• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Improved Nonlinear Dynamic Inversion Method for Altitude and Attitude Control of Nano Quad-Rotors under Persistent Uncertainties

    2018-07-11 02:57:38ChenMeiliWangYuan

    Chen Meili,Wang Yuan

    College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Abstract:Nonlinear dynamic inversion(NDI)has been applied to the control law design of quad-rotors mainly thanks to its good robustness and simplicity of parameter tuning.However,the weakness of relying on accurate model greatly restrains its application on quad-rotors,especially nano quad-rotors(NQRs).NQRs are easy to be influenced by uncertainties such as model uncertainties(mainly from complicated aerodynamic interferences,strong coupling in roll-pitch-yaw channels and inaccurate aerodynamic prediction of rotors)and external uncertainties(mainly from winds or gusts),particularly persistent ones.Therefore,developing accurate model for altitude and attitude control of NQRs is difficult.To solve this problem,in this paper,an improved nonlinear dynamic inversion(INDI)method is developed,which can reject the above-mentioned uncertainties by estimating them and then counteracting in real time using linear extended state observer(LESO).Comparison with the traditional NDI(TNDI)method was carried out numerically,and the results show that,in coping with persistent uncertainties,the INDI-based method presents significant superiority.

    Key words:nonlinear dynamic inversion;extended state observer;nano quad-rotor;uncertainties rejection;altitude control;attitude control

    Nomenclature

    (φ,θ,ψ)T/radEuler angle

    (p,q,r)T/(rad·s-1)Angular velocity

    Tr/NLift

    u2/(N·m)Roll torque

    u3/(N·m)Pitch torque

    u4/(N·m)Yaw torque

    Ix/(kg·m2)Roll inertial

    Iy/(kg·m2)Pitch inertial

    Iz/(kg·m2)Yaw inertial

    l/mLever

    (φd,θd,ψd)T/radDesired Euler angle

    fφ/(rad·s-2)Unknown nonlinear part of roll angle subsystem

    fθ/(rad·s-2)Unknown nonlinear part of pitch angle subsystem

    fψ/(rad·s-2)Unknown nonlinear part of yaw angle subsystem

    gφ/(kg·m)Given-part of roll angle equation

    gθ/(kg·m)Given-part of pitch angle equation

    gψ/(kg·m2)Given-part of yaw angle equation

    0 Introduction

    During the past decades,many researchers have focused on various kinds of control methods,especially the ones rely on specific mathematical models,to improve the control of quad-rotors.For example,reduced model based PID and linear quadratic(LQ)methods[1-3],accurate model based nonlinear feedback linearization method[4-7],and nonlinear dynamic inversion[8]were developed.Some other methods were proposed for allowing partial model information to vary within certain range[9-10].Though there are some methods relying on no detailed model[11-12],they are quit tedious in design process.

    Only a few works have discussed the flight of ordinary-sized and micro-sized quad-rotors under external uncertainties using the above mentioned methods[12-17].In addition,their mechanisms on disturbances rejection mainly focus on enhancing the robustness of the control system and resisting instantaneous uncertainties,but they take no consideration on persistent ones,which may be a usual case in reality.

    Therefore,according to the above discussion,in the design of control system of nano quad-rotors(NQRs),two problems need to be addressed under persistent uncertainties.Firstly,controllers should have good robustness.Secondly,controllers should not rely on accurate model.To solve those problems,in this paper,a robust INDI method based on the TNDI method and the linear extended state observer(LESO)is developed to design the altitude and attitude control law for NQRs.As known to all,NDI-based controller has some advantages[18],for instance,its structure is very simple,only a few parameters need to be tuned and their determination is very simple according to the bandwidth of state variables.Generally,the control effect in the TNDI method completely depends on the accuracy of the model.As discussed above,the internal and external uncertainties cannot be modeled precisely or some even cannot be modeled.To overcome this drawback of TNDI,the LESO is introduced into NDI to estimate the uncertainties using only input and output data of the control system.Hence,the uncertain dynamics in the controllers can be predicted and then counteracted.To show the superiority of the INDI-based method,a numerical comparison with TNDI was carried out.

    1 Structure of Altitude and Attitude-Control Systems for NQRs

    Before modeling NQRs,two coordinates(inertial and body),some forces,moments and geometrical parameters are introduced first,as shown in Fig.1.

    Fig.1 Coordinates description of NQRs

    In Fig.1,OEExEyEzrepresents the inertial coordinate,in which Exand Eyare on the horizontal plane and Exis perpendicular to Ey,Ezis perpendicular to the horizontal determined by the right-hand rule.OBBxByBzrepresents the body coordinate centered at the center of gravity of the NQRs.Bxis the normal flight orientation,Byis positive to starboard in the horizontal plane and Bzis orthogonal to the plane BxOBBy.

    The nonlinear movement equations of NQRswithout uncertainties are expressed as

    where P,v∈R3represent position and velocity of NQRs in inertial frame,respectively,m and g represent mass of NQRs and gravitational constant,respectively,ω=[p,q,r]T∈R3is angular velocity in body coordinate,Θ=[φ,θ,ψ]T∈R3is Euler angle in inertial coordinate,T andτare the total force and moment act on the frame of NQRs,ez=[0,0,1]Tis a vector along Ez,and I=diag(Ix,Iy,Iz)is the moment of inertial matrix.The rotation matrix R(Θ),which transforms a vector from inertial coordinate to body coordinate,has an expression as

    And the attitude kinematic matrix K(Θ)is defined as

    During the flight,NQRs may be influenced by internal and external uncertainties,for example,the vibration derives from the asymmetry of eccentricity of rotor shafts,asymmetry of rotor blades and asymmetry of frame,winds and gusts and so forth.Hence,taking consideration of uncertainties,Eq.(2)yields the altitude and attitude movement equations of NQRs,shown as

    where

    In Eq.(4), [Δτroll,Δτpitch,Δτyaw]Trepresents the movement disturbances and[Δdroll,Δdpitch,Δdyaw]Trepresents the internal uncertainties.

    2 Brief Introduction of LESO

    2.1 Fundamental theory of high-order LESO

    The(n+1)th-order LESO is mainly used to observe n th-order control system.Take the following n th-order linear affine differential system as an example

    where u and y are input and output ofΣ,respectively,and b>0.Assume that f(x1,…,xn,t)is bounded and differentiable and its derivative with respect to t is n(x1,…,xn,t).Also bounded,this assumption is always reasonable in the control of quad-rotors.Then systemΣcan be extended as the following formation

    Using a linear state observer[19-21]to observe Σextendyields

    The above systemΣESOis the so-called LESO.Thus,zitracks xi(i=1,…,n)and zn+1estimates f(x1,…,xn,t).

    2.2 Stability analysis of LESO

    In this part,stability of the(n+1)th-order LESO is proved.Firstly,rewrite Eq.(7)as the following formation

    where

    And Eq.(8)can be rewritten as

    where

    Hence,subtracting Eq.(9)from Eq.(11)yields

    Since n=n(x1,…,xn,t)is a bounded function as defined before,the(n+1)th-order LESO is bounded-input bounded-output(BIBO)if the roots of the characteristic polynomial of AE,shown as

    are all in the left half plane.Thus,stability of the(n+1)th-order LESO is proved.

    3 Design of Altitude Control Law

    3.1 Design of NDI-based altitude control law

    In this part,an altitude control law based on NDI is derived.During the motion of NQR,cosφ≈1,cosθ≈1 andΔTris uncertain.Hence,in NDI,Eq.(2)is usually rewritten as

    Denoting fz=-g andyields

    Solving the above equation yields the desired thrust,that is

    Assume that hdrepresents the desired trajectory of altitude and h represents the feedback trajectory of altitude,then the tracking error e=hdh satisfies the following equation

    Therefore,by substituting e=hd-h into the above equation,expression ofcan be obtained as

    According to the above analysis,the overall structure of the altitude control system based on NDI is shown in Fig.2.

    Fig.2 Structure of the altitude control system based on NDI for NQRs

    3.2 INDI-based altitude control law improved using LESO

    In NDI,ΔTris ignored,which always results in the low accuracy of the counteraction of nonlinear terms sinceΔTrusually affects the quality of the controller and the robustness of the system.In this part,ΔTris taken into account by taking advantage of LESO.In Eq.(16),considering the disturbanceΔTrand putting it into fzyields

    Using third-order LESO to observe the above extended system yields

    Therefore,z1tracks x1,z2tracks x2,and z3estimates

    By using LESO to make the estimation,the control scheme changes into the following pattern,as shown in Fig.3.

    Fig.3 Structure of the INDI-based altitude control system improved using LESO for NQRs

    A direct method to verify the correctness of this theory is to check the agreement betweenand,which will be checked in simulations hereinafter.

    3.3 Parameter tuning principles of altitude control

    On one hand,in Eq.(18),following the relationship between kdand kpcan ensure the disappearance of overshoot

    On the other hand,to derive the parameters of the third-order LESO,transfer function of Eq.(22)from z3to y and Trneeds to be obtained,shown as

    whereωzis called bandwidth of roll angular velocity channel and thus the transfer function turns into

    Therefore,in the altitude control system,only one parameter needs to be tuned sinceλcan be determined empirically,for example,its recommended value can be 1 or 2.

    4 Design of Attitude Control Law

    4.1 Design of NDI-based attitude control law

    To derive the Euler angle control law,Eq.(2)needs to be addressed.

    Denote

    Hence,Eq.(2)can be rewritten as

    Then the desired angular velocity and the input of angular velocity controller can be obtained as

    and [φ,θ,ψ]Tis the real-time feedback value of attitude and K1=diag(ω1,ω1,ω1).

    After deriving the Euler angle controller,the angular velocity controller needs to be designed.

    In Eqs.(4),(5),denote

    And rewrite Eq.(4)as

    Then the desired virtual input can be solved,shown as

    The desired angular velocityhas been obtained in above,[p,q,r]Tis the real-time feedback value of angular velocity,and K2=diag(ω2,ω2,ω2).

    According to the above analysis,the overall structure of the attitude control system is shown in Fig.4.

    Fig.4 Structure of the NDI-based attitude control system for NQRs

    The above analysis also clearly shows the biggest weakness of TNDI,that is,the robustness and quality of the attitude controller depends on the modeling precision of[ fp,fq,fr]T.Ref.[19]has proved that TNDI can address the case with small perturbations in[ fp,fq,fr]T;while with large perturbations in[ fp,fq,fr]T,for instance,in the existence of persistent external uncertainties,the TNDI cannot perform well.In most cases,the nonlinearity of the model can be counteracted completely only when the nonlinear terms[ fp,fq,fr]Tare accurate enough,which restrains the application of TNDI.

    4.2 INDI-based attitude control law improved using LESO

    To overcome the weakness discussed above,LESO is used to estimate the accurate and real time value of[ fp,fq,fr]T.Hence,it is necessary to introduce the LESO first and then give the improved control law based on LESO.In this paper,only the estimation of fpusing LESO is introduced as fqand frare very similar.

    In the first equation of Eq.(2),denote that

    Hence,the roll angular velocity system is rewritten as

    Using second-order LESO to observe the above extended system yields

    Therefore,z1tracks p and z2estimates fp.

    By employing LESO to conduct the estimation,the control scheme changes into the following pattern,as shown in Fig.5.

    A direct method to verify the correctness of this theory is to check the agreement between[p,q,r]Tand[ pESO,qESO,rESO]T,which will be checked in simulations hereinafter.

    Fig.5 Structure of the INDI-based attitude control system using LESO for NQRs

    4.3 Parameter tuning principles of attitude control

    In one way,in the attitude controller,the parametersω1andω2together determine both the tracking precision and the response speed of the system.Since the response speed of angular velocity is much faster than the one of Euler angle,thus,the two parameters usually satisfy the following relationship[19]

    Put another way,in the LESO,anddetermine the tracking precision and speed,too small value may cause a bad tracking performance and too large value may result in divergence of the system.Taking the transfer function of Eq.(34)yields

    Notice that it is a typical second order system and to avoid the overshoot,Gao[22]also recommended a method to determineand,shown as

    whereωpis called bandwidth of roll angular velocity channel and thus,the transfer function turns into

    Hence,in each angular velocity channel(roll,pitch and yaw),only two parameters need to be determined.

    5 Numerical Validation

    Two numerical simulations were conducted.The first one aims to demonstrate the superiority of INDI compared with TNDI in the existence of model uncertainties;and the second one in turn demonstrates the superiority of INDI compared with TNDI in the existence of both external uncertainties and model uncertainties.

    5.1 Variables and parameters

    The parameters of the NQR used in the simulations are listed in Table 1.

    The initial conditions are given as

    Table 1 Parameters of NQR

    The desired altitude and attitude trajectories are given as

    Values of parameters of NDI controllers are shown in Table 2.Values of parameters of LESOs are shown in Table 3.

    Table 2 Values of parameters of NDI controllers

    Table 3 Values of parameters of LESOs

    5.2 Case study:INDI vs.TNDI under low and high frequency uncertainties

    In this part,low and high frequency uncertainties were considered together.Δdroll,ΔdpitchandΔdyawwere assumed to be the triangle functions including low and high frequency components.This assumption is reasonable since such uncertainties derive from many aspects,for instance,eccentricity of rotor shafts,asymmetry of both rotor blades and frame,body vibration on sensors,unstable voltage of circuit and larger ripple current,and they can be modeled and extended to the trigonometric series.Furthermore,there was an additional mass(8%of the mass of NQR)added on the NQR during its flight meanwhile.The figures of state variables and outputs of NQR are shown in Figs.6—21.

    Fig.6 Response of altitude

    Fig.7 Tracking error of altitude response

    Fig.8 Response of roll angle

    Fig.9 Response of pitch angle

    Fig.6,Fig.7 and Fig.14 show the simulation results in altitude control using the INDI-based and TNDI-based methods.Fig.6 and Fig.7 together depict the tracking results,and obviously the tracking effect derived from the INDI-based method is much better(also acceptable)than the one from the TNDI-based method since the former one owns much higher accuracy.The correctness of the estimation obtained by LESO is also demonstrated in the three figures since the curves of the estimated state variables are overlapped with the ones of the real state variables.

    Fig.10 Response of yaw angle

    Fig.11 Roll angular rate

    Fig.12 Pitch angular rate

    Fig.13 Yaw angular rate

    Fig.14 Estimation of fzby LESO

    Fig.15 Estimation of fpby LESO

    Fig.16 Estimation of fqby LESO

    Fig.17 Estimation of frby LESO

    Figs.8—10 show the results in attitude control using both methods.It is clear that the INDI-based method can still hold the attitude of the NQR steady even under persistent high/low frequency disturbances.

    Fig.18 Speed of rotor 1

    Fig.19 Speed of rotor 2

    Fig.20 Speed of rotor 3

    Fig.21 Speed of rotor 4

    Figs.18—21 show the desired rotor speed of the NQR.Notice that the curves of the input variables in the TNDI-based method are much smoother than those in the INDI-based method.The reason is that,in TNDI uncertainties rejec-tion mostly relies on the robustness of its controller.When uncertainties are added into the plant,the controller cannot make response to them,which results in the smooth curves.While situations are different in the INDI-based method since LESO has the ability to estimate uncertainties,and then counteract them in each time step,which results in the fluctuation of the curves of the input variables in INDI-based method.This also in turn explains why the INDI-based method has better tracking precision in both altitude and attitude controls.

    6 Conclusions

    An INDI-based method is developed to design the altitude and attitude control systems for NQRs.To solve the problem that TNDI relies heavily on accurate model of NQR,which is difficult to be obtained,and to retain the robustness of TNDI,the LESO is introduced into TNDI to estimate the model and external uncertainties and then counteract in real time.Comparison between simulation results of the two methods shows that the INDI-based method can reject the uncertainties better,and it does not rely on the accurate model,presenting significant superiority.

    Acknowledgements

    This work was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and the Advanced Research Project of Army Equipment Development(No.301020803).

    国产免费一区二区三区四区乱码| 国产精品免费视频内射| av国产精品久久久久影院| 中文天堂在线官网| 亚洲精品,欧美精品| 亚洲av成人精品一二三区| 波多野结衣一区麻豆| 成人黄色视频免费在线看| 色婷婷av一区二区三区视频| 久久久国产一区二区| 亚洲av福利一区| 亚洲婷婷狠狠爱综合网| 极品少妇高潮喷水抽搐| 欧美日韩一区二区视频在线观看视频在线| 久久久久视频综合| 国产老妇伦熟女老妇高清| 91成人精品电影| 久久久国产精品麻豆| 日本av免费视频播放| 国产视频首页在线观看| 狂野欧美激情性bbbbbb| 欧美老熟妇乱子伦牲交| 亚洲精品久久久久久婷婷小说| 亚洲内射少妇av| 一本久久精品| 日韩视频在线欧美| 美女大奶头黄色视频| 精品久久蜜臀av无| 在线 av 中文字幕| 午夜福利一区二区在线看| 成人毛片60女人毛片免费| 一本色道久久久久久精品综合| 久久 成人 亚洲| 久热久热在线精品观看| 久久久国产精品麻豆| 日韩精品有码人妻一区| 国产成人a∨麻豆精品| 晚上一个人看的免费电影| 午夜福利,免费看| 国产精品国产三级专区第一集| 一级毛片电影观看| 三级国产精品片| 国产又色又爽无遮挡免| 午夜日本视频在线| 我的亚洲天堂| 国产深夜福利视频在线观看| 亚洲av日韩在线播放| 少妇的丰满在线观看| 一本久久精品| 久久久精品免费免费高清| 亚洲精品aⅴ在线观看| 成年女人毛片免费观看观看9 | 丝袜美腿诱惑在线| 免费在线观看黄色视频的| 日本爱情动作片www.在线观看| 丰满饥渴人妻一区二区三| 亚洲欧美成人精品一区二区| 国产黄色免费在线视频| 综合色丁香网| 18禁观看日本| 精品国产露脸久久av麻豆| 卡戴珊不雅视频在线播放| 久久久久久免费高清国产稀缺| 亚洲国产精品999| 亚洲精品久久久久久婷婷小说| 亚洲av电影在线观看一区二区三区| 97人妻天天添夜夜摸| 国产精品久久久av美女十八| 午夜日本视频在线| 国产av国产精品国产| 久热久热在线精品观看| 女性生殖器流出的白浆| 搡女人真爽免费视频火全软件| 在线观看免费高清a一片| 男人舔女人的私密视频| av.在线天堂| 99久久中文字幕三级久久日本| 性色avwww在线观看| videos熟女内射| 亚洲人成77777在线视频| 亚洲国产av新网站| 亚洲av免费高清在线观看| 免费少妇av软件| 亚洲av欧美aⅴ国产| 精品一区在线观看国产| 国产成人欧美| 大陆偷拍与自拍| av片东京热男人的天堂| 水蜜桃什么品种好| 91精品三级在线观看| 久久精品国产自在天天线| 久久国产亚洲av麻豆专区| 九九爱精品视频在线观看| 国产免费现黄频在线看| 欧美精品国产亚洲| 三级国产精品片| 99国产精品免费福利视频| 国产熟女午夜一区二区三区| 咕卡用的链子| 日本91视频免费播放| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品国产色婷婷电影| 人妻系列 视频| 国产成人一区二区在线| 性少妇av在线| 97人妻天天添夜夜摸| 宅男免费午夜| 日韩制服骚丝袜av| av不卡在线播放| 男人添女人高潮全过程视频| 国产黄频视频在线观看| 日本av手机在线免费观看| 女的被弄到高潮叫床怎么办| 成人亚洲欧美一区二区av| 777米奇影视久久| 最近的中文字幕免费完整| 久久亚洲国产成人精品v| 国产精品无大码| 国精品久久久久久国模美| 极品少妇高潮喷水抽搐| 18在线观看网站| 人人澡人人妻人| 国产精品蜜桃在线观看| 欧美激情高清一区二区三区 | 不卡av一区二区三区| 成年女人在线观看亚洲视频| 亚洲色图 男人天堂 中文字幕| 在线观看免费高清a一片| 国产亚洲精品第一综合不卡| 男女啪啪激烈高潮av片| 少妇猛男粗大的猛烈进出视频| 在线观看www视频免费| 久久精品国产亚洲av天美| 亚洲第一av免费看| 两个人免费观看高清视频| 性高湖久久久久久久久免费观看| 国产免费现黄频在线看| 人成视频在线观看免费观看| 亚洲国产av影院在线观看| 久久久久久久久免费视频了| 国产黄色视频一区二区在线观看| 亚洲国产毛片av蜜桃av| 国产高清不卡午夜福利| 亚洲天堂av无毛| 丰满乱子伦码专区| 日韩免费高清中文字幕av| 欧美成人午夜免费资源| 不卡视频在线观看欧美| 欧美亚洲 丝袜 人妻 在线| av网站在线播放免费| 午夜日韩欧美国产| 午夜免费观看性视频| 国产精品一国产av| 不卡av一区二区三区| 亚洲欧美成人精品一区二区| 国产精品亚洲av一区麻豆 | 亚洲精品久久成人aⅴ小说| 国产精品国产三级专区第一集| 久久 成人 亚洲| 天天影视国产精品| 亚洲av国产av综合av卡| 国产免费一区二区三区四区乱码| 考比视频在线观看| 老鸭窝网址在线观看| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩另类电影网站| 亚洲国产毛片av蜜桃av| 叶爱在线成人免费视频播放| 搡女人真爽免费视频火全软件| 国产精品女同一区二区软件| 国产精品国产三级国产专区5o| 人妻 亚洲 视频| 亚洲av电影在线进入| 日韩av不卡免费在线播放| 一区在线观看完整版| 久久ye,这里只有精品| 2021少妇久久久久久久久久久| 欧美成人午夜免费资源| 美女高潮到喷水免费观看| 大香蕉久久成人网| 精品一区二区三区四区五区乱码 | 激情五月婷婷亚洲| 五月天丁香电影| 丁香六月天网| 久久女婷五月综合色啪小说| 亚洲国产欧美在线一区| 在线亚洲精品国产二区图片欧美| 交换朋友夫妻互换小说| 丰满少妇做爰视频| 宅男免费午夜| 又粗又硬又长又爽又黄的视频| 欧美亚洲日本最大视频资源| 日本91视频免费播放| 成年美女黄网站色视频大全免费| 久久精品久久精品一区二区三区| 赤兔流量卡办理| 亚洲欧美成人综合另类久久久| 亚洲精品日本国产第一区| 国产探花极品一区二区| av一本久久久久| 欧美日韩亚洲高清精品| 最新的欧美精品一区二区| 国产免费一区二区三区四区乱码| 91精品三级在线观看| 日韩中文字幕视频在线看片| 亚洲精品国产av蜜桃| 在线看a的网站| 我的亚洲天堂| 成年动漫av网址| 一区在线观看完整版| 在现免费观看毛片| 国产男女超爽视频在线观看| 久久精品久久精品一区二区三区| 亚洲视频免费观看视频| 大片电影免费在线观看免费| 久久精品国产鲁丝片午夜精品| 国产极品天堂在线| 曰老女人黄片| 中文字幕人妻丝袜制服| 91精品伊人久久大香线蕉| av在线老鸭窝| 视频区图区小说| 少妇人妻精品综合一区二区| 人体艺术视频欧美日本| av国产精品久久久久影院| 久久婷婷青草| 精品久久蜜臀av无| 女人高潮潮喷娇喘18禁视频| 日本午夜av视频| 国产精品久久久久久精品电影小说| 岛国毛片在线播放| 欧美国产精品一级二级三级| 亚洲国产毛片av蜜桃av| 国产成人91sexporn| 国产乱来视频区| 丝袜美腿诱惑在线| 久久青草综合色| 男女无遮挡免费网站观看| 成人国产麻豆网| 韩国av在线不卡| 精品国产露脸久久av麻豆| 观看美女的网站| 亚洲三级黄色毛片| 免费不卡的大黄色大毛片视频在线观看| 999精品在线视频| 人成视频在线观看免费观看| 欧美人与性动交α欧美软件| 亚洲成人av在线免费| 久久影院123| 波多野结衣av一区二区av| 国产精品一国产av| 欧美日韩精品网址| 肉色欧美久久久久久久蜜桃| 一区二区三区四区激情视频| 宅男免费午夜| 国产片内射在线| 国产日韩欧美亚洲二区| 久久这里只有精品19| 在线观看www视频免费| 永久免费av网站大全| 日本爱情动作片www.在线观看| 久热这里只有精品99| 亚洲国产av新网站| 成年av动漫网址| 最新的欧美精品一区二区| 2021少妇久久久久久久久久久| 美女高潮到喷水免费观看| 久久久久人妻精品一区果冻| 欧美变态另类bdsm刘玥| 国产亚洲午夜精品一区二区久久| 国产一区有黄有色的免费视频| av福利片在线| 久热久热在线精品观看| 亚洲美女黄色视频免费看| 午夜激情av网站| 欧美激情高清一区二区三区 | 免费黄网站久久成人精品| 1024视频免费在线观看| 亚洲一区中文字幕在线| 黑丝袜美女国产一区| 两个人看的免费小视频| kizo精华| 男女边吃奶边做爰视频| 欧美97在线视频| 日本wwww免费看| 黄色 视频免费看| 91午夜精品亚洲一区二区三区| 高清欧美精品videossex| videosex国产| 美女福利国产在线| 国产一区二区三区综合在线观看| 黑人欧美特级aaaaaa片| 国产成人午夜福利电影在线观看| 男女高潮啪啪啪动态图| 考比视频在线观看| 欧美另类一区| 久久这里有精品视频免费| 99久久中文字幕三级久久日本| 男人舔女人的私密视频| 国产极品粉嫩免费观看在线| 亚洲精品国产av蜜桃| 国产精品成人在线| 韩国av在线不卡| 老鸭窝网址在线观看| 99久国产av精品国产电影| 久久久久久久久久人人人人人人| 毛片一级片免费看久久久久| av有码第一页| 久久韩国三级中文字幕| 国产免费现黄频在线看| 99久久综合免费| 精品少妇黑人巨大在线播放| 久久热在线av| 人人妻人人爽人人添夜夜欢视频| 制服人妻中文乱码| 成人午夜精彩视频在线观看| 午夜久久久在线观看| 久久久久久久亚洲中文字幕| 亚洲国产欧美在线一区| 精品国产一区二区三区四区第35| 久久久久国产一级毛片高清牌| 国产深夜福利视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕制服av| 国产 一区精品| 亚洲三区欧美一区| 街头女战士在线观看网站| 九色亚洲精品在线播放| 亚洲精品视频女| 美女国产高潮福利片在线看| 男女下面插进去视频免费观看| 中文字幕精品免费在线观看视频| 老司机影院毛片| 亚洲,一卡二卡三卡| 人妻一区二区av| 丰满乱子伦码专区| 宅男免费午夜| 国产成人av激情在线播放| 欧美激情 高清一区二区三区| 精品一区在线观看国产| a级片在线免费高清观看视频| 国产亚洲午夜精品一区二区久久| 少妇的逼水好多| 国产精品三级大全| 欧美变态另类bdsm刘玥| 中国国产av一级| 午夜免费男女啪啪视频观看| 亚洲欧洲精品一区二区精品久久久 | av卡一久久| www.av在线官网国产| 一区二区三区四区激情视频| 国产精品国产av在线观看| 亚洲欧美一区二区三区黑人 | 中文字幕色久视频| 9191精品国产免费久久| 女人高潮潮喷娇喘18禁视频| 亚洲人成电影观看| 久久午夜福利片| 欧美成人午夜免费资源| 欧美xxⅹ黑人| 久久久久人妻精品一区果冻| 美女视频免费永久观看网站| 国产有黄有色有爽视频| 黑人欧美特级aaaaaa片| 熟女av电影| 国产国语露脸激情在线看| 久久久久网色| av有码第一页| 国产精品 欧美亚洲| 日韩制服丝袜自拍偷拍| 人成视频在线观看免费观看| 啦啦啦中文免费视频观看日本| 巨乳人妻的诱惑在线观看| 国产熟女午夜一区二区三区| 亚洲四区av| 捣出白浆h1v1| 国产精品人妻久久久影院| 国产野战对白在线观看| 中文精品一卡2卡3卡4更新| 青春草视频在线免费观看| 高清av免费在线| h视频一区二区三区| 高清av免费在线| 秋霞伦理黄片| 亚洲国产精品一区三区| 日韩,欧美,国产一区二区三区| 久久97久久精品| 亚洲中文av在线| 丝袜美足系列| 午夜福利在线观看免费完整高清在| 国产精品熟女久久久久浪| 国产女主播在线喷水免费视频网站| 五月天丁香电影| 亚洲av欧美aⅴ国产| 狂野欧美激情性bbbbbb| 国产精品无大码| 久久久久久人人人人人| 久久久久久伊人网av| 免费黄频网站在线观看国产| 日韩av免费高清视频| 秋霞伦理黄片| 久久综合国产亚洲精品| 国产精品.久久久| 亚洲成人手机| 国产免费福利视频在线观看| 水蜜桃什么品种好| 国产精品成人在线| 熟妇人妻不卡中文字幕| 亚洲av男天堂| 日韩电影二区| 美女xxoo啪啪120秒动态图| 伦精品一区二区三区| av在线播放精品| 亚洲经典国产精华液单| 热99国产精品久久久久久7| 天天操日日干夜夜撸| 亚洲五月色婷婷综合| 91aial.com中文字幕在线观看| 中文字幕制服av| 精品一区二区免费观看| 久久狼人影院| 黑人欧美特级aaaaaa片| 色94色欧美一区二区| 夜夜骑夜夜射夜夜干| 亚洲欧美一区二区三区黑人 | 成人黄色视频免费在线看| 久久久久久人妻| 国产一区二区在线观看av| 国产亚洲精品第一综合不卡| 欧美中文综合在线视频| 亚洲成av片中文字幕在线观看 | 亚洲欧美成人精品一区二区| 中文字幕av电影在线播放| 国产高清不卡午夜福利| av女优亚洲男人天堂| 2022亚洲国产成人精品| 在线亚洲精品国产二区图片欧美| 一本—道久久a久久精品蜜桃钙片| 巨乳人妻的诱惑在线观看| 欧美另类一区| 久久鲁丝午夜福利片| 精品国产国语对白av| 男女免费视频国产| 建设人人有责人人尽责人人享有的| 一区在线观看完整版| 亚洲av在线观看美女高潮| 亚洲一级一片aⅴ在线观看| 精品国产一区二区三区四区第35| 精品第一国产精品| 国产在线视频一区二区| 亚洲综合精品二区| 麻豆av在线久日| 黄色 视频免费看| 久久久久久伊人网av| 美女中出高潮动态图| 成人漫画全彩无遮挡| 国产精品.久久久| 久久国内精品自在自线图片| 一级,二级,三级黄色视频| 久久久久久免费高清国产稀缺| 搡女人真爽免费视频火全软件| 国产成人精品一,二区| 久久久国产一区二区| 久久av网站| 啦啦啦视频在线资源免费观看| 国产熟女欧美一区二区| 精品少妇一区二区三区视频日本电影 | 亚洲欧美精品自产自拍| 精品少妇一区二区三区视频日本电影 | 久久久久久久久久人人人人人人| 卡戴珊不雅视频在线播放| 免费观看在线日韩| 亚洲五月色婷婷综合| 中文字幕人妻熟女乱码| 波多野结衣av一区二区av| 一级毛片电影观看| av有码第一页| 男人爽女人下面视频在线观看| 日产精品乱码卡一卡2卡三| 狠狠精品人妻久久久久久综合| 中文字幕色久视频| 尾随美女入室| 丰满少妇做爰视频| 亚洲一区二区三区欧美精品| 熟妇人妻不卡中文字幕| 免费久久久久久久精品成人欧美视频| 十八禁网站网址无遮挡| 久久国内精品自在自线图片| 久久99蜜桃精品久久| 精品亚洲乱码少妇综合久久| 国产精品 欧美亚洲| 免费大片黄手机在线观看| 又黄又粗又硬又大视频| 91午夜精品亚洲一区二区三区| 女人被躁到高潮嗷嗷叫费观| 亚洲国产欧美在线一区| 99国产精品免费福利视频| 美国免费a级毛片| 亚洲精品视频女| 精品99又大又爽又粗少妇毛片| 中文精品一卡2卡3卡4更新| 高清视频免费观看一区二区| 亚洲精品国产av成人精品| 丝袜人妻中文字幕| 日韩制服丝袜自拍偷拍| 国产精品欧美亚洲77777| 黄色配什么色好看| 美女国产高潮福利片在线看| 婷婷色综合大香蕉| 亚洲欧美色中文字幕在线| 国产一区二区 视频在线| 成人亚洲欧美一区二区av| 久久精品夜色国产| 久久精品久久久久久噜噜老黄| 亚洲三级黄色毛片| 久久97久久精品| 高清黄色对白视频在线免费看| 国产精品久久久久久精品古装| 少妇人妻 视频| 一区二区日韩欧美中文字幕| 久久韩国三级中文字幕| 久久免费观看电影| 久久精品国产亚洲av天美| 97在线视频观看| 看十八女毛片水多多多| 狂野欧美激情性bbbbbb| 国产精品秋霞免费鲁丝片| 两个人免费观看高清视频| 久久韩国三级中文字幕| 91午夜精品亚洲一区二区三区| 伊人久久大香线蕉亚洲五| 国产亚洲午夜精品一区二区久久| 国产白丝娇喘喷水9色精品| 777久久人妻少妇嫩草av网站| 免费在线观看黄色视频的| 亚洲国产看品久久| 黄色毛片三级朝国网站| 日韩人妻精品一区2区三区| 日韩制服丝袜自拍偷拍| 伦理电影免费视频| 成人亚洲欧美一区二区av| 侵犯人妻中文字幕一二三四区| 菩萨蛮人人尽说江南好唐韦庄| 另类亚洲欧美激情| 咕卡用的链子| 丝袜人妻中文字幕| 国产亚洲av片在线观看秒播厂| 久久综合国产亚洲精品| 亚洲欧美一区二区三区黑人 | 可以免费在线观看a视频的电影网站 | 成人亚洲精品一区在线观看| 少妇人妻精品综合一区二区| 日日撸夜夜添| 亚洲男人天堂网一区| 不卡av一区二区三区| 成人黄色视频免费在线看| 男女无遮挡免费网站观看| 国产免费视频播放在线视频| 亚洲一区二区三区欧美精品| 丁香六月天网| 精品少妇久久久久久888优播| 国产成人精品无人区| 999久久久国产精品视频| 丰满乱子伦码专区| 美女脱内裤让男人舔精品视频| 欧美激情极品国产一区二区三区| 热99国产精品久久久久久7| 欧美日韩精品成人综合77777| 在线观看免费视频网站a站| 精品少妇内射三级| 亚洲人成电影观看| 亚洲欧美色中文字幕在线| 91在线精品国自产拍蜜月| 久久久久久久久久久久大奶| 自线自在国产av| 搡老乐熟女国产| 国产av码专区亚洲av| 欧美亚洲日本最大视频资源| 国产精品免费大片| 黑丝袜美女国产一区| 亚洲精品在线美女| 精品久久蜜臀av无| 五月开心婷婷网| 少妇熟女欧美另类| 成人国产av品久久久| 寂寞人妻少妇视频99o| 亚洲成人一二三区av| 亚洲内射少妇av| 伦理电影大哥的女人| 国产乱来视频区| 在线观看三级黄色| 久久久国产精品麻豆| 麻豆精品久久久久久蜜桃| 777米奇影视久久| 国产免费现黄频在线看| 丰满饥渴人妻一区二区三| av网站在线播放免费| 国产精品一区二区在线观看99| 性色av一级| 日本猛色少妇xxxxx猛交久久| 色网站视频免费| 久热久热在线精品观看| 男女国产视频网站| 午夜福利在线观看免费完整高清在| 18禁观看日本| www.精华液| 大香蕉久久网| 老司机亚洲免费影院| 汤姆久久久久久久影院中文字幕| 18禁动态无遮挡网站| 亚洲久久久国产精品| 综合色丁香网| 午夜影院在线不卡| 国产97色在线日韩免费| 欧美黄色片欧美黄色片|