• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cortical Thinning Pattern of Bulbar- and Spinal-onset Amyotrophic Lateral Sclerosis: a Surface-based Morphometry Study

    2018-07-16 08:10:02ZhiyeChenMengqiLiuLinMa
    Chinese Medical Sciences Journal 2018年2期

    Zhiye Chen, Mengqi Liu, Lin Ma*

    1Department of Radiology, Hainan Branch of Chinese PLA General Hospital,Sanya, hainan 572013, China

    2Department of Radiology, Chinese PLA General Hospital, Beijing 100853, China

    Key words: amyotrophic lateral sclerosis; cortical thickness; magnetic resonance imaging;surface-based morphometry

    AMYOTROPHIC lateral sclerosis (ALS) is a progressive neurodegenerative disease with selected upper and lower motor neuron involvement.1,2Pathological changes in cerebral cortical regions in ALS have been demonstrated as the selective involvement of the motor cortex in a postmortem study.3However, motor neuron density measurement in cortex and spinal cord suggested that corticomotoneuron loss was unlikely to be a primary event in ALS.4More and more researchers have recognized that ALS may be a multisystem disease.2,5

    Voxel-based morphometry (VBM)6is widely used to investigate brain structure changes at voxel-level over the whole brain, and it has been widely used in evaluation of ALS patients. VBM studies demonstrated that the volume of grey matter decreased in ALS,7and primary sensorimotor cortex atrophy was regarded as a prominent feature of the disease.8A meta-analysis9,10demonstrated that the asymmetric motor cortex atrophy was the main cerebral changes in ALS, but the pathophysiological mechanism has not been completely elucidated by far.

    Cortical thickness measurement is an important research project for neuroimaging, and it can provide more valuable information than volume measurement in evaluation of neurodegenerative and psychological diseases. Like VBM technique, surface-based morphometry(SBM)11,12is also a whole brain structure analysis technique, and it can provide objective and accurate information in cortical thickness changes.SBM has been widely used in clinical researches on Huntington disease,13Parkinson’s disease,14aging brain,15etc. Previous studies16-18demonstrated that motor cortex thinning was associated with ALS, and a SBM study19suggested that the motor cortex thinning might reflect upper motor neuron impairment, whereas the extra-motor involvement may be related to the disability, progression, and duration of the disease. It has gradually come into a consensus that motor cortex atrophy is a common finding for the central nervous system damage in ALS.

    Our previous voxel-wise meta-analysis of VBM study suggested that right precentral gray matter atrophy was a common finding and prominent feature of brain structural changes in ALS.12Further VBM study in ALS subtypes demonstrated that the pattern of gray matter damage is likely to distribute wider in spinal-onset ALS than in bulbar-onset ALS.20However, the precise cortical thinning pattern has not been elucidated in different onset subtypes of ALS. Herein, we hypothesized that some brain regions would intrinsically be suffered from cortical thinning in ALS, and different ALS subtypes (ALS-bulbar and ALS-spinal) present different cortical thinning pattern.

    MATERIALS AND METHODS

    Participants and study design

    The study was approved by the institutional ethics committee, and written informed consents were obtained from all participants. Sixty-five patients (28 females and 37 males) were recruited from the outpatient clinic for motor neuron disease (MND) in our hospital from 2007 to 2010, including 34 diagnosed ALS cases and 31 probable ALS cases according to the revised El Escorial.21All the subjects were right handed and had no history of cerebrovascular disease, long-standing hypertension,diabetes mellitus, inflammatory diseases of the central nervous system and cranium trauma. None of the patients were taking psychoactive drugs and hormone. Patients with brain tumors, demyelination and other brain disorders were also excluded by conventional MRI examinations. Sixty-five normal controls (NCs) were recruited from volunteers of hospital staff and local community in the same time period with the same exclusion criteria. ALS functional rating scale-revise (ALSFRS-R)22was administered to all the patients for clinical rating of ALS symptoms,and the Mini Mental State Examination23was applied by a dedicated neurologist with 15-years’ experience to evaluate the cognitive function of all subjects.

    MRI acquisition

    Image data of all patients and controls were acquired on a GE 3.0T MRI system (SIGNA EXCITE, GE Healthcare, Milwaukee, WI, USA). and a conventional eight channel quadrature head coil was used. A 3-dimensional T1-weighted fast spoiled gradient recalled echo(3D T1-FSPGR) sequence generating 118 contiguous axial slices [TR (repetition time)=6.3 ms, TE (echo time)=2.8 ms, flip angle=15°, FOV (field of view)=24 cm×24 cm, Matrix=256×256, voxel size=0.9375×0.9375×1 mm3, NEX (number of acquisition)=1] was used for structural images. Conventional T2-weighted image(TR=5000 ms, TE=113.4 ms, FOV=24 cm×24 cm, Matrix=384×384) and T1-FLAIR (TR=2040 ms, TE=6.9 ms,FOV=24 cm×24 cm, Matrix=384×192) were also acquired.The image protocol was identical for each subject.

    Image data processing

    All MR structural image data were processed on workstation of MATLAB 7.6 (The Mathworks, Natick, MA,USA) for VBM using Statistical Parametric Mapping 12(SPM 12) and CAT12 tools (http://www.fil.ion.ucl.ac.uk/spm/). The following processing steps were carried out(Fig. 1): (1) The artifacts of raw data for each subject were inspected and image origin was set at the anterior commissure (AC); (2) structural images of each subject were normalized to the DARTEL templates space to improve inter-subject registration of structural images, and were segmented into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF); (4) projection-based thickness (PBT) was used to estimate cortical thickness and to create the central cortical surface for the left and right hemisphere;24(5) the mean cortical thickness of 152 brain regions were computed based on FreeSurfer atlas aparc.a2009s;25(6) after the preprocessing was finished, quality check was performed to evaluate the sample homogeneity; (7) before the statistical analysis, all the surface data was smoothed using a kernel with 15 mm full width at half maximum (FWHM).

    Statistical analysis

    Comparison of surface-based morphometric data between two groups was performed using two-sample t-test with age and sex as covariates. Significance was set at a P value without correction (Puncorr) of <0.001. The minimal number of contiguous voxels was set based on the expected voxels per cluster. The quantitative data were presented as mean±standard deviation. The correlation analysis was applied between the clinical variables and the mean cortical thickness of the abnormal brain regions with age and sex as covariates.Significant difference was set at a P value of <0.05. The statistical analysis was performed using SPSS 19.0.

    RESULTS

    The clinical characteristics of ALS and NCs

    There was no significant difference in the gender (χ2=0.03, P=0.86), but a significant difference in the age(t=1.98, P=0.002) and for MMSE (t=1.98, P=1.43) between ALS and NC group were found between the ALS patients and normal controls (Table 1). The average disease duration and ALSFRS scores for ALS patients were 17.74±21.46 days and 29.43±5.23, respectively.There was no significant difference in MMSE (t=2.00,P=0.09), diseased duration (t=2.00, P=0.50) and ALSFRS score (t=2.00, P=0.76) between ALS-bulbar and ALS-spinal patients.

    Brain regions with altered cortical thickness in ALS, ALS-spinal, ALS-bulbar compared with NCs

    Figure 1. The flow graph of image processing. A, original T1 image; B, normalized T1 image; C, gray and white matter segmentation; D, cortical surface creation. Color bar represents the cortical thickness.

    Table 1. Demographic and clinical characteristics of patients and controls§

    Compared with that in NCs, the brain regions with decreased cortical thickness in ALS patients were located in the left precentral gyrus and postcentral gyrus, right gyrus rectus and medial precentral gyrus (Table 2)(Fig. 2). There was no thickening brain regions detected in ALS patients compared with NCs.

    Comparing with the NC group, ALS-bulbar group presented regional thinning in the left precentral gyrus and right supplementary motor cortex (SMC), and ALS-spinal group presented regional thinning brain regions in the left posterior insular and right gyrus rectus. There was no significant difference in the cortical thickness over the whole brain between ALS-bulbar and ALS-spinal patients (Fig. 3).

    Table 2. Brain regions with cortical thinning in ALS compared with controls

    Figure 2. Brain regions with decreased cortical thickness in ALS patients were located in the left precentral gyrus, postcentral gyrus, right gyrus rectus and medial precentral gyrus compared with NC group. Color bar represents t value.

    Relationship of cortical thickness changes with clinical characteristics in ALS patients

    Table 3 shows that for patients with ALS, the cortical thickness of right gyrus rectus was negatively associated with disease duration (r=?0.311, P=0.013).The positive correlation did also present between the cortical thickness of right precentral gyrus and ALSFRS-R score (r=0.271, P=0.032). For patients with ALS-bulbar, no correlation was shown between the cortical thickness of positive brain regions with either disease duration or ALSFRS-R score (both P>0.05).For patients with ALS-spinal, the partial correlation analysis demonstrated the cortical thickness of left insula (r=?0.409, P=0.004) and right gyrus rectus(r=?0.351, P=0.014) were negatively associated with the disease duration. No correlation was shown between the cortical thickness of these regions with ALSFRS-R score.

    Figure 3. Brain regions with decreased cortical thickness in the ALS-bulbar patients and in the ALS-spinal patients compared with the NC group. A. Decreased cortical thickness in ALS-bulbar located in the left precentral gyrus and the right supplementary motor cortex. B. Decreased cortical thickness in the ALS-spinal located in the left posterior insula and the right gyrus rectus. Color bar represent t value.

    Table 3. The correlation analysis between the cortical thickness of thinning brain regions and clinical variables in ALS§

    DISCUSSION

    The results in this study demonstrated that selective motor cortex and extra-motor cortex were involved in patients with ALS. The thinning of bilateral motor cortices was consistent with previous studies,16,17and could underlie the relation between pathological characteristics in ALS and MR spectroscopy findings.26However,meta-analysis of VBM studies9,10,27demonstrated that asymmetric motor cortex volume loss commonly present in ALS patients. The inconsistence of this result with our findings may be associated with the different image processing methods. SBM method we used in this study reflected the altered cortical thickness, while VBM method presented the altered cortical volume. In the current study, the thinning of bilateral motor cortices may be the main neuromechanism and served as the direct evidence for upper motor neurons damage,and it may be associated with the decreased number and shape of cortical neurons.28,29

    In this study, the extra-motor cortices thinning was also observed in left postcentral gyrus and right gyrus rectus in ALS patients, which suggested the ALS involves the motor cortex but may not confine to the motor cortex. On contrast, in the previous document, motor cortex involvement was a common finding, while extra-motor cortex involvement was not commonly reported. Herein,the extra-motor cortices involvement should be carefully interpreted. It may be associated with the disease duration, cognitive state, or other clinical variables. From the pathological viewpoints, it may be related to the widespread reactive astrocytes in the cortex of ALS.30

    The partial correlation analysis revealed that only right motor cortex thinning was associated to disease disability. Considering the symmetrical thinning pattern we found in this study, the asymmetrical correlation with disease disability further indicated that the right motor cortex thinning may play a key roles in ALS development and could be considered as a imaging biomarker for ALS.12This study also demonstrated that extra-motor (right gyrus rectus) thinning was related to disease duration, which suggested that ALS was a complex degenerative disease involving multisystem beyond the motor system.9

    Further clinical subtypes analysis in this study demonstrated that bulbar-onset and spinal-onset ALS had different cortical thinning patterns. For the bulbar-onset ALS, motor cortex was involved and the extra-motor cortex was spared, whereas in spinal-onset ALS, extra-motor cortex was involved, and the motor cortex was spared. This phenomenon of cortical thinning indicated that bulbar-onset ALS may only involve the upper motor neuron (UMN) and might be considered as UMN disorder with sparing of extra-motor. Meanwhile, spinal-onset ALS could be regarded as lower motor neurons (LMN) disorder with sparing of extra-motor cortex and motor cortex involvement. The findings support the viewpoint that bulbar-onset ALS is likely a simple motor neuron disorder, which is inconsistent with the conventional understanding that it is a multi-systematic disorder.2,5

    Further correlation analysis revealed that bilateral motor cortex thinning was related to neither the disease duration nor the disease disability in bulbar-onset ALS,which suggested that motor cortex thinning may be the intrinsic pathophysiological changes in bulbar-onset ALS.This finding in bulbar-onset ALS was not consistent with the results in overall ALS patients, where the right motor cortex thinning was positively associated with ALS functional rating score. The small sample size and heterogeneity in the severity of the disease in this study might contribute to this inconsistence. This study also showed that in spinal-onset ALS, extra-motor cortex thinning was associated to the disease duration but not to the disease disability, which indicated that it may be the secondary pathophysiological change, and the underlying mechanism need to be further elucidated in future.

    This study did not find significant difference in cortical thinning between bulbar-onset and spinal-onset ALS, which was different from our previous study where we found altered volumes of gray matter between ALS-bulbar and ALS-spinal group.20The reason may be associated with the different imaging processing methods in these two studies. In the previous study,20VBM method was used and the result indicated the volume changes, while in the current study, SBM method was used and the result represent the cortical thickness changes.

    The limits of this study included: 1. the relatively small sample size of bulbar-onset ALS patients compared to the spinal-onset ALS in this study may cause sampling errors; 2 although MMSE was performed to exclude dementia, the mild cognitive impairment was not excluded,which could be a confounder factor besides age and sex;3. this study only observed bulbar-onset ALS and spinal-onset ALS, and for those of bulbar-spinal-onset ALS,further studies are needed in the future.

    In summary, bilateral motor cortex thinning was the MRI signature of bulbar-onset ALS patients, and extra-motor cortex thinning was the MRI signature of spinal-onset ALS patients. Bulbar- and spinal-onset ALS may be a simple MND instead of multisystem disorder. The motor cortex thinning may be the intrinsic pathophysiological change that is associated to disease disability and play a key role in brain damage for upper motor neuron disorder. Extra-motor cortex thinning may be a secondary pathophysiological change related to disease duration and act as a pivotal in brain damage of lower motor neuron disorder.

    REFERENCES

    1. Chou SM, Norris FH. Amyotrophic lateral sclerosis:lower motor neuron disease spreading to upper motor neurons. Muscle Nerve 1993;16(8):864-9. doi:10.1002/mus.880160810.

    2. van der Graaff MM, de Jong JM, Baas F, et al. Upper motor neuron and extra-motor neuron involvement in amyotrophic lateral sclerosis: a clinical and brain imaging review. Neuromuscul Disord 2009;19(1):53-8.doi: 10.1016/j.nmd.2008.10.002.

    3. Pringle CE, Hudson AJ, Munoz DG, et al. Primary lateral sclerosis. Clinical features, neuropathology and diagnostic criteria. Brain 1992;115(Pt2):495-520. doi:10.1093/brain/115.2.495.

    4. Pamphlett R, Kril J, Hng TM. Motor neuron disease: a primary disorder of corticomotoneurons? Muscle Nerve 1995;18(3):314-8. doi: 10.1002/mus.880180308.

    5. Abrahams S, Goldstein LH, Suckling J, et al. Frontotemporal white matter changes in amyotrophic lateral sclerosis. J Neurol 2005;252(3):321-31. doi:10.1007/s00415-005-0646-x.

    6. Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage 2000;11(6 Pt 1):805-21.doi: 10.1006/nimg.2000.0582.

    7. Thivard L, Pradat PF, Lehéricy S, et al. Diffusion tensor imaging and voxel based morphometry study in amyotrophic lateral sclerosis: relationships with motor disability. J Neurol Neurosurg Psychiatry 2007;78(8):889-92. doi: 10.1136/jnnp.2006.101758.

    8. Grosskreutz J, Kaufmann J, Fr?drich J, et al. Widespread sensorimotor and frontal cortical atrophy in Amyotrophic Lateral Sclerosis. BMC Neurol 2006;6(17):1-10. doi: 10.1186/1471-2377-6-17.

    9. Shen D, Cui L, Fang J, et al. Voxel-wise meta-analysis of gray matter changes in amyotrophic lateral sclerosis. Front Aging Neurosci 2016;8(64):1-12. doi:10.3389/fnagi.2016.00064.

    10. Sheng L, Ma H, Zhong J, et al. Motor and extra-motor gray matter atrophy in amyotrophic lateral sclerosis:quantitative meta-analyses of voxel-based morphometry studies. Neurobiol Aging 2015;36(12):3288-99.doi: 10.1016/j.neurobiolaging.2015.08.018.

    11. Fornito A, Yücel M, Wood SJ, et al. Surface-based morphometry of the anterior cingulate cortex in first episode schizophrenia. Hum Brain Mapp 2008;29(4):478-89. doi: 10.1002/hbm.20412.

    12. Chen Z, Ma L. Grey matter volume changes over the whole brain in amyotrophic lateral sclerosis: A voxel-wise meta-analysis of voxel based morphometry studies. Amyotroph Lateral Scler 2010;11(6):549-54.doi: 10.3109/17482968.2010.516265.

    13. Kim H, Kim JH, Possin KL, et al. Surface-based morphometry reveals caudate subnuclear structural damage in patients with premotor Huntington disease. Brain Imaging Behav 2016;11(5):1365-72. doi:10.1007/s11682-016-9616-4.

    14. Huang P, Lou Y, Xuan M, et al. Cortical abnormalities in Parkinson’s disease patients and relationship to depression: A surface-based morphometry study.Psychiatry Res Neuroimaging 2016;250: 24-8. doi:10.1016/j.pscychresns.2016.03.002.

    15. Lu H, Ma SL, Chan SS, et al. The effects of apolipoprotein epsilon 4 on aging brain in cognitively normal Chinese elderly: a surface-based morphometry study.Int Psychogeriatr 2016;28(9):1503-11. doi: 10.1017/S1041610216000624.

    16. Butman JA, Floeter MK. Decreased thickness of primary motor cortex in primary lateral sclerosis. Am J Neuroradiol 2007;28(1):87-91.

    17. Roccatagliata L, Bonzano L, Mancardi G, et al. Detection of motor cortex thinning and corticospinal tract involvement by quantitative MRI in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 2009;10(1):47-52. doi: 10.1080/17482960802267530.

    18. Cosottini M, Donatelli G, Costagli M, et al. High-resolution 7T MR imaging of the motor cortex in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 2016;37(3):455-61. doi: 10.3174/ajnr.A4562.

    19. d’Ambrosio A, Gallo A, Trojsi F, et al. Frontotemporal cortical thinning in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 2014;35(2):304-10. doi: 10.3174/ajnr.A3753.

    20. Chen Z, Liu M, Ma L. Gray matter volume changes over the whole brain in the bulbar- and spinal-onset amyotrophic lateral sclerosis: a voxel-based morphometry study. Chin Med Sci J 2018; 33(1):20-8. doi: 10.24920/11804.

    21. Brooks BR, Miller RG, Swash M, et al. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 2000;1(5):293-9. doi:10.1080/146608200300079536.

    22. Ohashi Y, Tashiro K, Itoyama Y, et al. Study of functional rating scale for amyotrophic lateral sclerosis:revised ALSFRS(ALSFRS-R) Japanese version. Brain and nerve 2001;53(4):346-55. Japanese.

    23. Galea M, Woodward M. Mini-Mental State Examination (MMSE). Aust J Physiother 2005;51(3):198. doi:10.1016/S0004-9514(05)70034-9.

    24. Dahnke R, Yotter RA, Gaser C. Cortical thickness and central surface estimation. Neuroimage 2013;65:336-48. doi: 10.1016/j.neuroimage.2012.09.050.

    25. Desikan RS, Ségonne F, Fischl B, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31(3):968-80. doi: 10.1016/j.neuroimage.2006.01.021.

    26. Hamilton RL, Bowser R. Alzheimer disease pathology in amyotrophic lateral sclerosis. Acta Neuropathol 2004;107(6):515-22. doi: 10.1007/s00401-004-0843-1.

    27. Chen Z, Ma L. Grey matter volume changes over the whole brain in amyotrophic lateral sclerosis: A voxel-wise meta-analysis of voxel based morphometry studies. Amyotroph Lateral Scler 2010; 11(6): 549-54. doi: 10.3109/17482968.2010.516265.

    28. Gredal O, Pakkenberg H, Karlsborg M, et al. Unchanged total number of neurons in motor cortex and neocortex in amyotrophic lateral sclerosis: a stereological study. J Neurosci Methods 2000;95(2):171-6.doi: 10.1016/S0165-0270(99)00175-2.

    29. Kiernan JA, Hudson AJ. Changes in shapes of surviving motor neurons in amyotrophic lateral sclerosis. Brain 1993;116 (Pt 1): 203-15. doi: 10.1093/brain/116.1.203.

    30. Nagy D, Kato T, Kushner PD. Reactive astrocytes are widespread in the cortical gray matter of amyotrophic lateral sclerosis. J Neurosci Res 1994;38(3):336-47.doi: 10.1002/jnr.490380312.

    男人操女人黄网站| 亚洲精品国产一区二区精华液| 黄片播放在线免费| 麻豆成人av在线观看| 亚洲av成人不卡在线观看播放网| 男女床上黄色一级片免费看| 满18在线观看网站| 99riav亚洲国产免费| 两人在一起打扑克的视频| 久久热在线av| 九色亚洲精品在线播放| 国产精品香港三级国产av潘金莲| 一夜夜www| 久久午夜亚洲精品久久| 欧美久久黑人一区二区| 成人国产综合亚洲| 久久久国产欧美日韩av| 精品久久久久久久毛片微露脸| 91国产中文字幕| 精品欧美一区二区三区在线| 亚洲自偷自拍图片 自拍| ponron亚洲| 91麻豆精品激情在线观看国产| 性色av乱码一区二区三区2| 久99久视频精品免费| 在线播放国产精品三级| 亚洲一区中文字幕在线| 99re在线观看精品视频| 亚洲欧美一区二区三区黑人| 三级毛片av免费| 精品久久久久久久久久免费视频| 侵犯人妻中文字幕一二三四区| 午夜影院日韩av| av有码第一页| 人人妻人人澡人人看| 久久热在线av| 身体一侧抽搐| 亚洲精品美女久久久久99蜜臀| 亚洲精华国产精华精| 性欧美人与动物交配| 窝窝影院91人妻| 欧美成人午夜精品| 国产精品久久久人人做人人爽| 国产伦人伦偷精品视频| 亚洲一区高清亚洲精品| 无限看片的www在线观看| 伊人久久大香线蕉亚洲五| 免费在线观看完整版高清| 亚洲国产精品成人综合色| 可以在线观看的亚洲视频| 国产精品一区二区在线不卡| 亚洲中文字幕日韩| 亚洲激情在线av| 免费人成视频x8x8入口观看| 亚洲精品国产一区二区精华液| 成人永久免费在线观看视频| 国产三级在线视频| 19禁男女啪啪无遮挡网站| 啪啪无遮挡十八禁网站| 99久久综合精品五月天人人| 色老头精品视频在线观看| 午夜影院日韩av| 90打野战视频偷拍视频| 99久久国产精品久久久| 精品国产国语对白av| 日本黄色视频三级网站网址| 午夜福利,免费看| 电影成人av| 大码成人一级视频| 国产精品国产高清国产av| 午夜影院日韩av| 免费高清在线观看日韩| 热99re8久久精品国产| 精品国内亚洲2022精品成人| 亚洲国产欧美日韩在线播放| 国产一区二区激情短视频| 制服诱惑二区| 亚洲欧洲精品一区二区精品久久久| 国产精品国产高清国产av| 国产成人系列免费观看| 两个人视频免费观看高清| 国产亚洲欧美98| 亚洲av片天天在线观看| 亚洲少妇的诱惑av| 黄频高清免费视频| 最新在线观看一区二区三区| av电影中文网址| 国产精品久久久久久亚洲av鲁大| 国产av精品麻豆| x7x7x7水蜜桃| 咕卡用的链子| 亚洲伊人色综图| 久久久久久国产a免费观看| 99在线视频只有这里精品首页| xxx96com| 午夜视频精品福利| 国产精品日韩av在线免费观看 | 久久久久久久久中文| 免费在线观看影片大全网站| 99在线人妻在线中文字幕| 成人手机av| 国产高清videossex| 国产乱人伦免费视频| 在线观看一区二区三区| 夜夜爽天天搞| 国产片内射在线| 一二三四在线观看免费中文在| 午夜福利一区二区在线看| 亚洲精华国产精华精| 日韩欧美在线二视频| 精品福利观看| 婷婷六月久久综合丁香| 亚洲人成电影观看| 亚洲天堂国产精品一区在线| 纯流量卡能插随身wifi吗| 国产一区二区在线av高清观看| 久久香蕉激情| 91在线观看av| 在线观看一区二区三区| 午夜福利视频1000在线观看 | 久久精品人人爽人人爽视色| 国产麻豆69| 丝袜美足系列| 亚洲第一av免费看| 色精品久久人妻99蜜桃| 亚洲在线自拍视频| 日本免费一区二区三区高清不卡 | 日韩精品中文字幕看吧| 国产精品,欧美在线| 黄片大片在线免费观看| 日韩大尺度精品在线看网址 | 欧美一级毛片孕妇| 亚洲精品一卡2卡三卡4卡5卡| 婷婷六月久久综合丁香| 国产欧美日韩一区二区精品| 国产亚洲精品综合一区在线观看 | 成人av一区二区三区在线看| 大陆偷拍与自拍| 国产97色在线日韩免费| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久久久人妻精品电影| 91麻豆av在线| av免费在线观看网站| 国产私拍福利视频在线观看| 国产极品粉嫩免费观看在线| 欧美乱色亚洲激情| 欧美av亚洲av综合av国产av| 免费看十八禁软件| 亚洲在线自拍视频| 18禁观看日本| 51午夜福利影视在线观看| 99久久综合精品五月天人人| 久久精品91蜜桃| АⅤ资源中文在线天堂| 99久久精品国产亚洲精品| 欧美乱码精品一区二区三区| 久久亚洲精品不卡| 青草久久国产| netflix在线观看网站| 午夜福利18| 狠狠狠狠99中文字幕| 亚洲avbb在线观看| 亚洲精品中文字幕在线视频| 大陆偷拍与自拍| 日本撒尿小便嘘嘘汇集6| 最新美女视频免费是黄的| 黑人欧美特级aaaaaa片| 国产亚洲欧美在线一区二区| 免费看美女性在线毛片视频| 免费人成视频x8x8入口观看| x7x7x7水蜜桃| 怎么达到女性高潮| 午夜激情av网站| 嫩草影视91久久| 亚洲成av片中文字幕在线观看| 18禁美女被吸乳视频| 别揉我奶头~嗯~啊~动态视频| 久久久精品国产亚洲av高清涩受| 精品无人区乱码1区二区| 国产aⅴ精品一区二区三区波| 在线观看舔阴道视频| 一区二区三区激情视频| 国产精品久久久av美女十八| 亚洲成av片中文字幕在线观看| 两个人视频免费观看高清| 日本vs欧美在线观看视频| 午夜免费鲁丝| 在线观看免费视频日本深夜| av天堂在线播放| 久热这里只有精品99| 成人亚洲精品一区在线观看| 午夜免费激情av| 日本三级黄在线观看| 国产精品亚洲美女久久久| 色哟哟哟哟哟哟| 午夜福利欧美成人| 久久久久国内视频| netflix在线观看网站| 亚洲专区中文字幕在线| 国产精品久久久人人做人人爽| 长腿黑丝高跟| 可以免费在线观看a视频的电影网站| 老熟妇乱子伦视频在线观看| 欧美黑人欧美精品刺激| 99久久国产精品久久久| 久久国产精品影院| 国产一区二区三区在线臀色熟女| 成人三级做爰电影| 午夜精品国产一区二区电影| 极品教师在线免费播放| 日本三级黄在线观看| 久久婷婷成人综合色麻豆| 嫩草影院精品99| 老司机午夜福利在线观看视频| 国产视频一区二区在线看| 亚洲精品粉嫩美女一区| 美女扒开内裤让男人捅视频| 女人被躁到高潮嗷嗷叫费观| 欧美成人性av电影在线观看| 亚洲精品av麻豆狂野| 午夜福利18| 久久精品91无色码中文字幕| 黑人操中国人逼视频| 午夜a级毛片| 91国产中文字幕| 欧美日本视频| 天堂动漫精品| 国产精品久久电影中文字幕| 亚洲av成人不卡在线观看播放网| 亚洲中文av在线| 亚洲五月婷婷丁香| 老司机福利观看| 亚洲中文字幕日韩| 狠狠狠狠99中文字幕| xxx96com| 最好的美女福利视频网| 国产精品久久视频播放| 好看av亚洲va欧美ⅴa在| 一区福利在线观看| 很黄的视频免费| 国语自产精品视频在线第100页| 国产一区二区三区综合在线观看| 免费久久久久久久精品成人欧美视频| 亚洲全国av大片| av视频在线观看入口| 中文字幕最新亚洲高清| 天天躁狠狠躁夜夜躁狠狠躁| 69精品国产乱码久久久| 777久久人妻少妇嫩草av网站| 免费高清视频大片| 成熟少妇高潮喷水视频| 久久欧美精品欧美久久欧美| 亚洲黑人精品在线| 午夜日韩欧美国产| 精品乱码久久久久久99久播| 国产单亲对白刺激| 亚洲全国av大片| 亚洲国产精品成人综合色| 日日夜夜操网爽| 99re在线观看精品视频| x7x7x7水蜜桃| 亚洲一区二区三区色噜噜| 18禁美女被吸乳视频| 夜夜躁狠狠躁天天躁| 波多野结衣av一区二区av| 一本久久中文字幕| 欧美国产精品va在线观看不卡| 国产蜜桃级精品一区二区三区| 一进一出抽搐动态| 动漫黄色视频在线观看| 久久久久久久久久久久大奶| 黑人操中国人逼视频| 国产私拍福利视频在线观看| 色综合欧美亚洲国产小说| 黄色 视频免费看| 亚洲欧美一区二区三区黑人| 欧美成人免费av一区二区三区| 国产亚洲精品综合一区在线观看 | 亚洲狠狠婷婷综合久久图片| 99国产精品一区二区蜜桃av| 国产区一区二久久| 最近最新中文字幕大全电影3 | 国产成人一区二区三区免费视频网站| 女人被狂操c到高潮| 亚洲精品av麻豆狂野| 一边摸一边做爽爽视频免费| 日韩 欧美 亚洲 中文字幕| 成人亚洲精品一区在线观看| 亚洲人成电影免费在线| 黄色a级毛片大全视频| 精品少妇一区二区三区视频日本电影| 国产主播在线观看一区二区| 欧美成人性av电影在线观看| 最新在线观看一区二区三区| 欧美乱码精品一区二区三区| 亚洲国产毛片av蜜桃av| 51午夜福利影视在线观看| 老司机午夜十八禁免费视频| 亚洲av片天天在线观看| av在线播放免费不卡| 亚洲人成电影免费在线| 欧美日韩精品网址| 香蕉丝袜av| 脱女人内裤的视频| 亚洲激情在线av| 欧美中文日本在线观看视频| 男人舔女人的私密视频| 禁无遮挡网站| 国产精品98久久久久久宅男小说| 黄色视频,在线免费观看| 国产成人av激情在线播放| 欧美在线黄色| 首页视频小说图片口味搜索| 亚洲 国产 在线| 一级片免费观看大全| 国产精品一区二区在线不卡| 亚洲精品一卡2卡三卡4卡5卡| 国产麻豆69| 亚洲精品一卡2卡三卡4卡5卡| 亚洲性夜色夜夜综合| 9色porny在线观看| 日韩欧美一区视频在线观看| 国产成人欧美在线观看| 97碰自拍视频| 国产亚洲av嫩草精品影院| 无限看片的www在线观看| 欧美激情极品国产一区二区三区| 久久人人爽av亚洲精品天堂| 国产又爽黄色视频| 精品无人区乱码1区二区| 妹子高潮喷水视频| 一本久久中文字幕| 一级黄色大片毛片| 男女下面插进去视频免费观看| 在线国产一区二区在线| 亚洲精品美女久久av网站| 亚洲精品国产色婷婷电影| 精品久久久久久,| 欧美日韩福利视频一区二区| 黑人巨大精品欧美一区二区mp4| 一夜夜www| 看黄色毛片网站| 国产欧美日韩一区二区三| 91麻豆av在线| 在线视频色国产色| x7x7x7水蜜桃| www.自偷自拍.com| 久久久国产成人免费| 亚洲五月色婷婷综合| 午夜亚洲福利在线播放| 久久久久久久久中文| 99国产精品免费福利视频| √禁漫天堂资源中文www| 国产野战对白在线观看| 日韩一卡2卡3卡4卡2021年| 悠悠久久av| 黄片大片在线免费观看| 一边摸一边做爽爽视频免费| 九色国产91popny在线| 精品人妻1区二区| 99精品久久久久人妻精品| 亚洲电影在线观看av| 夜夜爽天天搞| 成年版毛片免费区| 国产亚洲精品久久久久5区| 啦啦啦观看免费观看视频高清 | 国产av又大| 精品久久久久久久人妻蜜臀av | av在线天堂中文字幕| 国产亚洲欧美精品永久| 久久国产精品影院| 日本精品一区二区三区蜜桃| 在线观看日韩欧美| 看黄色毛片网站| 波多野结衣av一区二区av| 高清黄色对白视频在线免费看| 亚洲精品国产一区二区精华液| 一级a爱视频在线免费观看| 午夜免费观看网址| 亚洲五月婷婷丁香| 99国产精品99久久久久| 日韩成人在线观看一区二区三区| 色播亚洲综合网| 级片在线观看| 丝袜在线中文字幕| 国产亚洲欧美在线一区二区| 最新在线观看一区二区三区| 香蕉久久夜色| 国产又色又爽无遮挡免费看| 又大又爽又粗| 精品久久久久久久人妻蜜臀av | 午夜福利免费观看在线| 人妻久久中文字幕网| 亚洲中文字幕日韩| 中国美女看黄片| 久久久久国产精品人妻aⅴ院| 国产伦人伦偷精品视频| 国产亚洲精品一区二区www| 欧美激情极品国产一区二区三区| 一级毛片精品| 亚洲精品国产精品久久久不卡| 最近最新中文字幕大全电影3 | 亚洲中文av在线| 99精品在免费线老司机午夜| 亚洲精品粉嫩美女一区| 91精品国产国语对白视频| 免费高清视频大片| 成人欧美大片| 女生性感内裤真人,穿戴方法视频| 黑人欧美特级aaaaaa片| 欧美av亚洲av综合av国产av| 亚洲欧美一区二区三区黑人| xxx96com| 欧美黑人欧美精品刺激| 啦啦啦观看免费观看视频高清 | 香蕉久久夜色| 男女之事视频高清在线观看| 99国产精品一区二区三区| 黄频高清免费视频| 欧美日韩瑟瑟在线播放| av视频在线观看入口| www日本在线高清视频| 日本免费a在线| 国产伦一二天堂av在线观看| 日本a在线网址| 久久国产亚洲av麻豆专区| 精品国产一区二区三区四区第35| 国产色视频综合| 丁香六月欧美| 久久亚洲精品不卡| 免费不卡黄色视频| 免费看a级黄色片| 性少妇av在线| 国产三级在线视频| 91麻豆av在线| 久久精品国产亚洲av香蕉五月| 日本三级黄在线观看| 午夜福利一区二区在线看| 国产片内射在线| 国产私拍福利视频在线观看| 精品一区二区三区av网在线观看| 国产欧美日韩精品亚洲av| 国产99久久九九免费精品| 99国产精品免费福利视频| 看免费av毛片| 久久久水蜜桃国产精品网| 免费久久久久久久精品成人欧美视频| 亚洲av成人不卡在线观看播放网| 男人的好看免费观看在线视频 | 亚洲色图 男人天堂 中文字幕| 91九色精品人成在线观看| 国产蜜桃级精品一区二区三区| 日本三级黄在线观看| 精品国产美女av久久久久小说| 在线播放国产精品三级| 国产成年人精品一区二区| 精品国产乱子伦一区二区三区| 亚洲av成人av| 色播在线永久视频| 亚洲九九香蕉| 国产精品国产高清国产av| 母亲3免费完整高清在线观看| 一级a爱视频在线免费观看| 丝袜人妻中文字幕| 国产精品久久电影中文字幕| 欧美老熟妇乱子伦牲交| 桃色一区二区三区在线观看| 亚洲中文字幕日韩| 一个人免费在线观看的高清视频| 国产1区2区3区精品| 天堂√8在线中文| 国产精品野战在线观看| 嫩草影院精品99| 熟妇人妻久久中文字幕3abv| cao死你这个sao货| 女同久久另类99精品国产91| 男人操女人黄网站| 此物有八面人人有两片| 首页视频小说图片口味搜索| 日韩精品免费视频一区二区三区| 午夜久久久久精精品| 91精品三级在线观看| 麻豆一二三区av精品| 99在线人妻在线中文字幕| 亚洲精品av麻豆狂野| 天天添夜夜摸| 日韩精品中文字幕看吧| 久久精品成人免费网站| 国产99白浆流出| 国产欧美日韩综合在线一区二区| 91成人精品电影| 国内精品久久久久久久电影| 涩涩av久久男人的天堂| 久久久久国产一级毛片高清牌| 一a级毛片在线观看| 欧美另类亚洲清纯唯美| 久久天堂一区二区三区四区| 我的亚洲天堂| 国产成人精品在线电影| 757午夜福利合集在线观看| 老鸭窝网址在线观看| 老司机在亚洲福利影院| a级毛片在线看网站| 久久久久国产精品人妻aⅴ院| 国产精品精品国产色婷婷| 免费在线观看日本一区| 久久精品国产亚洲av香蕉五月| 亚洲av电影不卡..在线观看| 国产xxxxx性猛交| 国产精品久久电影中文字幕| 91麻豆精品激情在线观看国产| 久久人人爽av亚洲精品天堂| 国产黄a三级三级三级人| 咕卡用的链子| 久久久久久久久久久久大奶| 一区二区三区激情视频| 中文字幕人妻熟女乱码| 不卡一级毛片| 人成视频在线观看免费观看| 一本大道久久a久久精品| 岛国视频午夜一区免费看| 一卡2卡三卡四卡精品乱码亚洲| 日韩免费av在线播放| 如日韩欧美国产精品一区二区三区| 搞女人的毛片| 国产三级黄色录像| 国产aⅴ精品一区二区三区波| 国产亚洲精品第一综合不卡| 三级毛片av免费| 久久久久久人人人人人| 国产av又大| 精品一区二区三区视频在线观看免费| 少妇裸体淫交视频免费看高清 | 免费看a级黄色片| 非洲黑人性xxxx精品又粗又长| 黄色 视频免费看| 久久九九热精品免费| 精品不卡国产一区二区三区| 母亲3免费完整高清在线观看| 亚洲自偷自拍图片 自拍| 亚洲av电影在线进入| 一区二区三区国产精品乱码| 亚洲熟妇中文字幕五十中出| 成熟少妇高潮喷水视频| 亚洲国产精品sss在线观看| 久99久视频精品免费| 亚洲欧美日韩无卡精品| 大码成人一级视频| 欧美在线黄色| 91麻豆av在线| 成人三级黄色视频| 99久久国产精品久久久| 日韩中文字幕欧美一区二区| 1024视频免费在线观看| 亚洲av五月六月丁香网| 久久久久久久精品吃奶| 又黄又爽又免费观看的视频| 51午夜福利影视在线观看| netflix在线观看网站| 日韩中文字幕欧美一区二区| 免费人成视频x8x8入口观看| 在线观看舔阴道视频| 久久久国产精品麻豆| 91大片在线观看| 色综合亚洲欧美另类图片| 黄色毛片三级朝国网站| 欧美成人性av电影在线观看| 欧美日韩黄片免| 操出白浆在线播放| 国产不卡一卡二| 黄片播放在线免费| 日韩欧美免费精品| 国产精品野战在线观看| 午夜免费观看网址| 亚洲精品av麻豆狂野| 满18在线观看网站| 999精品在线视频| 老司机午夜福利在线观看视频| 国产一卡二卡三卡精品| 国产亚洲精品av在线| 麻豆av在线久日| 18禁观看日本| 午夜成年电影在线免费观看| av有码第一页| 97人妻天天添夜夜摸| 久久久国产成人免费| 欧美在线黄色| 免费在线观看日本一区| av视频在线观看入口| 悠悠久久av| 成人亚洲精品av一区二区| 欧美日本中文国产一区发布| 757午夜福利合集在线观看| 一区在线观看完整版| 欧美在线黄色| 国产99久久九九免费精品| 大型av网站在线播放| 国产精品综合久久久久久久免费 | 精品国产超薄肉色丝袜足j| 欧美色欧美亚洲另类二区 | 欧美最黄视频在线播放免费| 男女之事视频高清在线观看| 成人特级黄色片久久久久久久| 亚洲成a人片在线一区二区| 午夜福利一区二区在线看| 人人澡人人妻人| 免费观看人在逋| 亚洲精品在线美女| 老司机午夜福利在线观看视频| 午夜福利,免费看| 免费一级毛片在线播放高清视频 | 丝袜美足系列| 久久久久久久午夜电影| 中文字幕高清在线视频| 亚洲激情在线av|