观看| 久久这里只有精品19| 999久久久国产精品视频| 女警被强在线播放| 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕| 一边摸一边抽搐一进一出视频| 纵有疾风起免费观看全集完整版| 不卡av一区二区三区| 性色av乱码一区二区三区2| 91九色精品人成在线观看| 女性生殖器流出的白浆| 男男h啪啪无遮挡| 另类亚洲欧美激情| 国产精品欧美亚洲77777| 精品国产一区二区三区四区第35| 亚洲成国产人片在线观看| 亚洲av成人不卡在线观看播放网 | 亚洲色图综合在线观看| 亚洲国产精品999| 亚洲精品国产色婷婷电影| 国产av一区二区精品久久| 婷婷丁香在线五月| 嫩草影视91久久| 成人黄色视频免费在线看| 亚洲欧美激情在线| 亚洲激情五月婷婷啪啪| 亚洲欧美精品综合一区二区三区| 国产亚洲精品久久久久5区| 国产成+人综合+亚洲专区| 亚洲精品国产精品久久久不卡| 国产精品欧美亚洲77777| 久久毛片免费看一区二区三区| 国产精品一区二区在线不卡| kizo精华| 国产精品欧美亚洲77777| 久热这里只有精品99| 777米奇影视久久| 一区二区日韩欧美中文字幕| 中文字幕最新亚洲高清| 亚洲视频免费观看视频| 亚洲av电影在线观看一区二区三区| 蜜桃在线观看..| 伦理电影免费视频| 亚洲国产精品999| 淫妇啪啪啪对白视频 | a在线观看视频网站| 午夜两性在线视频| 汤姆久久久久久久影院中文字幕| 天堂俺去俺来也www色官网| 国产黄频视频在线观看| 国产一级毛片在线| 中文字幕人妻熟女乱码| 丝袜在线中文字幕| 免费在线观看黄色视频的| 国产在线一区二区三区精| 中文字幕色久视频| 精品一品国产午夜福利视频| 正在播放国产对白刺激| 国产一卡二卡三卡精品| 50天的宝宝边吃奶边哭怎么回事| 亚洲av美国av| 黄色怎么调成土黄色| 亚洲中文av在线| 欧美乱码精品一区二区三区| 肉色欧美久久久久久久蜜桃| 亚洲欧美清纯卡通| 精品久久久久久久毛片微露脸 | 老熟妇仑乱视频hdxx| 亚洲精品第二区| 男女边摸边吃奶| 天堂俺去俺来也www色官网| 99香蕉大伊视频| 乱人伦中国视频| 久久久久视频综合| 国产主播在线观看一区二区| 搡老乐熟女国产| 久久中文看片网| 久久 成人 亚洲| 大陆偷拍与自拍| 不卡av一区二区三区| 亚洲黑人精品在线| 国产精品一区二区精品视频观看| 欧美亚洲 丝袜 人妻 在线| 悠悠久久av| 女警被强在线播放| 丝瓜视频免费看黄片| 精品久久久久久电影网| 国产真人三级小视频在线观看| 欧美国产精品一级二级三级| 亚洲,欧美精品.| 久久热在线av| 人人妻人人爽人人添夜夜欢视频| 天堂8中文在线网| 欧美激情极品国产一区二区三区| 一级毛片精品| 精品国产一区二区三区久久久樱花| 一区二区三区乱码不卡18| 亚洲欧美精品自产自拍| 国产精品免费视频内射| 国产一区二区三区av在线| 亚洲少妇的诱惑av| 777米奇影视久久| 国产主播在线观看一区二区| www.熟女人妻精品国产| kizo精华| 国产精品一区二区免费欧美 | 9色porny在线观看| 亚洲成av片中文字幕在线观看| 日日爽夜夜爽网站| 中文字幕另类日韩欧美亚洲嫩草| 黄色视频在线播放观看不卡| 这个男人来自地球电影免费观看| 老熟妇仑乱视频hdxx| 18禁黄网站禁片午夜丰满| 亚洲伊人色综图| 性少妇av在线| 久久亚洲精品不卡| 50天的宝宝边吃奶边哭怎么回事| 午夜福利在线免费观看网站| 久久精品国产综合久久久| 亚洲av日韩在线播放| 一二三四在线观看免费中文在| 亚洲色图 男人天堂 中文字幕| 午夜精品国产一区二区电影| 亚洲天堂av无毛| 国产精品久久久久久精品古装| 日本av免费视频播放| 建设人人有责人人尽责人人享有的| 亚洲精品久久久久久婷婷小说| 亚洲精品一卡2卡三卡4卡5卡 | 欧美少妇被猛烈插入视频| 宅男免费午夜| 日日夜夜操网爽| 久久国产精品大桥未久av| 国产精品久久久久成人av| 在线看a的网站| 久久国产精品影院| 国产av又大| 91字幕亚洲| av又黄又爽大尺度在线免费看| 91麻豆精品激情在线观看国产 | av免费在线观看网站| 成人手机av| 亚洲精品国产av蜜桃| 亚洲欧美成人综合另类久久久| 人人妻,人人澡人人爽秒播| 亚洲成国产人片在线观看| 他把我摸到了高潮在线观看 | 我要看黄色一级片免费的|