• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Noether Theorem for Generalized Birkhoffian Systems with Time Delay

    2018-07-11 02:57:48ZhaiXianghuaZhangYi

    Zhai Xianghua,Zhang Yi

    1.School of Science,Nanjing University of Science and Technology,Nanjing 210094,P.R.China;

    2.School of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215009,P.R.China

    Abstract:The Noether symmetries and the conserved quantities for generalized Birkhoffian systems with time delay are studied.Firstly,the generalized Pfaff-Birkhoff principle with time delay is proposed,and the generalized Birkhoff’s equations with time delay are obtained.Secondly,the generalized Noether quasi-symmetric transformations of the system are defined,and the criterion of the Noether symmetries is established.Then the Noether theorem for generalized Birkhoffian systems with time delay is established.Finally,by imposing restrictions of constraints on the infinitesimal transformations,the Noether theorem of constrained Birkhoffian systems with time delay is established.One example is given to illustrate the application of the results.

    Key words:time delay;generalized Birkhoffian system;Noether symmetry;conserved quantity

    0 Introduction

    In recent years,time-delay phenomena in real-life are widely noted and studied.Especially in the process of application of computer control technology,sensor testing technology and vibration control technology in various engineering fields,even exiting a time-delay with millisecond leads to complex changes of the stability and control performance of the system[1-4].And the research subject on symmetry and conserved quantity has always been paid close attention by researchers in mathematics,mechanics and physics.It is still been an expansive area studying on the symmetries and conserved quantities when considering the influence of time delay for mechanical systems.

    As an important theoretical basis and mathematical method,the variational problems with time delay have been studied.él′sgol′c[5]was the first researcher who proposed the variational problems with delayed arguments.And after that,many results to this kind of research topic combining with multifarious practical situations are made[6-11].It is note worthy that the Noether symmetries for variational and optimal problems with time delay were studied by Frederico and Torres[12]firstly.Recently,Zhang and Jin[13-14]studied the Noether theory for non-conservative dynamical systems with time delay and the Hamiltonian mechanical systems with time delay,and derived the relevant results to the fractional model[15-16].

    In 1927,the American mathematician Birkhoff[17]presented a kind of more general dynamic equations(Birkhoff’s equations)and a more general integral variational principle(Pfaff-Birkhoff principle).Until now,many research branches like the approaches of integration and reduction,the stability of motion and the dynamical inverse problem of Birkhoffian mechanics as well as the practical applications have made a great progress[18-19].Mei[20-21]established the Noether theory for generalized Birkhoffian systems and con-strained Birkhoffian systems.In the recent paper[22],the Noether symmetries and conserved quantities for Birkhoffian systems with time delay were studied.However,the results in Ref.[22]can not be generalized to the generalized Birkhoffian systems with time delay directly.Moreover,the constrained Birkhoffian systems in the sense of time delay have not been investigated yet.In view of the development trends above,it is necessary and meaningfully to study these new problems.

    1 Generalized Birkhoff’s Equations with Time Delay

    We review some known results in the literature about standard generalized Birkhoff’s equations[19]without considering the influence of time delay.

    The generalized Pfaff-Birkhoff principle can be expressed as

    with the commutative conditions

    and the boundary conditions

    where B(t,a)is the Birkhoffian,Rν(t,a)are Birkhoff’s functions,δ′W=Λν(t,a)δaν,and the arbitrary differentiable functions Λν(t,a)are called additional items.Whenδ′W=0,the principle(1)is reduced to the standard Pfaff-Birkhoffprinciple[18].

    From the principle(1)we can derive the standard generalized Birkhoff’s equations

    Now,we consider a Birkhoffian system with time delay whose Birkhoffian and Birkhoff’s functions are as follows

    First,the generalized Pfaff-Birkhoff principle with time delay can be established as

    whereδ′W′=Λ′ν(t,a,aτ)δaν,ν=1,2,…,2n.

    Moreover,the principle(6)satisfies the commutative condition

    and the boundary conditions

    whereτis a given positive real number such that τ<t2-t1,and fν(t)are given piecewise smooth functions in the interval t[1-τ,t1],then the principle(6)can be written as

    By integrating by parts and performing a linear change of variables t=θ+τand noticing the boundary conditions(8)and(9),Eq.(10)can be written as

    Eq.(12)can be called the differential equations of motion of the generalized Birkhoffian system with time delay.If time delay does not exist,Eq.(12)is reduced to standard generalized Birkhoff’s Eq.(4).

    2 Variation of Pfaff Action with Time Delay

    Introduce the infinitesimal transformations of r-parameter finite transformation group Gr

    and their expanding formulae are

    whereεαα=1,2,…,()r are infinitesimal parameters,andare called the infinitesimal generators or the generating functions of the infinitesimal transformations.

    The Pfaff action with time delay in Ref.[22]is expressed as

    The variation of Pfaff action with time delay was discussed in Ref.[22]and two basic formulae were obtained as follows

    and

    3 Noether Symmetries with Time Delay

    Now,we give the definitions of the Noether symmetric transformations in time-delay situation.

    Definition 1[22]If the Pfaff action(15)is invariant under the infinitesimal transformations(13)of group,i.e.,for each of the infinitesimal transformations,the formula

    holds,then the infinitesimal transformations are called Noether symmetric transformations.

    Definition 2[22]If the Pfaff action(15)is quasi-invariant under the infinitesimal transformations(13)of group,i.e.,for each of the infinitesimal transformations,the formula

    holds,whereΔG=εαGα,and Gα=Gα(t,a,aτ)is the gauge function,then the infinitesimal transformations are called Noether quasi-symmetric transformations.

    Definition 3 If the Pfaff action(15)is generalized quasi-invariant under the infinitesimal transformations(13)of group,i.e.,for each of the infinitesimal transformations,the formula

    holds,whereΔG=εαGα,and Gα=Gα(t,a,aτ)is the gauge function,andΛ′μ=Λ′μ(t,a,aτ),then the infinitesimal transformations are called generalized Noether quasi-symmetric transformations.

    According to Definition 3 and Eq.(17),we can yield the following criterion.

    Criterion 1 If the infinitesimal transformations(14)of group satisfy the following conditions

    then the transformations(13)are the generalized Noether quasi-symmetric transformations for the generalized Birkhoffian system with time delay.

    Furthermore,in consideration of the expanding formulae(14)of the infinitesimal transformations(13),formula(21)can be expressed as

    whereα=1,2,…,r.

    When r=1,Eq.(22)can be called the Noether identities of the generalized Birkhoffian system with time delay.Especially,if the time delay does not exist,Criterion 1 is reduced to the criterion of the Noether symmetries for standard generalized Birkhoffian system.

    4 Noether Theorem with Time Delay

    Now we give the following Noether theorem in which the conserved quantities are derived from the generalized Noether quasi-symmetries of the generalized Birkhoffian system(12)with time delay.

    Theorem 1 For the generalized Birkhoffian system(12)with time delay,if the infinitesimal transformations(14)satisfy the conditions(22),then the system(12)has the conserved quantities of the following form

    whereα=1,2,…,r.

    Proof Note that,the infinitesimal transformations(14)are the generalized Noether quasi-symmetric transformations of the system(12).According to Criterion 1,we have

    whereα=1,2,…,r.Noticing Eq.(12),we can prove the theorem easily.

    Theorem 1 is called the Noether theorem of the generalized Birkhoffian system with time delay.Especially,if the time delay does not exist,the Noether theorem of the generalized Birkhoffian system with time delay is reduced to the Noether theorem of standard generalized Birkhoffian system[19].

    5 Noether Theorem of Constrained Birkhoffian Systems with Time Delay

    Next,we study the Noether theorem of constrained Birkhoffian systems with time delay.

    Assume that the motion of the Birkhoffian system with time delay is subjected to the following g bilateral ideal constraints

    by taking the isochronal variation of Eq.(24),we have

    The Pfaff-Birkhoff principle with time delay[22]can be expressed as

    Introducing the Lagrange’s multipliersλβ,we can derive the equations of motion of the constrained Birkhoffian system with time delay by combining Eqs.(25),(26),which are

    Combining Eq.(24)with Eq.(27),we can findλβas the functions of.Therefore,Eq.(27)can be written as

    Eq.(28)are called the equations of motion of the free Birkhoffian system with time delay which corresponds to the constrained Birkhoffian system with time delay,that is,the equations of motion of the corresponding free Birkhoffian system with time delay.If the initial conditions of the motion satisfy the constrained conditions(24),then the solution of the corresponding free system(28)will give the motion of the constrained Birkhoffian system with time delay.

    We observe that Eq.(28)of the corresponding free Birkhoffian system with time delay are in accordance with the generalized Birkhoffian system(12)with time delay.Just take Pμ=-Λ′μ.

    Therefore,Theorem 1 can be applied in the corresponding free Birkhoffian system(28)with time delay.

    Theorem 2 For the corresponding free Birkhoffian system(28)with time delay,if the infinitesimal transformations(14)satisfy the conditions

    whereα=1,2,…,r,then the system(28)has the conserved quantities of the form(23).

    Theorem 2 can be called the generalized Noether theorem of the corresponding free Birkhoffian system with time delay.

    Eq.(25)can be expressed as

    Considering the independence ofεα,we have

    Eq.(31)is the restrictions of constraints on the infinitesimaltransformations.

    Then,we can establish the Noether theorem for the constrained Birkhoffian system with time delay.

    Theorem 3 For given constrained Birkhoffian systems(24)and(27)with time delay,if the infinitesimal transformations(14)satisfy the conditions

    and the conditions(31),the systems(24),(27)have the conserved quantities of Eq.(23).

    Proof According to the conditions(31),(32)and noticing Eq.(27),we can derive the conserved quantities of Eq.(23).

    Theorem 3 can be called the generalized Noether theorem of the constrained Birkhoffian system with time delay.In addition,if the system is not subject to the constraints,Theorem 2 is reduced to the Noether theorem of free Birkhoffian systems with time delay[22].

    6 Example

    Consider a fourth-order Birkhoffian system with time delay which describes the motion of a particle with unit mass,and the Birkhoffian and Birkhoff’s functions are

    and the constraintis

    where the Birkhoffian denotes the total energy of the system and formula(34)is linear rheonomicnonholonomic constraint[18].The Noether symmetries and conserved quantities of the system are studied.

    Eq.(27)gives that

    From Eqs.(34),(35),we can find that

    Combining the generalized Birkhoff’s Eq.(12)with time delay,we obtain the additional items

    Next,we study the Noether symmetries and conserved quantities of the corresponding free Birkhoffian system with time delay.The conditions(22)give that

    They have the following solutions

    and

    and

    and

    and

    and

    and

    Eqs.(39)—(45)correspond to the generalized quasi-symmetric transformations of the system.Theorem 2 gives the conserved quantities as follows

    and

    Only three of Eqs.(46)—(52)are independent.Actually,we have

    Then,we study the Noether symmetries and conserved quantities of the constraint Birkhoffian system with time delay.The conditions(31)give

    Note that,Eqs.(39),(44)satisfy Eq.(55),therefore Eqs.(39),(44)correspond to the quasisymmetric transformations of the constrained Birkhoffian system with time delay.And Eqs.(46),(51)are the conserved quantities of the system(Eqs.(33),(34)).

    If b=1,Eq.(42)satisfies Eq.(55)too,therefore,Eq.(42)also corresponds to the quasisymmetric transformations.And Eq.(49)is the conserved quantities of the system(Eqs.(33),(34)).

    7 Conclusions

    The Noether symmetries are studied,as well as the conserved quantities of generalized Birkhoffian systems with time delay.We established the generalized Pfaff-Birkhoff principle(1)with time delay and obtained the generalized Birkhoff’s equations(12)with time delay.We discussed the relationship between the symmetries and conserved quantities,and thus,we established the Noether theorem for generalized Birkhoffian systems with time delay.Moreover,we discussed the Noether theory of constrained Birkhoffian systems with time delay.The methods and results of this paper are universal:If there is no time delay,generalized Birkhoffian systems with time delay are reduced to standard generalized Birkhoffian systems.Theorem 1 in the perspective of time delay is reduced to the Noether theorem of standard generalized Birkhoffian systems.It is worth noting that time-delay phenomenon of a system can be connected with a system under the fractional models because of the same characteristic of memory.And many more research fields with obvious time-delay phenomenon are also worth studying.

    Acknowledgements

    This work was supported by the National Natural Science Foundations of China(Nos.11572212,11272227).

    久久国产亚洲av麻豆专区| 国产精品久久久久久精品电影 | 国产欧美日韩精品亚洲av| 亚洲av成人不卡在线观看播放网| 国产亚洲精品av在线| 婷婷丁香在线五月| 十八禁人妻一区二区| 美女高潮喷水抽搐中文字幕| 成人国产一区最新在线观看| 熟妇人妻久久中文字幕3abv| www.熟女人妻精品国产| 午夜福利在线观看吧| a级毛片a级免费在线| 男女床上黄色一级片免费看| 婷婷精品国产亚洲av在线| 亚洲中文字幕一区二区三区有码在线看 | 一级毛片女人18水好多| 性欧美人与动物交配| 国产精品美女特级片免费视频播放器 | 久9热在线精品视频| 欧美成人性av电影在线观看| 女生性感内裤真人,穿戴方法视频| 久久精品国产亚洲av香蕉五月| 熟女电影av网| 熟妇人妻久久中文字幕3abv| 精品久久久久久久人妻蜜臀av| 久久人妻av系列| 色综合欧美亚洲国产小说| 国产麻豆成人av免费视频| 免费人成视频x8x8入口观看| 欧美激情 高清一区二区三区| 午夜免费成人在线视频| 久久久久久国产a免费观看| 日韩欧美一区二区三区在线观看| 一a级毛片在线观看| 好男人电影高清在线观看| 日韩欧美 国产精品| 精品国产亚洲在线| 女同久久另类99精品国产91| 久久国产精品影院| 美女国产高潮福利片在线看| 两性午夜刺激爽爽歪歪视频在线观看 | 高清毛片免费观看视频网站| 国产成人精品久久二区二区91| 国产三级黄色录像| 18禁国产床啪视频网站| 日韩 欧美 亚洲 中文字幕| 精华霜和精华液先用哪个| 波多野结衣高清无吗| 国产一区二区三区视频了| 亚洲人成网站在线播放欧美日韩| 亚洲精品中文字幕在线视频| 精品人妻1区二区| 国产蜜桃级精品一区二区三区| 午夜福利高清视频| 动漫黄色视频在线观看| 精品福利观看| 日韩国内少妇激情av| 老司机深夜福利视频在线观看| 国产亚洲精品综合一区在线观看 | 最近最新中文字幕大全电影3 | 欧美日韩精品网址| 欧美精品啪啪一区二区三区| 色播在线永久视频| 国产成人av激情在线播放| 国内精品久久久久精免费| 午夜免费鲁丝| 日本一本二区三区精品| 非洲黑人性xxxx精品又粗又长| 日本a在线网址| 99国产综合亚洲精品| 久久香蕉国产精品| 国产精品二区激情视频| 日韩欧美三级三区| 欧美午夜高清在线| 国产蜜桃级精品一区二区三区| 巨乳人妻的诱惑在线观看| 国产不卡一卡二| 日韩欧美一区视频在线观看| 国产一区在线观看成人免费| 日本 av在线| 亚洲精品在线观看二区| 日韩欧美国产一区二区入口| 久久久久久人人人人人| 午夜福利高清视频| 欧美又色又爽又黄视频| 男人舔女人的私密视频| 亚洲成人久久性| 悠悠久久av| 欧美日韩黄片免| 国产亚洲av高清不卡| 国产爱豆传媒在线观看 | 黑人操中国人逼视频| 中文字幕高清在线视频| 亚洲国产日韩欧美精品在线观看 | 亚洲中文日韩欧美视频| 久久伊人香网站| 色av中文字幕| 亚洲国产中文字幕在线视频| 精品久久久久久成人av| 伦理电影免费视频| www.精华液| 99热这里只有精品一区 | 中文亚洲av片在线观看爽| 国产精品1区2区在线观看.| 亚洲最大成人中文| 亚洲最大成人中文| 欧美性长视频在线观看| 日本熟妇午夜| 人人澡人人妻人| 我的亚洲天堂| 91九色精品人成在线观看| 久久国产亚洲av麻豆专区| 黄色毛片三级朝国网站| 看片在线看免费视频| 久久精品亚洲精品国产色婷小说| 好看av亚洲va欧美ⅴa在| 欧美性长视频在线观看| 国产亚洲精品久久久久久毛片| 久久婷婷成人综合色麻豆| 伊人久久大香线蕉亚洲五| 波多野结衣av一区二区av| 亚洲美女黄片视频| 美女免费视频网站| 久久婷婷人人爽人人干人人爱| 香蕉av资源在线| 巨乳人妻的诱惑在线观看| 久久精品国产亚洲av香蕉五月| 亚洲第一青青草原| 黄色视频不卡| 嫩草影院精品99| 日本a在线网址| 亚洲精品久久国产高清桃花| av福利片在线| 亚洲一区高清亚洲精品| 一卡2卡三卡四卡精品乱码亚洲| 级片在线观看| 精品国产乱子伦一区二区三区| 日日摸夜夜添夜夜添小说| 精品国产国语对白av| 曰老女人黄片| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品一区av在线观看| 人人妻人人澡欧美一区二区| 一级a爱片免费观看的视频| 久久99热这里只有精品18| АⅤ资源中文在线天堂| 天天添夜夜摸| 母亲3免费完整高清在线观看| 久久性视频一级片| 国产成人欧美在线观看| 国产精品久久电影中文字幕| 成人18禁高潮啪啪吃奶动态图| 啦啦啦观看免费观看视频高清| 久久久久久久久中文| 曰老女人黄片| 日韩中文字幕欧美一区二区| 亚洲中文字幕一区二区三区有码在线看 | 两个人免费观看高清视频| 亚洲国产欧洲综合997久久, | 人人澡人人妻人| 亚洲天堂国产精品一区在线| 中文字幕久久专区| 美国免费a级毛片| 日本黄色视频三级网站网址| 亚洲精品在线观看二区| av在线播放免费不卡| 欧美黑人欧美精品刺激| 国产精品爽爽va在线观看网站 | 亚洲成a人片在线一区二区| 国内久久婷婷六月综合欲色啪| 一本精品99久久精品77| 午夜日韩欧美国产| 欧美精品啪啪一区二区三区| 黄网站色视频无遮挡免费观看| 国产精品1区2区在线观看.| 丝袜在线中文字幕| 成人三级黄色视频| 在线永久观看黄色视频| 天堂√8在线中文| 国产成人精品久久二区二区91| 十八禁人妻一区二区| 午夜老司机福利片| √禁漫天堂资源中文www| 久久久久久久久免费视频了| 亚洲一区二区三区不卡视频| 亚洲成人免费电影在线观看| av中文乱码字幕在线| 午夜免费观看网址| 午夜福利免费观看在线| 亚洲欧美一区二区三区黑人| 给我免费播放毛片高清在线观看| 午夜激情福利司机影院| 午夜激情福利司机影院| 日本在线视频免费播放| 热re99久久国产66热| 少妇 在线观看| 女人高潮潮喷娇喘18禁视频| 精品乱码久久久久久99久播| 丝袜美腿诱惑在线| 青草久久国产| 一卡2卡三卡四卡精品乱码亚洲| 精品国内亚洲2022精品成人| 亚洲va日本ⅴa欧美va伊人久久| 欧美三级亚洲精品| 亚洲成人精品中文字幕电影| 国产欧美日韩精品亚洲av| 色播亚洲综合网| 午夜老司机福利片| 国产高清videossex| 国产精品乱码一区二三区的特点| 精品国产超薄肉色丝袜足j| 妹子高潮喷水视频| 一级a爱片免费观看的视频| av有码第一页| 色精品久久人妻99蜜桃| 女警被强在线播放| √禁漫天堂资源中文www| 精品国产国语对白av| 亚洲精品一卡2卡三卡4卡5卡| 精品电影一区二区在线| 国产精品久久久人人做人人爽| 美女高潮到喷水免费观看| 精品免费久久久久久久清纯| 精品欧美国产一区二区三| 亚洲成a人片在线一区二区| 欧美大码av| 国产亚洲精品一区二区www| 亚洲国产高清在线一区二区三 | 91麻豆精品激情在线观看国产| 91成年电影在线观看| 中亚洲国语对白在线视频| 亚洲成人久久爱视频| 黄色丝袜av网址大全| 国产精品亚洲美女久久久| 悠悠久久av| 亚洲精品色激情综合| 最近最新中文字幕大全免费视频| 欧美黑人巨大hd| 国产区一区二久久| 夜夜躁狠狠躁天天躁| 不卡av一区二区三区| 国产亚洲av高清不卡| 最好的美女福利视频网| 精品乱码久久久久久99久播| 性色av乱码一区二区三区2| 久久午夜亚洲精品久久| 女人被狂操c到高潮| 精品久久久久久久久久免费视频| 天天一区二区日本电影三级| 国产爱豆传媒在线观看 | 成人三级黄色视频| 欧美性猛交黑人性爽| 后天国语完整版免费观看| 亚洲男人的天堂狠狠| 亚洲国产欧美网| 国产高清视频在线播放一区| 91麻豆精品激情在线观看国产| 51午夜福利影视在线观看| 午夜激情福利司机影院| 一级毛片女人18水好多| 黄色成人免费大全| 国产又爽黄色视频| 国产伦人伦偷精品视频| 一进一出抽搐动态| 精品国产乱子伦一区二区三区| 色婷婷久久久亚洲欧美| 亚洲 国产 在线| 国产精品九九99| 99国产精品一区二区蜜桃av| 日本一区二区免费在线视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产高清在线一区二区三 | 午夜福利欧美成人| 亚洲九九香蕉| 麻豆成人午夜福利视频| 级片在线观看| 欧美激情久久久久久爽电影| 少妇粗大呻吟视频| 欧美黄色片欧美黄色片| 18美女黄网站色大片免费观看| 久久久久久亚洲精品国产蜜桃av| 国产精品电影一区二区三区| 午夜两性在线视频| 18禁黄网站禁片免费观看直播| 亚洲性夜色夜夜综合| 亚洲成人久久爱视频| 99精品在免费线老司机午夜| 国语自产精品视频在线第100页| 国产av在哪里看| 视频区欧美日本亚洲| 别揉我奶头~嗯~啊~动态视频| 两个人看的免费小视频| 侵犯人妻中文字幕一二三四区| 亚洲国产看品久久| 国产精品av久久久久免费| 人人妻人人澡人人看| 观看免费一级毛片| 手机成人av网站| www日本黄色视频网| 18禁美女被吸乳视频| 女人被狂操c到高潮| 91九色精品人成在线观看| 亚洲成人久久性| 亚洲熟妇中文字幕五十中出| 久久精品成人免费网站| 成人亚洲精品av一区二区| 国产精品乱码一区二三区的特点| 欧美又色又爽又黄视频| 黄片小视频在线播放| 日韩大码丰满熟妇| 美女扒开内裤让男人捅视频| 成人国产综合亚洲| 巨乳人妻的诱惑在线观看| 欧美激情高清一区二区三区| 久久这里只有精品19| 久久 成人 亚洲| 国产高清视频在线播放一区| 亚洲国产欧洲综合997久久, | 色婷婷久久久亚洲欧美| 成人三级黄色视频| 亚洲aⅴ乱码一区二区在线播放 | 少妇的丰满在线观看| 99国产精品一区二区三区| 巨乳人妻的诱惑在线观看| cao死你这个sao货| 国产激情久久老熟女| 白带黄色成豆腐渣| 日韩精品免费视频一区二区三区| 嫩草影院精品99| 国产成人一区二区三区免费视频网站| 午夜久久久久精精品| 日韩中文字幕欧美一区二区| 国产精品久久久av美女十八| 1024香蕉在线观看| 一级片免费观看大全| 午夜精品在线福利| 最近最新中文字幕大全电影3 | 在线观看一区二区三区| 久久精品国产亚洲av高清一级| 精品日产1卡2卡| 午夜激情av网站| 久久狼人影院| 国产精品 国内视频| 国产片内射在线| 成人特级黄色片久久久久久久| 久久天堂一区二区三区四区| 青草久久国产| 午夜免费鲁丝| 久久久久亚洲av毛片大全| 少妇裸体淫交视频免费看高清 | 亚洲国产欧洲综合997久久, | 成人特级黄色片久久久久久久| 免费电影在线观看免费观看| 一进一出抽搐动态| 99久久99久久久精品蜜桃| 午夜视频精品福利| 免费高清在线观看日韩| 精品午夜福利视频在线观看一区| 欧美不卡视频在线免费观看 | 精品国产一区二区三区四区第35| 色播亚洲综合网| 精品久久久久久久久久免费视频| 日韩免费av在线播放| 俄罗斯特黄特色一大片| 在线av久久热| 亚洲色图av天堂| 一进一出好大好爽视频| 一本久久中文字幕| 啦啦啦观看免费观看视频高清| 成人av一区二区三区在线看| 欧美性猛交黑人性爽| 久久草成人影院| 久热爱精品视频在线9| 天天躁狠狠躁夜夜躁狠狠躁| 18美女黄网站色大片免费观看| 亚洲天堂国产精品一区在线| 国产亚洲精品久久久久久毛片| 日韩欧美三级三区| 久久久国产成人免费| 搡老熟女国产l中国老女人| 啦啦啦免费观看视频1| cao死你这个sao货| 亚洲欧洲精品一区二区精品久久久| 欧美日韩黄片免| 欧美性猛交黑人性爽| 久久久国产成人精品二区| 亚洲午夜精品一区,二区,三区| 亚洲成人国产一区在线观看| 日韩高清综合在线| 日日爽夜夜爽网站| 波多野结衣av一区二区av| 1024视频免费在线观看| 看免费av毛片| 精品久久久久久,| 国产成人精品无人区| 国产av一区在线观看免费| 91av网站免费观看| 亚洲第一电影网av| 国产一级毛片七仙女欲春2 | 色av中文字幕| 亚洲中文字幕日韩| 亚洲精品国产精品久久久不卡| aaaaa片日本免费| 欧美激情久久久久久爽电影| 亚洲成人国产一区在线观看| 国产av又大| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕高清在线视频| 国产真人三级小视频在线观看| 精品久久久久久久末码| 成人欧美大片| 国产在线观看jvid| 国产成人影院久久av| 久久久久久久久中文| 美女免费视频网站| 黄片大片在线免费观看| 国产成人精品久久二区二区免费| 97人妻精品一区二区三区麻豆 | 老司机午夜福利在线观看视频| 久久香蕉精品热| videosex国产| www.熟女人妻精品国产| 日韩免费av在线播放| cao死你这个sao货| 国产高清videossex| 国产爱豆传媒在线观看 | 亚洲人成77777在线视频| 大型黄色视频在线免费观看| 中文字幕人妻丝袜一区二区| 人人妻人人澡人人看| 欧美性长视频在线观看| 18禁国产床啪视频网站| 99热6这里只有精品| 美女国产高潮福利片在线看| 国产精品免费一区二区三区在线| 三级毛片av免费| 欧美日韩瑟瑟在线播放| 日韩欧美三级三区| 99久久精品国产亚洲精品| 国产精品免费视频内射| 99在线人妻在线中文字幕| 久久久国产成人精品二区| 白带黄色成豆腐渣| 91麻豆精品激情在线观看国产| 男人操女人黄网站| 亚洲自偷自拍图片 自拍| 国产精品久久久久久精品电影 | 亚洲一区二区三区色噜噜| 国产一区二区三区在线臀色熟女| 国产精品永久免费网站| 最好的美女福利视频网| 久久久精品欧美日韩精品| 成熟少妇高潮喷水视频| 国产99白浆流出| 久久精品国产亚洲av高清一级| 国产aⅴ精品一区二区三区波| 男人舔奶头视频| 色精品久久人妻99蜜桃| 色综合婷婷激情| 两个人免费观看高清视频| 无人区码免费观看不卡| 精品不卡国产一区二区三区| 90打野战视频偷拍视频| 欧美久久黑人一区二区| 亚洲自拍偷在线| 成人手机av| 国产精品国产高清国产av| 国产一区二区在线av高清观看| 首页视频小说图片口味搜索| 免费在线观看视频国产中文字幕亚洲| 国产一卡二卡三卡精品| 在线观看免费日韩欧美大片| 国产激情偷乱视频一区二区| 两个人免费观看高清视频| 非洲黑人性xxxx精品又粗又长| 亚洲五月色婷婷综合| 久久中文字幕人妻熟女| 亚洲天堂国产精品一区在线| 亚洲成人精品中文字幕电影| 亚洲色图 男人天堂 中文字幕| 在线十欧美十亚洲十日本专区| 亚洲精品美女久久久久99蜜臀| 桃色一区二区三区在线观看| 亚洲一区二区三区色噜噜| 亚洲黑人精品在线| 国产亚洲精品综合一区在线观看 | 草草在线视频免费看| 热99re8久久精品国产| 变态另类成人亚洲欧美熟女| 亚洲性夜色夜夜综合| 午夜免费鲁丝| av欧美777| 首页视频小说图片口味搜索| 少妇粗大呻吟视频| 精品久久久久久久末码| 国产伦在线观看视频一区| 久久香蕉国产精品| 伦理电影免费视频| 一级a爱片免费观看的视频| 国产麻豆成人av免费视频| 国产午夜福利久久久久久| 人成视频在线观看免费观看| 欧美日本视频| 长腿黑丝高跟| 日韩欧美国产在线观看| 国产精品综合久久久久久久免费| 黄色视频,在线免费观看| 可以在线观看毛片的网站| 午夜免费观看网址| 国产麻豆成人av免费视频| 一区二区三区激情视频| 欧美成人性av电影在线观看| 中文资源天堂在线| 国产黄a三级三级三级人| 观看免费一级毛片| 一区福利在线观看| aaaaa片日本免费| 99久久久亚洲精品蜜臀av| 久久久久国内视频| 成人国产综合亚洲| 国产黄色小视频在线观看| 国产精品野战在线观看| 波多野结衣高清作品| 日本三级黄在线观看| 亚洲欧美日韩无卡精品| 一边摸一边抽搐一进一小说| 色婷婷久久久亚洲欧美| 久久中文字幕人妻熟女| 久久热在线av| 日韩欧美一区视频在线观看| 十分钟在线观看高清视频www| 亚洲 国产 在线| 最近在线观看免费完整版| 国产视频一区二区在线看| 欧美在线一区亚洲| av天堂在线播放| 禁无遮挡网站| 中文亚洲av片在线观看爽| 夜夜爽天天搞| 色综合婷婷激情| 亚洲成人国产一区在线观看| 亚洲第一电影网av| 亚洲 国产 在线| 日韩高清综合在线| 成人国产综合亚洲| 黄色视频,在线免费观看| 可以在线观看毛片的网站| 国产精品二区激情视频| 成人亚洲精品av一区二区| 久久久国产欧美日韩av| 国产97色在线日韩免费| 国产男靠女视频免费网站| 两人在一起打扑克的视频| 国产男靠女视频免费网站| 久久久精品国产亚洲av高清涩受| 动漫黄色视频在线观看| 国产色视频综合| 身体一侧抽搐| 中文字幕人妻熟女乱码| 亚洲精品国产区一区二| 大香蕉久久成人网| 天天一区二区日本电影三级| 丝袜美腿诱惑在线| av电影中文网址| 18禁美女被吸乳视频| 久久精品国产综合久久久| 俄罗斯特黄特色一大片| 中文资源天堂在线| 欧美日韩亚洲综合一区二区三区_| 午夜日韩欧美国产| 俄罗斯特黄特色一大片| 99久久99久久久精品蜜桃| 色综合站精品国产| 亚洲国产欧美网| 嫩草影院精品99| 在线观看舔阴道视频| 国产精品精品国产色婷婷| 香蕉久久夜色| 国产黄色小视频在线观看| 超碰成人久久| 色播亚洲综合网| 成年版毛片免费区| 18禁裸乳无遮挡免费网站照片 | 999久久久精品免费观看国产| 又大又爽又粗| 亚洲国产高清在线一区二区三 | 久久午夜综合久久蜜桃| 免费在线观看完整版高清| 亚洲人成网站高清观看| 波多野结衣高清作品| 国产精品野战在线观看| 欧美性猛交╳xxx乱大交人| 搞女人的毛片| 69av精品久久久久久| 麻豆成人av在线观看| 亚洲成av人片免费观看| 日本免费一区二区三区高清不卡| 免费在线观看亚洲国产| 国产野战对白在线观看| 欧美成人免费av一区二区三区| 男女做爰动态图高潮gif福利片| 国产aⅴ精品一区二区三区波| 欧美激情极品国产一区二区三区| 国产亚洲精品综合一区在线观看 | 欧美性猛交黑人性爽| 成人永久免费在线观看视频| 亚洲一码二码三码区别大吗| 在线观看免费视频日本深夜| 午夜精品在线福利| 伊人久久大香线蕉亚洲五| 成人国语在线视频| 亚洲精品久久成人aⅴ小说| 国产aⅴ精品一区二区三区波| 久久精品影院6|