• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vibration Fatigue Probabilistic Life Prediction Model and Method for Blade

    2018-07-11 02:57:44LouGuokangWenWeidongWuFuxianZhangHongjian

    Lou Guokang,Wen Weidong,Wu Fuxian,Zhang Hongjian

    College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Abstract:Vibration fatigue is one of the main failure modes of blade.The vibration fatigue life of blade is scattered caused by manufacture error,material property dispersion and external excitation randomness.A new vibration fatigue probabilistic life prediction model(VFPLPM)and a prediction method are proposed in this paper.Firstly,as one-dimensional volumetric method(ODVM)only considers the principle calculation direction,a three-dimensional space vector volumetric method(TSVVM)is proposed to improve fatigue life prediction accuracy for actual threedimensional engineering structure.Secondly,based on the two volumetric methods(ODVM and TSVVM),the material C-P-S-N fatigue curve model(CFCM)and the maximum entropy quantile function model(MEQFM),VFPLPM is established to predict the vibration fatigue probabilistic life of blade.The VFPLPM is combined with maximum stress method(MSM),ODVM and TSVVM to estimate vibration fatigue probabilistic life of blade simulator by finite element simulation,and is verified by vibration fatigue test.The results show that all of the three methods can predict the vibration fatigue probabilistic life of blade simulator well.VFPLPM&TSVVM method has the highest computational accuracy for considering stress gradient effect not only in the principle calculation direction but also in other space vector directions.

    Key words:vibration fatigue;probabilistic life prediction;C-P-S-N fatigue curve;volumetric method;maximum entropy quantile function

    0 Introduction

    The blade is one of the most important components of aero-engine,which produces the power to propel the aircraft forward through blade interacting with the air flow.The vibration fatigue caused by periodic air flow is one of the main failure modes of blades.With the development of modern high thrust and high bypass ratio engine,blade vibration fatigue becomes more prominent.The failure of blade not only influences the performance reliability of whole engine but also threatens people’s life.If blade resonance is inevitable,it has an engineering significance to predict accurately the vibration fatigue life for avoiding the occurrence of major accidents.

    The vibration failure analysis and fatigue life prediction of blade damaged in engine operation have received extensive attention of investigations[1-7].For instance,Zhang et al.[1]systematically introduced the fatigue failures,numerical simulations of fatigue,and fatigue test of impellers and blades in several typical turbo machines.It was pointed out that high cycle fatigue(HCF)caused by vibration was the main failure mechanism,fatigue cracks was initiated from the location of stress concentration,and the resonance caused by the aerodynamic load was the main cause of fatigue failure of impellers and blades in a steady operating condition.Witek[2]conducted the experimental and numerical analysis to investigate both crack propagation and damage process of the compressor blade subjected to high cycle fatigue,and pointed that the transverse vibrations can be very dangerous for compressor blades because of large levels of stress occurring during resonance.Zucca[4]proposed a method to evaluate the friction damping due to the relative tangential motion on the blade root joints and computed its impact on the forced response of bladed disks.

    In the engineering practice,there are many uncertain factors during design,manufacture and operation,such as material properties,geometric dimension,external excitation and so on.It is not accurate and has shortages to employ the deterministic approaches to evaluate the fatigue life of the blade.Many researches show that probabilistic approach is effective on predicting fatigue life of blade[8-11].Zhang et al.[8]proposed a probability method called PHBA for prediction on HCF of blades caused by aerodynamic loads.Based on the PHBA,the probabilistic accumulative damages altering with operation time were calculated,and the operational reliabilities were also obtained.Lin et al.[9]proposed an improved stress-strength interference(SSI)model and nonlinear residual strength model to analyze the reliability of aeroengine blades with the fatigue failure mode.The results show that an important advantage of the nonlinear residual strength model and the improved SSI model compared to classical approach is their applicability to any actual component through the finite element(FE)technique.Gao et al.[10]applied the collaborative response surface method to the reliability analysis of turbine blade low-cycle fatigue damage.Through the comparison of methods,it reveales that distributed collaborative response surface method is superior to response surface method in computational precision and efficiency,especially for low confidence level.

    In most of practical applications involving probabilistic fatigue life analysis of blade,the reliability function is defined implicitly,and its evaluation requires numerical response calculations by means of finite element analysis(FEA).There are several different possible methods for reliability analysis with implicit reliability function.Those methods mainly contain the firstorder second-moment(FOSM)[12],second-order second-moment(SOSM)[13],response surface method(RSM)[8,10]and Monte Carlo method(MCM)[14].However FOSM and SOSM are only applied to the low nonlinear reliability problem and possess low analytical precision for high nonlinear reliability problems.The conventional RSM requires large computational efforts and shows loss of accuracy in the case of problems exhibiting acute nonlinearity.The MCM holds low computation efficiency and the simulation credibility depends on the size of samples[10].

    The maximum entropy method is a distribution free technique for estimating the reliability function of the response such as cumulative distribution function(CDF).It is widely studied and recognized as an efficient stochastic modeling tool when a small number of samples is available[15-18].Pandey[15]proposed a distribution free method for estimating the quantile function of a non-negative random variable using the principle of maximum entropy subjected to constraints specified in terms of the integral-order probability-weighted moments(IPWM)estimated from observed data.Deng[16]proposed the fractional probability weighted moments(FPWM)based quantile function to improve the computational accuracy of IPWM based quantile function.Deng[17]proposed a distribution free method for the estimation of the quantile function of random variable using a censored sample of data,which was based on the principle of partial maximum entropy with constraints in terms of partial probability-weighted moments(PPWM).

    Bending vibration fatigue is one of the main failure modes of blade.When the blade is subjected to bending vibration,there exists stress gradient in the thickness direction.The fatigue prediction accuracy of blade can be improved through considering the effect of stress gradient.In the engineering practice there are many researches about the effect of stress gradient on the fatigue life prediction[19-21].Qylafku et al.[19]introduced a new macro-mechanical model for fatigue life prediction,considering an elastic-plastic stress distribution and the stress gradient evolution.Adib-Ramezani et al.[20]proposed a new method called polynomial volumetric method,which satisfies weight function conditions,removes numerical derivation errors and elucidates effective stress terms as subtraction of average stress and relative stress gradient based phrase.Moustabchir et al.[21]proposed a safety methodology to detect the boundary of failure assessment diagram(FAD),as a new solution to predict the service life of pipeline products.The methodology was connected to the modified FAD approach,whereas the specific parameters were settled using the volumetric method calculation,based on the notch stress intensity factor determined in the elasto-plastic field.However,the volumetric method applied by these literatures to study the effects of stress gradient is one-dimensional,so it is not convenient to use such the method to predict the fatigue life of actual three-dimensional engineering structure.

    In this paper,compared with one-dimensional volumetric method(ODVM)firstly,a threedimensional space vector volumetric method(TSVVM)is proposed to improve fatigue life prediction accuracy for actual three-dimensional engineering structure.Secondly,based on the volumetric method(ODVM or TSVVM),material CP-S-N fatigue curve model(CFCM)and maximum entropy quantile function model(MEQFM),a vibration fatigue probabilistic life prediction model(VFPLPM)is built and a method is established to predict the vibration probabilistic life of blade.Finally,the vibration test and numerical simulation of blade simulator are conducted to verify the validation of the VFPLPM and method.

    1 Experiments

    1.1 Ti2AlNb titanium-aluminium alloy fatigue test

    Ti2Al Nb titanium-aluminium alloy is a kind of casting alloy,whose nominal chemical composition is Ti22Al24Nb.It has excellent comprehensive properties,and is mainly applied in the fan blade and compressor wheel and blade.

    The tension-compression symmetric fatigue test of Ti2Al Nb was conducted under stress control on the fatigue testing machine(Fig.1)with room temperature(25℃)and 10 Hz test frequency.The test specimens were designed and manufactured to round dumbbells(Fig.2).Four test stress levels,80%σb,70%σb,60%σb,and 50%σbwere chosen,whereσbis the ultimate stress and the value is 1 212.592 MPa.The fatigue life of each specimen was obtained while fracture failure occurred.Different numbers of fatigue test data could be obtained on each stress level.

    Fig.1 SDS-50 electro hydraulic servo dynamic static and dynamic testing machine

    Fig.2 Tension and compression fatigue test specimen

    1.2 Vibration fatigue test of blade simulator

    Fig.3 Blade simulator specimen

    The blade simulator(Ti2Al Nb titanium-aluminium alloy flat plate with notches,Fig.3)was adopted because of the complex shape and high processing cost.Moreover,the vibration forms and characteristics of external excitations are dif-ferent,such as wake excitation,inlet flow distortion,and rotating stall.In this section,foundation excitation vibration fatigue test was adopted to verify the VFPLPM.Fig.4 shows the foundation excitation vibration fatigue test equipment.

    Fig.4 Vibration fatigue test equipment

    In order to study the vibration fatigue probabilistic life of blade simulator,15 test samples were designed based on the uniform design table[22,23].The probability distribution and sample values of design parameters and vibration fatigue test results are listed in Tables 1—2.

    There were four steps to obtain those sample values of the design parameters and results of vibration fatigue.

    (1)The length,width and height of blade simulator could be measured by vernier caliper.The density could be estimated by mass and volume which were measured by FA2004CS electronic scales and UG software respectively.

    (2)The estimation of elastic modulus of each blade simulator.①The 1st order resonance frequency of each blade simulator could be obtained by free decay oscillation method.After hammering the simulator blade,the strain response was collected and processed by NI SCXI-1000(Figs.5—6).The 1st order resonance frequency of each blade simulator is equal to the period of oscillation of the strain time curve.②The functional relationship between 1st order resonance frequency and elastic modulus could be obtained by finite element analysis and polynomial fitting(Fig.7).The elastic modulus of each blade simulator was estimated through polynomial fitting at corresponding 1st order resonance frequency.

    (3)The estimation of the material damping of blade simulator.①15 blade simulators were subjected to the single frequency harmonic foun-dation excitation with excitation amplitude 9 806.65 mm/s2and excitation frequency range 57—62 Hz.The strain responses of 15 blade simulators were collected and processed by NI SCXI-1000(Fig.8).②The functional relationship among material damping,excitation frequency and strain response could be obtained by the finite element analysis and B spline interpolation surface method(Fig.9).The material damping of each blade simulator could be estimated by the interpolation surface at corresponding excitation frequency and strain response(Figs.9—10).It is shown that material damping decreases with the increase of excitation frequency,and material damping at each excitation frequency are dispersed.

    Table 1 Experimental design parameters and vibration fatigue test results

    Table 2 Probability distribution of design parameters and vibration fatigue test results

    Fig.5 Position of hammer point and strain gauge

    Fig.6 Strain time curve of 8#blade simulator

    Fig.7 Functional relationship between 1st order resonance frequency and elastic modulus of 8#blade simulator

    Fig.8 Functional relationships between strain response and excitation frequency of 15 blade simulators

    Fig.9 Interpolation surface of excitation frequency,material damping and strain response of 8#blade simulator

    Fig.10 Functional relationships between material damping and excitation frequency of 15 blade simulators

    (4)Vibration fatigue test.The blade simulator was mounted on the dynamic shaker through the fixture(Fig.4)to be subjected to single frequency harmonic foundation excitation.The vibration fatigue lives of blade simulators were obtained when the fracture failure occurred under designed excitation amplitude and frequency listed in Table 1.

    2 VFPLPM and Method

    The vibration fatigue life of blade is scattered because of manufacture error,material property dispersion and external excitation randomness.It is significant to establish vibration fatigue probabilistic life prediction model(VFPLPM)and method.

    2.1 C-P-S-N fatigue curve model(CFCM)

    From the Ti2Al Nb titanium-aluminium alloy fatigue test(see Section 1.1),different numbers of fatigue test data on each stress level could be obtained.It is verified that fatigue test data of each stress level follow the lognormal distribution(Fig.11).

    According to the existed error between the estimated distribution parameters and real value on the small samples,scatter factor method(SFM)[18]is introduced to improve confidence level of distribution parameter estimation.

    The fatigue test data of each stress level are represented by random variable X with the order statistics(x(1)≤x(2)≤ …≤x(n)),and the random variable Y=lg X follows normal distribution.The quantile function Q(γ,p)of random variable X with confidence levelγ,and reliability p can be presented as

    Fig.11 Normal distribution fitting of logarithmic fatigue life of 80%σbstress level

    where Q1(γ,p)is the quantile function based on minimum order statistic SFM,Qn(γ,p)is the quantile function based on maximum order statistic SFM,Q 0.5,()p is the quantile function with 50%confidence level.F-1(μY,σY,1-p)is the quantile function value of random variable Y with reliability p where F-1(·)is the inverse function of cumulative distribution function.μY,σYare the mean value and standard deviation of Y,respectively.Whenγ>0.5,Q(γ,p)is the quantile function with lower confidence limit ofγ;whenγ<0.5,Q(γ,p)diploys the upper confidence limit of 1-γ.It is verified that,minimum order statistic SFM and maximum order statistic SFM can be combined to estimate the quantile function of fatigue test data on specified confidence level(Fig.12).

    Based on the quantile function Q(γ,p)of each stress level,the C-P-S-N fatigue curve model is defined as[24]

    Fig.12 Confidence interval estimation of fatigue life of 80%σbstress level

    where scpsn(γ,p),mcpsn(γ,p),ccpsn(γ,p)are the fatigue curve parameters,which are estimated by the quantile function value of each stress level with confidence levelγand reliability p.s is the stress level and Nfis the fatigue life.Finally,the fatigue curve of Ti2Al Nb titanium-aluminium alloy with confidence levelγand reliability p can be estimated by Eq.(2)(Fig.13).

    Fig.13 C-P-S-N fatigue curve of Ti2Al Nb titanium-aluminium alloy

    2.2 Maximum entropy quantile function model(MEQFM)

    Compared with the traditional probability distribution hypothesis and parameter estimation method,maximum entropy method is a distribution free technique,which is more efficient and flexible.The maximum entropy quantile function model QMEM(u)of random variable G can be written as[15-18]

    The relationship with Lagrange multipliers[15-18]is

    where u is the cumulative probability function value of random variable G.λj(j=0,1,…,m) are the Lagrange multipliers,and can be estimated by solving follow optimization problem[15-18]

    where bj(j=0,1,…,m) are the one form of probability weighted moments(PWMs),and m is the highest order of PWMs considered in the analysis.

    From an ordered random sample of G with size n( g1≤g2≤…≤gn),bjcan be obtained as[15-18]

    2.3 Three-dimensional space vector volumetric method(TSVVM)

    The vibration fatigue failure caused by air flow excitation is one of the main failure modes of blade,and bending vibration is common in the actual situation.Because it has the stress gradient in the blade thickness direction when blade is subjected to bending vibration,it is significant to consider the effect of stress gradient for improving the prediction accuracy of fatigue life.

    According to the volumetric method,the fatigue damage of structure is not only relative to the maximum stress but also relative to the stress distribution around maximum stress position.The equivalent stress sVMis used to describe the effect of stress distribution around the maximum stress position,and the most common formula sODVMof sVMbased on one-dimensional volumetric method is defined as[19-21]

    where leffis the effective distance,which is along with the crack direction.f sij,()l is the function of stress component sijat the l distance,which is usually the principal stress or von Mises stress.χ is the relative stress gradient and l is the distance between the calculation point and dangerous point(maximum stress position).

    The relative stress gradientχis defined as[19-21]

    The effective distance leffis determined as the distance between the first local minimum point of relative stress gradient curve and the dangerous point(Fig.14).It is thought that there exists the stress relaxation at the effective distance point.In this paper,the equivalent stress sOVMdefined by Eq.(7)is called one-dimensional volumetric method(ODVM).

    The physical meaning of Eq.(7)can be interpreted that the stress functionat dangerous point is predicted by the stress function f s(ij,l) at the l distance point,and the equivalent stress sODVMis equal to the average value of all the predicted stress function.

    Fig.14 Stress and relative stress gradient distribution around the dangerous point

    To improve the computational accuracy of equivalent stress by considering the stress gradient effect of other space vector directions,a new three-dimensional volumetric method called threedimensional space vector volumetric method(TSVVM)is proposed.The equivalent stress sTSVVMbased on TSVVM is defined as

    There are two problems needed to be solved before applying Eq.(9):

    (1)Determination of calculation directions

    ①M(fèi)ake a calculation sphere Scwith radius r and mark the dangerous point of engineering structure as center(usually,r=1—2 mm on the actual situation).

    ②Determine the intersection region between the three-dimensional engineering structure and calculation sphere(Fig.15).

    Fig.15 Intersection region between three-dimensional engineering structure and calculation sphere

    ③Mesh the calculation sphere surface of intersection region by the triangular element with 0.1 mm size(Fig.16).

    ④Obtain a calculation direction by lining dangerous point and element node(Fig.16).

    Fig.16 Spatial calculation direction

    ⑤Determine the N calculation directions by repeating the step④,where N is the number of element nodes.

    (2)Determination of stress distribution on the calculation direction r

    In the engineering practice,the spatial stress distribution of three-dimensional engineering structure is obtained by the finite element software,and it is saved as node stress.It needs to apply the three-dimensional interpolation technique to obtain the stress distribution on the calculation direction r.

    The Kriging model is an interpolation technique based on statistical theory.It has several advantages,such as unbiased estimator at the training sample point,desirably strong nonlinear approximating ability,flexible parameter selection of the model and accurate global approximation ability.These advantages make it widely used in approximate models[25,26].In this section,Kriging model is applied to determine the stress distribution on the calculation direction r.

    Generally,the steps of applying the TSVVM are:

    (1)Obtain the stress distribution of engineering structure by the finite element software Patran&Nastran.

    (2)Mark the maximum stress point as dangerous point.

    (3)Determine the N calculation directions

    (4)Obtain the stress distribution of calculation direction r by Kriging model and estimate the equivalent stress of calculation direction r based on Eq.(7).

    (5)Determine the calculation direction rmaxwhich has maximum average stress gradient.

    (6)Estimate the equivalent stress sTSVVMbased on Eq.(9).

    2.4 Establishment of VFPLPM and method

    Because of the manufacture error,material property dispersion and external excitation randomness,the vibration fatigue life of blade is dispersed.VFPLPM is proposed based on the volumetric method,CFCM and MEQFM.The formula QVFu,

    ()γof VFPLPM can be written as

    where QVFu,()γis the quantile function of blade vibration fatigue life with variable u andγ.u is the cumulative distribution function value.γis the upper confidence limit.λγ,jis the Lagrange multiplier with upper confidence limitγ.t is the order of Lagrange multipliers.The Lagrange multiplierscan be estimated by the MEQFM and vibration fatigue life samples Lsamplewith upper confidence limitγwhich is obtained by volumetric method(ODVM or TSVVM)and CFCM.

    The detailed procedures of generating the vibration fatigue life samples Lsamplewith upper confidence limitγare:

    (1)Assuming that dimension parameters of blade(length,width,height),material property parameters(elastic modulus,density,reliability p of C-P-S-N fatigue curve,material damping)and external excitation(excitation amplitude and frequency)are random variables.Nsampledesign samples are generated based on the uniform design table[22,23],and each of design samples is the combination of dimension parameters of blade,material property parameters and external excitation.

    (2)Nsampleequivalent stress samples ssamplecan be obtained based on the vibration fatigue finite element simulation of blade and volumetric method(ODVM,Eq.(7)or TSVVM,Eq.(9)).

    (3)Nsamplevibration fatigue life samples Lsamplewith upper confidence limitγare obtained based on CFCM(Eq.(2)),design samples of reliability p of C-P-S-N fatigue curve and equivalent stress samples ssample.

    3 Finite Element Simulation and Test Verification

    As the complex shape and high processing cost of real blade,the blade simulator(Fig.3)was adopted.Moreover,the vibration forms and characteristics of actual external excitations are different,such as wake excitation,inlet flow distortion and rotating stall.It is complex and costly to conduct the test in the actual condition.In this section,foundation excitation vibration fatigue test was adopted to study the vibration fatigue probabilistic life prediction model(VFPLPM)and method.

    In this section,dimension parameters of blade simulator,material property parameters and external excitation were treated as random variables.Vibration fatigue probability life of blade simulator was estimated by combining VFPLPM with maximum stress method(MSM),one-dimensional volumetric method(ODVM)and three-dimensional space vector volumetric method(TSVVM),respectively.Moreover,it was compared with the vibration fatigue test data for verifying VFPLPM,and then compared with the computational accuracy of three equivalent stress methods.The vibration fatigue test could be seen in the Section 2.2.

    The reliability of C-P-S-N fatigue curve follows uniform distribution with value range from 0.025 to 0.975.The 200 design samples of foundation excitation vibration finite element simulation were generated by the uniform design table[22,23]and corresponding simulation samples of vibration fatigue life of blade simulator were obtained by the MSM,ODVM and TSVVM,respectively.Finally the vibration fatigue probabilistic life of blade simulator was estimated based on the VFPLPM(Eq.(10))and simulation samples of vibration fatigue life of blade simulator.The foundation excitation vibration finite element simulation of blade simulator is shown in Fig.17.

    The cumulative distribution function(CDF)of vibration fatigue probabilistic life of blade simulator with 50%confidence level based on the VFPLPM+TSVVM method is shown in Fig.18.It is showed that the cumulative distribution function curve is in good agreement with simulation samples and test data,and the VFPLPM+TSVVM method has higher accuracy(Note:Cumulative distribution function is the inverse function of qunatile function).

    Fig.17 Finite element simulation of blade simulator

    Fig.18 Quantile function of vibration fatigue probabilistic life of blade simulator based on VFPLPM+TSVVM method

    The maximum entropy probability density function(PDF)of vibration fatigue probabilistic life of blade simulator based on VFPLPM+TSVVM is shown in Fig.19,and it shows that the predicted vibration fatigue life of blade simulator follows lognormal distribution.The simulation samples and test data were also verified by the traditional probability distribution hypothesis and parameter estimation method.Fig.20 and Table 3 show that the simulation samples are coincident with test data with all obeying the lognormal distribution and having similar distribution parameters(Cumulative distribution functions and probability density functions of vibration fatigue probabilistic life of blade simulator based on the VFPLPM+MSM method and the VFPLPM+ODCV method have the same results with that based on the VFPLPM+TSVVM method,

    Fig.19 Maximum entropy probability density function of vibration fatigue probabilistic life of blade simulator based on VFPLPM+TSVVM method

    Fig.20 Normal distribution fitting of logarithmic vibration fatigue probabilistic life of blade simulator

    Table 3 Lognormal distribution parameters of vibration fatigue probabilistic life of blade simulator

    which are not discussed here).

    The ordered vibration fatigue test life Nf,test of blade simulator with Nf,test,1≤Nf,test,2≤…≤Nf,test,15is defined as middle rank test data,and the corresponding ordered cumulative distribution function value uican be determined by the middle rank method[18],shown as

    where uiis the i th ordered cumulative distribution function value,n is the number of vibration fatigue test life,here n=15.

    The comparisons of quantile function confidence interval estimation of vibration fatigue probabilistic life of blade simulator among three combination methods are showed in Figs.21—23,and Table 4.

    (1)The percentages of middle rank test data falling in the 95%confidence interval are all 100%.Therefore three combination methods can predict the vibration fatigue probabilistic life of blade simulator well.

    Fig.21 Quantile function confidence interval estimation of vibration fatigue probabilistic life of blade simulator based on VFPLPM+MSM method

    Fig.23 Quantile function confidence interval estimation of vibration fatigue probabilistic life of blade simulator based on VFPLPM+TSVVM method

    (2)Based on comparisons between the number of minimum absolute relative error and the mean of absolute relative error in the 50%,90%,95%lower confidence limit,the VFPLPM+TSVVM method has the highest computational accuracy,because the prediction accuracy of fatigue life can be affected by stress gradient,and TSV-VM considers stress gradient effect not only in the principle calculation direction but also other space vector directions.

    Table 4 Computational accuracy comparisons among three combination methods

    4 Conclusions

    (1)The VFPLPM is combined with maximum stress method(MSM),ODVM and TSVVM respectively to predict the vibration fatigue probabilistic life of blade simulator.The results of vibration fatigue probabilistic life finite element simulation and vibration fatigue test of blade simulator show that all three combination methods all predict the vibration fatigue probabilistic life of blade simulator well.

    (2)VFPLPM+TSVVM has the highest computational accuracy for considering stress gradient effect not only in the principle calculation direction but also other space vector directions.

    Acknowledgement

    This work was supported by the Aviation Science Foundation of China(No.20150252003).

    日日摸夜夜添夜夜添av毛片| 女性生殖器流出的白浆| 简卡轻食公司| 国内精品宾馆在线| 我要看日韩黄色一级片| 七月丁香在线播放| 欧美亚洲 丝袜 人妻 在线| 波野结衣二区三区在线| 国产精品蜜桃在线观看| 乱系列少妇在线播放| 97热精品久久久久久| 日本爱情动作片www.在线观看| 免费久久久久久久精品成人欧美视频 | 免费在线观看成人毛片| 极品教师在线视频| 国产淫语在线视频| 性高湖久久久久久久久免费观看| 国产精品成人在线| 亚洲美女视频黄频| 欧美日韩视频高清一区二区三区二| 在线观看美女被高潮喷水网站| 亚洲综合精品二区| 99热这里只有精品一区| 亚洲性久久影院| 欧美xxⅹ黑人| 亚洲综合色惰| 亚洲色图综合在线观看| 亚洲人与动物交配视频| 最近最新中文字幕大全电影3| 人妻一区二区av| 国产免费一级a男人的天堂| 精品国产乱码久久久久久小说| 麻豆国产97在线/欧美| 高清不卡的av网站| 99热这里只有是精品在线观看| 久久久a久久爽久久v久久| 高清视频免费观看一区二区| 亚洲人成网站在线播| 精品亚洲成国产av| .国产精品久久| 久久久亚洲精品成人影院| 一区二区av电影网| 精品一区在线观看国产| 一本一本综合久久| 国产日韩欧美亚洲二区| 亚洲中文av在线| 亚洲精品自拍成人| 国产亚洲午夜精品一区二区久久| 美女内射精品一级片tv| 日韩 亚洲 欧美在线| 亚洲不卡免费看| 日日摸夜夜添夜夜添av毛片| 亚洲精品亚洲一区二区| 麻豆国产97在线/欧美| 能在线免费看毛片的网站| 美女高潮的动态| 美女中出高潮动态图| 久久久久久久久久人人人人人人| 成人国产麻豆网| 免费观看无遮挡的男女| 蜜桃亚洲精品一区二区三区| 日日摸夜夜添夜夜添av毛片| 亚洲真实伦在线观看| 亚洲av福利一区| 91久久精品国产一区二区成人| 51国产日韩欧美| 亚洲人成网站高清观看| 国产黄片美女视频| 黑人高潮一二区| 久久韩国三级中文字幕| 干丝袜人妻中文字幕| 亚洲第一av免费看| av天堂中文字幕网| 国产精品av视频在线免费观看| 中国国产av一级| 一本一本综合久久| 久久精品熟女亚洲av麻豆精品| 五月开心婷婷网| 少妇人妻一区二区三区视频| 国产精品女同一区二区软件| 久久精品国产亚洲网站| 精品久久久噜噜| 人人妻人人澡人人爽人人夜夜| 街头女战士在线观看网站| 久久久久视频综合| 一本—道久久a久久精品蜜桃钙片| 各种免费的搞黄视频| 汤姆久久久久久久影院中文字幕| 天天躁夜夜躁狠狠久久av| 亚洲精品亚洲一区二区| 蜜臀久久99精品久久宅男| 日本av免费视频播放| 婷婷色综合大香蕉| 菩萨蛮人人尽说江南好唐韦庄| 最黄视频免费看| 狂野欧美激情性xxxx在线观看| 成人影院久久| 免费久久久久久久精品成人欧美视频 | 高清日韩中文字幕在线| 国产精品国产三级国产av玫瑰| 交换朋友夫妻互换小说| 全区人妻精品视频| 国产伦理片在线播放av一区| 久久精品国产亚洲av涩爱| 亚洲性久久影院| 久久久久久久久久成人| 赤兔流量卡办理| 精品少妇黑人巨大在线播放| 日本黄色日本黄色录像| 欧美日韩综合久久久久久| 亚洲电影在线观看av| 男的添女的下面高潮视频| 成人黄色视频免费在线看| av免费观看日本| 国产午夜精品久久久久久一区二区三区| 亚洲av中文av极速乱| 国产av精品麻豆| 男女边摸边吃奶| 免费高清在线观看视频在线观看| 一区二区三区精品91| 午夜激情久久久久久久| 亚洲人与动物交配视频| 国产午夜精品一二区理论片| 免费高清在线观看视频在线观看| 亚洲国产精品一区三区| 久久精品久久久久久久性| 人妻 亚洲 视频| 天堂中文最新版在线下载| 久久国产乱子免费精品| 亚洲色图综合在线观看| 亚洲精品一区蜜桃| 九九在线视频观看精品| 亚洲精品色激情综合| 插阴视频在线观看视频| 国产一区有黄有色的免费视频| 伦理电影大哥的女人| 久久热精品热| 久久ye,这里只有精品| 国产美女午夜福利| 欧美变态另类bdsm刘玥| 我的老师免费观看完整版| 黑人高潮一二区| 久久国产亚洲av麻豆专区| 特大巨黑吊av在线直播| 91狼人影院| 纵有疾风起免费观看全集完整版| 国内揄拍国产精品人妻在线| 最后的刺客免费高清国语| 又爽又黄a免费视频| 美女脱内裤让男人舔精品视频| 少妇的逼水好多| 人体艺术视频欧美日本| 亚洲熟女精品中文字幕| 女人十人毛片免费观看3o分钟| 亚洲国产最新在线播放| 亚洲成人一二三区av| 日日啪夜夜爽| 日本黄大片高清| 国产亚洲午夜精品一区二区久久| 日韩 亚洲 欧美在线| 小蜜桃在线观看免费完整版高清| 制服丝袜香蕉在线| 国产亚洲午夜精品一区二区久久| 建设人人有责人人尽责人人享有的 | 国产老妇伦熟女老妇高清| 伊人久久国产一区二区| 亚洲久久久国产精品| av在线观看视频网站免费| 国产亚洲最大av| 国产v大片淫在线免费观看| 久久精品国产亚洲av涩爱| 亚洲熟女精品中文字幕| 97热精品久久久久久| 纯流量卡能插随身wifi吗| 久久国产精品男人的天堂亚洲 | 91午夜精品亚洲一区二区三区| 国产亚洲欧美精品永久| 国产精品一区www在线观看| 国产欧美日韩精品一区二区| 国产精品成人在线| 人人妻人人添人人爽欧美一区卜 | 国产精品一区二区性色av| 欧美精品国产亚洲| 国产精品99久久99久久久不卡 | 国产亚洲午夜精品一区二区久久| 在线 av 中文字幕| 成人一区二区视频在线观看| 国产永久视频网站| 综合色丁香网| 极品少妇高潮喷水抽搐| 日本黄大片高清| 多毛熟女@视频| 久久精品国产亚洲网站| 日本黄色日本黄色录像| 一本—道久久a久久精品蜜桃钙片| 2021少妇久久久久久久久久久| tube8黄色片| 欧美xxⅹ黑人| 又粗又硬又长又爽又黄的视频| 成人无遮挡网站| 国产 一区 欧美 日韩| 麻豆成人av视频| 日本色播在线视频| 久久韩国三级中文字幕| 亚洲第一av免费看| 精品人妻偷拍中文字幕| 国产精品精品国产色婷婷| 久久久色成人| 日韩成人伦理影院| 久久99热这里只有精品18| 一级毛片我不卡| 久久国产精品男人的天堂亚洲 | videossex国产| 老女人水多毛片| 日本免费在线观看一区| 黑人猛操日本美女一级片| 99热这里只有是精品在线观看| 久久久久国产网址| 777米奇影视久久| 成年人午夜在线观看视频| 亚洲三级黄色毛片| 午夜福利在线在线| 国产亚洲精品久久久com| 成年女人在线观看亚洲视频| 一区在线观看完整版| 国产成人a∨麻豆精品| 观看免费一级毛片| 久久久久久九九精品二区国产| 久久久久人妻精品一区果冻| 熟妇人妻不卡中文字幕| 亚洲电影在线观看av| 国产亚洲欧美精品永久| 成年av动漫网址| .国产精品久久| 又粗又硬又长又爽又黄的视频| 亚洲精品第二区| 亚洲国产精品999| 午夜福利高清视频| 深爱激情五月婷婷| 国产乱人偷精品视频| 永久网站在线| 亚洲精品久久午夜乱码| 免费黄频网站在线观看国产| 婷婷色麻豆天堂久久| 国产黄片视频在线免费观看| 老女人水多毛片| 国内少妇人妻偷人精品xxx网站| 欧美一区二区亚洲| 精品人妻一区二区三区麻豆| 男的添女的下面高潮视频| 深爱激情五月婷婷| 中文字幕人妻熟人妻熟丝袜美| 人妻夜夜爽99麻豆av| 狂野欧美激情性xxxx在线观看| 欧美日韩亚洲高清精品| 亚洲成色77777| 在线观看三级黄色| 建设人人有责人人尽责人人享有的 | tube8黄色片| 亚洲一区二区三区欧美精品| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 午夜福利网站1000一区二区三区| 久久 成人 亚洲| 丝袜喷水一区| 午夜福利高清视频| 国产黄片视频在线免费观看| 亚洲三级黄色毛片| 国产亚洲5aaaaa淫片| 国产免费视频播放在线视频| 亚洲第一av免费看| 欧美亚洲 丝袜 人妻 在线| 国产免费视频播放在线视频| 如何舔出高潮| av.在线天堂| 日本猛色少妇xxxxx猛交久久| 国产成人aa在线观看| 欧美人与善性xxx| 免费久久久久久久精品成人欧美视频 | 美女福利国产在线 | 国产伦在线观看视频一区| 黄片无遮挡物在线观看| 日本一二三区视频观看| 岛国毛片在线播放| xxx大片免费视频| 国产精品国产三级国产专区5o| 五月开心婷婷网| 亚洲av福利一区| 欧美丝袜亚洲另类| 国产精品不卡视频一区二区| 最新中文字幕久久久久| 99热全是精品| 免费观看av网站的网址| 七月丁香在线播放| 久久韩国三级中文字幕| 人妻 亚洲 视频| 亚洲欧美成人综合另类久久久| 2021少妇久久久久久久久久久| 亚洲性久久影院| 七月丁香在线播放| 婷婷色av中文字幕| 人妻夜夜爽99麻豆av| 日韩强制内射视频| 妹子高潮喷水视频| 亚洲激情五月婷婷啪啪| 午夜老司机福利剧场| 男女无遮挡免费网站观看| 菩萨蛮人人尽说江南好唐韦庄| 在线免费观看不下载黄p国产| 大香蕉久久网| 99热网站在线观看| 国产片特级美女逼逼视频| 日韩在线高清观看一区二区三区| 久久99热这里只有精品18| 熟女人妻精品中文字幕| 夫妻性生交免费视频一级片| 伦理电影免费视频| 97在线人人人人妻| 国产黄频视频在线观看| 插阴视频在线观看视频| 在线播放无遮挡| 精品国产三级普通话版| 国产精品熟女久久久久浪| 国产精品人妻久久久久久| 日本色播在线视频| 香蕉精品网在线| 全区人妻精品视频| 国产黄片视频在线免费观看| h视频一区二区三区| 亚洲欧美成人综合另类久久久| 国产美女午夜福利| 岛国毛片在线播放| 日本av手机在线免费观看| 亚洲人成网站高清观看| 久久久久精品久久久久真实原创| 色视频www国产| 久久人妻熟女aⅴ| 青青草视频在线视频观看| 久久这里有精品视频免费| 亚州av有码| 高清在线视频一区二区三区| 国产成人免费观看mmmm| 精品99又大又爽又粗少妇毛片| 91aial.com中文字幕在线观看| 狂野欧美白嫩少妇大欣赏| av在线蜜桃| 亚洲国产最新在线播放| 精品国产一区二区三区久久久樱花 | 最近2019中文字幕mv第一页| 日韩人妻高清精品专区| 婷婷色综合www| 精品少妇黑人巨大在线播放| 久久久国产一区二区| 99久久人妻综合| 久久久午夜欧美精品| 18禁裸乳无遮挡免费网站照片| 久久av网站| 色婷婷av一区二区三区视频| 97热精品久久久久久| tube8黄色片| 色综合色国产| 亚洲精品视频女| 少妇的逼好多水| 国内精品宾馆在线| 秋霞伦理黄片| 成人毛片60女人毛片免费| 啦啦啦在线观看免费高清www| 日本一二三区视频观看| 秋霞伦理黄片| 亚洲精品视频女| 青春草亚洲视频在线观看| 99热这里只有是精品在线观看| 国产淫语在线视频| 在线观看av片永久免费下载| 在线观看三级黄色| 国产 精品1| 亚洲av中文字字幕乱码综合| 自拍偷自拍亚洲精品老妇| 久久综合国产亚洲精品| 婷婷色av中文字幕| 黄色日韩在线| 国产精品人妻久久久影院| 亚洲精品日本国产第一区| 成年女人在线观看亚洲视频| av免费观看日本| 日韩 亚洲 欧美在线| 人人妻人人爽人人添夜夜欢视频 | www.av在线官网国产| 精品一区在线观看国产| h视频一区二区三区| 日韩大片免费观看网站| 亚洲成人一二三区av| 深夜a级毛片| 国产成人aa在线观看| 国产免费福利视频在线观看| 亚洲高清免费不卡视频| 性高湖久久久久久久久免费观看| 少妇裸体淫交视频免费看高清| 国产高清三级在线| 日韩不卡一区二区三区视频在线| 极品教师在线视频| av在线观看视频网站免费| 国产人妻一区二区三区在| 日本免费在线观看一区| 一级毛片我不卡| 成人免费观看视频高清| 啦啦啦中文免费视频观看日本| 亚洲人成网站高清观看| 国产黄频视频在线观看| 男人和女人高潮做爰伦理| 一个人看视频在线观看www免费| 国产亚洲最大av| 一级毛片aaaaaa免费看小| 黑人高潮一二区| 尤物成人国产欧美一区二区三区| 日本wwww免费看| 热re99久久精品国产66热6| 日韩一本色道免费dvd| 日本欧美国产在线视频| 夜夜看夜夜爽夜夜摸| 嫩草影院入口| 久久女婷五月综合色啪小说| 在线观看免费高清a一片| 亚洲欧美日韩东京热| 18禁在线播放成人免费| 国产伦理片在线播放av一区| 亚洲精品国产成人久久av| 美女中出高潮动态图| 最近最新中文字幕免费大全7| 中文字幕免费在线视频6| 久久久午夜欧美精品| 亚洲国产最新在线播放| 王馨瑶露胸无遮挡在线观看| 最近中文字幕2019免费版| 国精品久久久久久国模美| 欧美+日韩+精品| 各种免费的搞黄视频| 99久久人妻综合| 久久精品国产自在天天线| 亚洲成人一二三区av| 婷婷色麻豆天堂久久| 下体分泌物呈黄色| 亚洲精品aⅴ在线观看| 男人和女人高潮做爰伦理| 国产精品久久久久久久电影| 在线观看免费高清a一片| 夫妻性生交免费视频一级片| 男男h啪啪无遮挡| 国产在线免费精品| 啦啦啦中文免费视频观看日本| 亚洲性久久影院| 国产亚洲最大av| 日韩电影二区| 国产亚洲欧美精品永久| 国产 一区 欧美 日韩| 中文欧美无线码| 国产69精品久久久久777片| av在线蜜桃| 免费观看的影片在线观看| 99精国产麻豆久久婷婷| 成人无遮挡网站| 成人亚洲欧美一区二区av| 亚洲成人手机| 人人妻人人澡人人爽人人夜夜| 久久 成人 亚洲| 亚洲中文av在线| 卡戴珊不雅视频在线播放| 国产午夜精品久久久久久一区二区三区| 亚洲成人手机| 久久女婷五月综合色啪小说| 在线免费十八禁| 只有这里有精品99| 直男gayav资源| 一边亲一边摸免费视频| 久久亚洲国产成人精品v| 久久 成人 亚洲| 亚洲欧美精品自产自拍| 97精品久久久久久久久久精品| 日本av免费视频播放| 日日啪夜夜爽| 一级毛片电影观看| 成人高潮视频无遮挡免费网站| 国产免费一区二区三区四区乱码| 寂寞人妻少妇视频99o| 久久人人爽人人片av| 日韩伦理黄色片| 亚洲人成网站高清观看| 亚洲国产精品一区三区| 色网站视频免费| 水蜜桃什么品种好| 日本午夜av视频| 精品亚洲成a人片在线观看 | 日韩成人伦理影院| 王馨瑶露胸无遮挡在线观看| 中文字幕av成人在线电影| 国产v大片淫在线免费观看| 高清日韩中文字幕在线| 亚洲精华国产精华液的使用体验| 午夜福利视频精品| 中文天堂在线官网| 午夜精品国产一区二区电影| 黑人高潮一二区| 国产伦理片在线播放av一区| 欧美xxxx黑人xx丫x性爽| av网站免费在线观看视频| 蜜桃亚洲精品一区二区三区| 亚洲自偷自拍三级| 欧美人与善性xxx| 一区二区三区乱码不卡18| 男女边摸边吃奶| 狠狠精品人妻久久久久久综合| 国产男人的电影天堂91| 国产毛片在线视频| 能在线免费看毛片的网站| 亚洲精品自拍成人| 久久精品国产a三级三级三级| 又粗又硬又长又爽又黄的视频| 国产伦在线观看视频一区| 一级毛片我不卡| 这个男人来自地球电影免费观看 | 免费看av在线观看网站| 97超视频在线观看视频| 欧美日本视频| 一级毛片我不卡| freevideosex欧美| 亚洲精品一区蜜桃| 狂野欧美激情性xxxx在线观看| 久久久久久久久久久免费av| 欧美精品亚洲一区二区| 亚洲欧洲国产日韩| 国产在线男女| 美女内射精品一级片tv| freevideosex欧美| 极品少妇高潮喷水抽搐| 亚洲av电影在线观看一区二区三区| 成人亚洲欧美一区二区av| 亚洲欧美日韩另类电影网站 | 亚洲精品中文字幕在线视频 | 国产精品精品国产色婷婷| 大陆偷拍与自拍| 久久精品夜色国产| 精品一区二区免费观看| 亚洲精华国产精华液的使用体验| 插阴视频在线观看视频| 国产精品福利在线免费观看| 国产色爽女视频免费观看| 国产综合精华液| 天堂中文最新版在线下载| 亚洲精品中文字幕在线视频 | 观看美女的网站| 高清午夜精品一区二区三区| 免费看av在线观看网站| av又黄又爽大尺度在线免费看| 99国产精品免费福利视频| 五月天丁香电影| 少妇被粗大猛烈的视频| 免费人成在线观看视频色| 国产成人免费无遮挡视频| 22中文网久久字幕| 国产爽快片一区二区三区| 欧美国产精品一级二级三级 | 亚洲伊人久久精品综合| 国产成人午夜福利电影在线观看| 日韩欧美精品免费久久| 日产精品乱码卡一卡2卡三| 乱码一卡2卡4卡精品| 视频中文字幕在线观看| 日本免费在线观看一区| 美女视频免费永久观看网站| 国产一区亚洲一区在线观看| 亚洲,欧美,日韩| 日本欧美国产在线视频| av国产免费在线观看| 精品视频人人做人人爽| 美女福利国产在线 | 婷婷色综合www| 国产 一区精品| 国产色婷婷99| av在线播放精品| 纵有疾风起免费观看全集完整版| 国产爽快片一区二区三区| 欧美另类一区| 色网站视频免费| 日本黄色片子视频| 大码成人一级视频| 色综合色国产| 亚洲精品第二区| 97超视频在线观看视频| 伊人久久精品亚洲午夜| 国产精品久久久久久精品电影小说 | 下体分泌物呈黄色| 少妇人妻 视频| 另类亚洲欧美激情| 王馨瑶露胸无遮挡在线观看| 只有这里有精品99| 亚洲av成人精品一区久久| 免费观看无遮挡的男女| 国产精品国产三级专区第一集| 少妇精品久久久久久久| 女人十人毛片免费观看3o分钟| 日韩人妻高清精品专区| 极品少妇高潮喷水抽搐| 视频中文字幕在线观看| 中文天堂在线官网| 精品亚洲成a人片在线观看 | 亚洲欧美一区二区三区黑人 | 黄色日韩在线| 日本黄色片子视频| 国产男女内射视频| 欧美日韩综合久久久久久| 国产精品久久久久久久久免| 免费av中文字幕在线| 国产av码专区亚洲av| 久热久热在线精品观看| 丰满乱子伦码专区|