• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Software Reliability Growth Model for Imperfect Debugging Process Considering Testing-Effort and Testing Coverage

    2018-07-11 02:57:28ZangSicongPiDechang

    Zang Sicong,Pi Dechang

    College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,P.R.China

    Abstract:Because of the inevitable debugging lag,imperfect debugging process is used to replace perfect debugging process in the analysis of software reliability growth model.Considering neither testing-effort nor testing coverage can describe software reliability for imperfect debugging completely,by hybridizing testing-effort with testing coverage under imperfect debugging,this paper proposes a new model named GMW-LO-ID.Under the assumption that the number of faults is proportional to the current number of detected faults,this model combines generalized modified Weibull(GMW)testing-effort function with logistic(LO)testing coverage function,and inherits GMW’s amazing flexibility and LO’s high fitting precision.Furthermore,the fitting accuracy and predictive power are verified by two series of experiments and we can draw a conclusion that our model fits the actual failure data better and predicts the software future behavior better than other ten traditional models,which only consider one or two points of testing-effort,testing coverage and imperfect debugging.

    Key words:software reliability;testing-effort;testing coverage;imperfect debugging(ID);non-homogeneous Poisson process(NHPP)

    0 Introduction

    With the rapid development of software engineering,software reliability,one of the most important text indexes used for ensuring the reliability of software products during and after software development,is of great concern.During the last thirty years,large numbers of software reliability growth models(SRGMs)are proposed to track the reliability growth trend of the software testing process[1-3].SRGMs can be used for defects detection,failure rate calculation and failure prediction.Especially,due to the understandable and simple formula,non-homogeneous Poisson process(NHPP)SRGMs are most widely-used.

    During the software reliability analysis,large amounts of manpower and CPU hours,which are called testing-effort(TE),are consumed.Obviously,the consumption rate of TE cannot be a constant and it may change the shape of software reliability growth curve.Testing-effort function(TEF),such as logistic(LO)TEF[4],was established for quantitatively describing the distribution of testing resources.Zhang et al.[5]added finite queuing model into generalized modified Weibull(GMW)TEF with respect to the testingeffort in failure detection process(FDP)and failure correction process(FCP).Lin[6]proposed a software reliability modeling framework used to gauge the influence of test phase transitions and got a significant effect on fault detection.Pachauri et al.[7]used genetic algorithm(GA)and multi-attribute utility theory(MAUT)to keep fault detection rate as a constant.

    Moreover,just like TE,testing coverage(TC)can also help programmers detect defects.Cai[8]found that there would be some correlations between TC and software reliability.Thus,testing coverage function(TCF)was established for quantitatively describing TC’s transformation,such as LO TCF[9].Li et al.[10]proposed an ISLO-SRGM combining inflected S-shaped TEF with LO TCF and yielded a wonderful fitting.Chatterjee and Singh[11]incorporated a logistic-exponential TCF with imperfect debugging and the new model’s prediction was very close to actual software faults.

    Furthermore,a detected fault cannot be corrected immediately and the time required to correct a detected fault is usually called debugging lag/delay[1].One or several new faults may appear during the fault correcting.In other words,the number of faults is not a constant and it will grow during the detection,which is called the imperfect debugging(ID).Peng[1]and Zhang[12]both built their SRGMs under ID,and the new models had better descriptive and predictive power than the others.Wang et al.[13]proposed a SRGM under ID considering log-logistic distribution fault content function and achieved good performance.

    In a word,the introduction of TE,TC and ID,not only makes the SRGMs reliable,but also improves the defect detection rate.However,little research has been conducted to SRGMs combining ID with both TE and TC.Thus,it is desired to put forward an ID dependent SRGM considering both TE and TC to better fit the actual data.

    To address this problem,a new SRGM model named GMW-LO-ID is proposed in this paper.In contrast to most of the existing models,our model not only combines the GMW TEF and LO TCF,but also assumes that the current number of faults is dynamic.The fitting accuracy and predictive power are improved by means of considering TE and TC under ID.

    1 The Proposed GMW-LO-ID Model

    In this section,a new model named GMWLO-ID,which considers both TE and TC under ID,is proposed in this section.GMW-LO-ID considers testing resources’allocation,code coverage analysis and debugging lag.Moreover,it has GMW TEF’s great flexibility and LO TCF’s highly fitting precision.

    The NHPP SRGMs considering ID are formulated based on these following assumptions[10,11,12]:

    (1)The faults detected process follows the NHPP process;

    (2)The current failure is caused by the rest faults in software;

    (3)During time interval[t,t+Δt],the mean value of detected number of faults from the current TE is proportional to the rest number of faults.In addition,the ratio between them is called the current fault detection rate r(t)and it can be calculated by

    where C′(t)denotes coverage rate;

    (4)Whenever a fault is detected,it can be corrected immediately;

    (5)The micro updating of code coverage function C(t)can be neglected when new faults appear.

    Based on these assumptions above,GMW TEF,LO TCF and the form of ID are introduced in the following.

    GMW TEF is based on generalized modified Weibull distribution,and the cumulative TE[7]is given by

    where a denotes the total effort expenditure;m andθare shape parameters;βis a scale parameter andλis an accelerating factor.

    LO TCF is presented in Eq.(3)as

    where N denotes the total number of faults;m(t)denotes the mean value function of detected faults during time interval[t,t+Δt];C(t)=reveals the final coverage;αdenotes the parameter of coverage rate.

    The parameters of TEF and TCF can be esti-mated by means of least square estimation(LSE)[5,10].Two reasons why we do not utilize maximum likelihood estimation(MLE)are listed in the following.On the one hand,after we transform Eq.(3)into

    How to describe the dynamic function N(t)is the key point in SRGMs considering ID.In this paper,we assume that the current number of faults is proportional to the number of detected faults[14],i.e.

    whereδdenotes a proportionality coefficient.

    By combining these three parts together,the proposed model GMW-LO-ID is presented in the following

    where m(t)denotes the mean value function of detected faults during time interval[t,t+Δt];w(t)reveals the function of TE consumption rate,and it can be calculated as the derivative of cumulative TE,i.e.

    After solving the differential equation with the boundary condition of m(0)=0,W(0)=0 and the assumption ofδ≠1,we get GMW-LO-ID shown as

    GMW-LO-ID has great flexibility.By assigning the scale parameters and shape parameters in Eq.(6),it will degenerate to other simple kinds of SRGMs considering TE,TC and ID.For example,whenλ=0,θ=1,m=2 we get the Rayleigh-LO-ID shown in Eq.(7).

    Obviously,GMW-LO-ID has nine parameters.Thus,we can hardly estimate them together.Li[10]mentioned a similar method of parameter estimation:Estimate the parameters related to TEF first and calculate the rest parameters with the estimated ones.Hereon,we get our method of parameter estimation:

    (1)Estimate the five parameters relating to TEF,i.e.parametersα,β,m,λ,θ,by TE datasets;

    (2)After the substitution of five parameters in step(1)into Eq.(7),there will be only one general NHPP SRGM parameter N,two parameters A andαrelated to TCF and a proportionality coefficientδin the formula.Using LSE to estimate the rest four parameters can obtain an accurate estimation set easily.

    2 Experiments and Analysis

    In this section,the fitting accuracy and predictive power of our proposed model are validated in constrast to ten SRGMs under two classical datasets.LSE is used to estimate their parameters.

    2.1 Dataset description

    In this paper,two datasets are used for verification that our GMW-LO-ID model has a better descriptive and predictive power than other models.The first dataset is from the System T1 data of the Rome Air Development Center(RADC)[1].This dataset,which contains running time,testing-effort(computer time)and number of detected faults,is widely used in the latest studies,such as Zhang[5]and Peng[1].The second dataset is from the PL/I application program test data.Its structure is similar to the first dataset and was used by Pachauri[7],Chatterjee[11].As both of the datasets are widely used in the latest researches,the comparison between our proposed model and the others can be easily arranged.

    2.2 Experimental preparation

    In order to find a better descriptive model,five criteria are used to measure the fitting effects,as shown in Table 1.

    Table 1 Criteria for model comparisons

    To MSE,variation and RMSPE,the smaller the criterion is,the better the model performs.In addition,a better performance achieves when RSquare and bias is more close to constant 1 and 0,respectively.

    Moreover,ten SRGMs considering TE,TC or both are introduced for the model comparison.Goel-Okumoto is introduced as a representation of the traditional SRGM without considering TE and TC.Seven SRGMs,such as inflected S-shaped and GMW[5],are introduced as the representations of models considering TE only.Besides,IS-LO[10]is introduced as the SRGM considering both TE and TC.SRGM-GTEFID[12]is the representation of SRGM considering TE under ID.Furthermore,if an SRGM considers more than two parts of TE,TC and ID,it definitely contains more parameters,which may have better fitting and predictive power.

    2.3 Comparison of fitting power

    Ten SRGMs considering TE,TC or both are introduced to validate the fitting performance of GMW-LO-ID in this section.Table 2 and Table 3 show the estimated parameters and fitting results of all eleven models for DS1 and DS2,respectively.

    Table 2 Estimated parameters and fitting results of eleven SRGMs in DS1

    Table 3 Estimated parameters and fitting results of eleven SRGMs in DS2

    The numbers highlighted in bold are the best results of each column.And in the tables,Goel-Okumoto is a traditional SRGM without considering TE,which means there will be no W(t)or w(t).That is why the last three criteria(bias,variation and RMSPE)in Table 1 are missing and m(t)is used to fill the blank of W(t)instead.The F in W(t)of

    W(t)is utilized here as the substitution of full expression of SRGMs.Two reasons are shown in the following:On the one hand,all 11 SRGMs in Table 2 follow the NHPP process,which means all models are based on the structure ofThe main differences between 11 SRGMs are the formula of W(t).On the other hand,the full expressions of SRGMs are not intuitive.The 11 long formulas may make Table 2 chaotic for understanding.Obviously,in both experiments,IS-LO and GMWLO-ID almost achieve all the best performance,which shows that SRGMs considering both TE and TC have better curve fitting effects than other SRGMs.

    The best three,GMW-LO-ID,IS-LO and Weibull,are plotted in Fig.1 and Fig.2 to show the comparison between real and estimated results for each dataset,respectively.The subfigures in left plot the observed/estimated TE curves and the subfigures in right plot the cumulative failure curves.Obviously,all three SRGMs yield good fittings,but we can hardly tell which one has the best fitting power.Thus,we use relative error(RE)to analyze the transformation of fitting accuracy[12],and the results of fitting accuracy vs time are shown in Figs.3,4.

    As shown in Fig.3 and Fig.4,GMW-LO-ID has the fastest convergence speed and gets close to the xaxis in the shortest time.Hereon,it has the best fitting power of all three SRGMs and can be used to describe the real testing-effort expenditure.

    Fig.1 Observed/estimated TE and cumulative failure curves of three SRGMs vs time in DS1

    Fig.2 Observed/estimated TE and cumulative failure curves of three SRGMs vs time in DS2

    Fig.3 RE curves of three SRGMs in DS1

    Fig.4 RE curves of three SRGMs in DS2

    2.4 Comparison of predictive power

    The predictive performance of the proposed model is validated in this section.In order to measure the predictive power of SRGMs,we divide the dataset into training set and testing set.Training set is used to estimate models’parameters and testing set is for validating the predictive power of models.In terms of the MSE in testing set,we can tell the differences between the predictive power of SRGMs.

    To each group of the experiments,the training set contains 70%,80%or 90%of data,respectively.Table 4 and Table 5 respectively show the predictive results of all 11 models for DS1 and DS2.The numbers in bold are the best results of each column.

    Table 4 shows that the best model for 80%and 90%of DS1 is the proposed model because it has the smallest MSE(46.855 2 and 6.712 1).

    Table 4 Comparison results of the predictive power in DS1

    Table 5 Comparison results of the predictive power in DS2

    The other MSE can be 2.88 times(IS-LO’s 134.935 3 for 80%),even 39.82 times(Logistic’s 267.291 1 for 90%)larger than GMW-LO-ID’s.However,Logistic gets an amazing performance(8.268 6)for 70%of DS1 while the MSE of GMWLO-ID(356.329 5)is 43 times larger.Figs.5—7 are plotted to reveal the reason why Logistic performs so terrific in this situation.

    Figs.5—7 show the predictive performance of Logistic and GMW-LO-ID for 70%,80%and 90%of DS1,respectively.The x-and y-axes denote the testing time and the cumulative number of detected faults,respectively.The circle and square dots are the training and testing sets.In addition,the blue solid curves represent the predictive performances of Logistic and the red dash ones represent the performances of our proposed model.We can summarize that if the training set is 80%or 90%of DS1,our model has a better performance.Furthermore,the result goes opposite if the training set is 70%of DS1.

    Here follows the reason why Logistic performs so terrific in Fig.5.As can be seen in Fig.5,we cannot tell the tendency of DS1 just focusing on the training set because the increasing rate of DS1 only decreases in testing set.It is the reason that GMWLO-ID makes a mistake in judging the tendency of data,which leads to the huge MSE unfortunately.Besides,Logistic’s S-shape helps to decide the tendency of curve and gets a terrific result.Though the MSE of GMW-LO-ID is far larger than Logistic’s,it still performs better than other nine SRGMs.Thus,the proposed model has a better predictive power.However,when the training set is 80%or 90%of DS1,these time training sets contain the data part in which the increasing rate decreases.Our model recognizes it and achieves better predictive performance in Figs.6,7.

    Fig.5 Logistic and GMW-LO-ID’s performances for 70%of DS1

    Fig.6 Logistic and GMW-LO-ID’s performances for 80%of DS1

    Fig.7 Logistic and GMW-LO-ID’s performances for 90%of DS1

    As for DS2,Table 5 shows that the best SRGM for 70%and 90%of DS2 is the proposed model because it has the smallest MSE(165.937 7 and 60.566 1).The other MSE can be 5.67 times(Weibull’s 940.586 2 for 70%),even 9.92 times(Goel-Okumoto’s 601.079 5 for 90%)larger than GMW-LO-ID’s.The reason why Logistic(62.322 0)performs better than the proposed model(234.587 6)for 80%of DS2 is the same just mentioned above and it still performs better than other nine SRGMs as well.

    In a word,the proposed model has a better predictive power and can effectively predict software failure behavior.

    3 Conclusions

    As the dynamic allocation of testing resources,the raise of code coverage rate and the existence of debugging lag will affect software reliability growth curve.By incorporating TE and TC into traditional SRGMs,we use debugging lag to update the constant number of faults with a dynamic variety.Under the assumption that the number of faults is proportional to the current number of detected faults,we propose a new model named GMW-LO-ID combining GMW TEF with LO TCF.LSE is utilized to figure out the estimated values of parameters involved.

    After analyzing the experimental results based on MSE,RE and other four kinds of criteria in two testing datasets,we can draw a conclusion that GMW-LO-ID fits the real failure data better and has a better predictive power than other ten SRGMs only considering one or two points of TE,TC and ID.Meanwhile,due to the assignment of some scale parameters and shape parameters,it is more flexible than most of the SRGMs and it can degenerate to other simple kinds of SRGMs,such as Rayleigh-LOID.Consequently,this hybrid model brings us a good performance.

    It will be worthwhile to do further research on extending or finding new TEF,TCF and other forms of ID.Moreover,trying to find a more accuracy method of parameter estimation may be another study direction.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China(No.U1433116)and the Aviation Science Foundation of China(No.20145752033).

    日日撸夜夜添| 九色亚洲精品在线播放| 丝袜在线中文字幕| 免费看不卡的av| 中文字幕人妻丝袜制服| 18禁裸乳无遮挡动漫免费视频| 黄色怎么调成土黄色| 女性被躁到高潮视频| 十八禁高潮呻吟视频| 九草在线视频观看| 免费在线观看黄色视频的| 美女xxoo啪啪120秒动态图| 2021少妇久久久久久久久久久| 熟妇人妻不卡中文字幕| 久久久久久久久久久免费av| 免费在线观看黄色视频的| 黄色怎么调成土黄色| 欧美成人午夜精品| 99re6热这里在线精品视频| 成人毛片60女人毛片免费| 99热网站在线观看| 春色校园在线视频观看| 精品国产一区二区三区四区第35| 制服丝袜香蕉在线| 国产亚洲欧美精品永久| 亚洲精品日本国产第一区| 精品人妻一区二区三区麻豆| 人体艺术视频欧美日本| 精品久久蜜臀av无| 亚洲人与动物交配视频| 亚洲人成网站在线观看播放| 日产精品乱码卡一卡2卡三| 夫妻午夜视频| 日本欧美国产在线视频| 午夜福利视频在线观看免费| 夫妻性生交免费视频一级片| 色吧在线观看| 曰老女人黄片| 青春草视频在线免费观看| 免费观看在线日韩| 国产成人精品福利久久| 中文字幕人妻熟女乱码| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久久久久免| 成人免费观看视频高清| 久久这里只有精品19| 久久99热这里只频精品6学生| 国产精品一二三区在线看| 人妻 亚洲 视频| av.在线天堂| 久久精品国产自在天天线| 久久热在线av| 三级国产精品片| 考比视频在线观看| av播播在线观看一区| av天堂久久9| 亚洲欧美日韩另类电影网站| 亚洲性久久影院| 欧美日韩成人在线一区二区| 激情五月婷婷亚洲| 亚洲内射少妇av| 如何舔出高潮| 性色av一级| 老女人水多毛片| 亚洲国产日韩一区二区| 国产黄色免费在线视频| 少妇人妻 视频| 精品一区二区三区四区五区乱码 | 久久久久久久亚洲中文字幕| 新久久久久国产一级毛片| 日韩欧美一区视频在线观看| 国产淫语在线视频| 亚洲,欧美,日韩| 99国产综合亚洲精品| 天天躁夜夜躁狠狠久久av| 看非洲黑人一级黄片| 国产精品人妻久久久影院| 又粗又硬又长又爽又黄的视频| 成人影院久久| 春色校园在线视频观看| 婷婷成人精品国产| 99re6热这里在线精品视频| 一区在线观看完整版| 午夜免费鲁丝| 飞空精品影院首页| 伦理电影大哥的女人| 国产欧美日韩综合在线一区二区| 国产精品久久久久成人av| 久久久久久久亚洲中文字幕| 男女免费视频国产| 97在线视频观看| 亚洲精品第二区| 亚洲精华国产精华液的使用体验| 观看av在线不卡| 亚洲欧美日韩卡通动漫| 91成人精品电影| 精品熟女少妇av免费看| 久久ye,这里只有精品| 国产69精品久久久久777片| 久久久久久久久久成人| 女人精品久久久久毛片| 亚洲欧美一区二区三区国产| 久久久久久久久久成人| 最近最新中文字幕免费大全7| 最近手机中文字幕大全| 久久毛片免费看一区二区三区| freevideosex欧美| 卡戴珊不雅视频在线播放| 亚洲图色成人| 精品福利永久在线观看| 国产成人av激情在线播放| 国产精品蜜桃在线观看| 熟女电影av网| 丰满乱子伦码专区| 亚洲成人一二三区av| 久久亚洲国产成人精品v| 丁香六月天网| 夫妻午夜视频| www.熟女人妻精品国产 | 亚洲欧美日韩另类电影网站| 人妻人人澡人人爽人人| av国产精品久久久久影院| 成人漫画全彩无遮挡| 又黄又粗又硬又大视频| 黄色视频在线播放观看不卡| 亚洲五月色婷婷综合| 免费黄网站久久成人精品| 在线观看免费视频网站a站| 性高湖久久久久久久久免费观看| 天天躁夜夜躁狠狠久久av| 最新中文字幕久久久久| 高清av免费在线| 免费观看性生交大片5| 国产精品久久久久成人av| 国产精品蜜桃在线观看| 欧美97在线视频| 精品酒店卫生间| 亚洲欧美精品自产自拍| 观看av在线不卡| 日韩成人av中文字幕在线观看| 水蜜桃什么品种好| 亚洲精品美女久久av网站| 欧美bdsm另类| 久久久久国产精品人妻一区二区| 久久国产精品大桥未久av| 精品午夜福利在线看| 国产精品99久久99久久久不卡 | 日本欧美视频一区| 日韩av在线免费看完整版不卡| 久久综合国产亚洲精品| 少妇精品久久久久久久| 国产精品 国内视频| 美女xxoo啪啪120秒动态图| 中文字幕免费在线视频6| 在线天堂最新版资源| 亚洲欧洲日产国产| 九九爱精品视频在线观看| 在线天堂最新版资源| 男女国产视频网站| 伊人久久国产一区二区| 一区二区三区精品91| 久久人人爽av亚洲精品天堂| 国产亚洲av片在线观看秒播厂| 亚洲欧美精品自产自拍| 久久午夜综合久久蜜桃| 一级爰片在线观看| 国产欧美日韩综合在线一区二区| 少妇 在线观看| 亚洲国产日韩一区二区| 亚洲欧洲日产国产| 午夜精品国产一区二区电影| 母亲3免费完整高清在线观看 | 国产在视频线精品| 深夜精品福利| 亚洲av福利一区| 国产69精品久久久久777片| 黑丝袜美女国产一区| 国产激情久久老熟女| 欧美3d第一页| 国产免费一级a男人的天堂| 国产日韩一区二区三区精品不卡| 午夜影院在线不卡| 亚洲天堂av无毛| 我要看黄色一级片免费的| 少妇的逼水好多| 视频区图区小说| 在现免费观看毛片| 五月开心婷婷网| 777米奇影视久久| 国产日韩欧美视频二区| 欧美日韩综合久久久久久| 有码 亚洲区| 久久久久久人人人人人| 高清黄色对白视频在线免费看| 成人18禁高潮啪啪吃奶动态图| 欧美成人午夜免费资源| 欧美精品一区二区免费开放| 午夜激情av网站| 欧美人与善性xxx| 黑人高潮一二区| 国产日韩欧美视频二区| 成人亚洲欧美一区二区av| 高清av免费在线| 亚洲国产成人一精品久久久| 亚洲精品久久久久久婷婷小说| 91精品国产国语对白视频| 国产色婷婷99| 亚洲熟女精品中文字幕| 久久久久国产精品人妻一区二区| 欧美日韩一区二区视频在线观看视频在线| 久久热在线av| 一区二区日韩欧美中文字幕 | 亚洲欧美中文字幕日韩二区| 精品国产一区二区三区久久久樱花| 久久久精品94久久精品| 乱人伦中国视频| 一级,二级,三级黄色视频| 久久久久人妻精品一区果冻| 一边摸一边做爽爽视频免费| 熟女av电影| 在线观看国产h片| 欧美日韩视频高清一区二区三区二| 51国产日韩欧美| 国产精品国产av在线观看| 大陆偷拍与自拍| 99热网站在线观看| 老司机影院成人| 考比视频在线观看| 亚洲精品,欧美精品| 搡老乐熟女国产| 99热这里只有是精品在线观看| 午夜视频国产福利| 黄片无遮挡物在线观看| av在线播放精品| 乱人伦中国视频| 国产男女超爽视频在线观看| 日韩伦理黄色片| 美女福利国产在线| 日日啪夜夜爽| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av.av天堂| 午夜91福利影院| 久久久a久久爽久久v久久| 寂寞人妻少妇视频99o| 欧美精品国产亚洲| 亚洲精品日本国产第一区| 国产成人午夜福利电影在线观看| 2022亚洲国产成人精品| 在线 av 中文字幕| 最近中文字幕2019免费版| 亚洲av电影在线观看一区二区三区| 新久久久久国产一级毛片| 中文欧美无线码| 中文乱码字字幕精品一区二区三区| 国产一区二区三区综合在线观看 | 免费黄频网站在线观看国产| 日韩精品有码人妻一区| 热re99久久精品国产66热6| 永久免费av网站大全| 久久国产亚洲av麻豆专区| 日韩欧美一区视频在线观看| 亚洲综合色网址| 韩国精品一区二区三区 | 免费黄网站久久成人精品| 国产精品国产三级专区第一集| 国产亚洲精品久久久com| 久久久久精品人妻al黑| 久久午夜综合久久蜜桃| 赤兔流量卡办理| 国产精品一国产av| 丰满饥渴人妻一区二区三| 国产成人精品久久久久久| 亚洲,一卡二卡三卡| av视频免费观看在线观看| 国产精品国产三级国产av玫瑰| 欧美日韩亚洲高清精品| 国产精品成人在线| 亚洲欧美日韩另类电影网站| a级毛片在线看网站| 最后的刺客免费高清国语| 日韩电影二区| 大片电影免费在线观看免费| 日本欧美视频一区| 黑人高潮一二区| 欧美成人午夜免费资源| 国产极品粉嫩免费观看在线| 亚洲精品456在线播放app| 纵有疾风起免费观看全集完整版| 一本大道久久a久久精品| 国产白丝娇喘喷水9色精品| 免费大片18禁| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲av福利一区| 亚洲国产精品国产精品| 菩萨蛮人人尽说江南好唐韦庄| 丰满饥渴人妻一区二区三| 一级片免费观看大全| av电影中文网址| videosex国产| 精品少妇内射三级| 国产成人精品在线电影| 91精品国产国语对白视频| 欧美人与善性xxx| 男女国产视频网站| 少妇被粗大的猛进出69影院 | 亚洲精品国产av蜜桃| 男女边摸边吃奶| 少妇猛男粗大的猛烈进出视频| a级片在线免费高清观看视频| 亚洲av福利一区| 国产乱人偷精品视频| 美女主播在线视频| 中文字幕制服av| 久久99一区二区三区| 91在线精品国自产拍蜜月| kizo精华| 丰满迷人的少妇在线观看| 人妻 亚洲 视频| 国产国拍精品亚洲av在线观看| 日本91视频免费播放| 亚洲国产av影院在线观看| 久久久久久久大尺度免费视频| 日产精品乱码卡一卡2卡三| 亚洲欧美一区二区三区国产| 亚洲激情五月婷婷啪啪| 久久久久国产精品人妻一区二区| 午夜日本视频在线| 97精品久久久久久久久久精品| 精品福利永久在线观看| 国产黄色视频一区二区在线观看| 男的添女的下面高潮视频| 中文字幕精品免费在线观看视频 | 国内精品宾馆在线| 黄色配什么色好看| 午夜福利视频精品| 免费av不卡在线播放| av在线播放精品| 亚洲,欧美,日韩| 精品第一国产精品| 欧美人与善性xxx| 精品第一国产精品| 亚洲精品美女久久久久99蜜臀 | 亚洲人成77777在线视频| 久久精品久久精品一区二区三区| 免费看光身美女| 欧美国产精品一级二级三级| 亚洲成人一二三区av| 两个人免费观看高清视频| 狂野欧美激情性bbbbbb| 久久久a久久爽久久v久久| 边亲边吃奶的免费视频| 久久午夜福利片| 亚洲久久久国产精品| 免费不卡的大黄色大毛片视频在线观看| 亚洲欧美清纯卡通| 人妻一区二区av| 一边亲一边摸免费视频| 纯流量卡能插随身wifi吗| 免费高清在线观看视频在线观看| 久久午夜综合久久蜜桃| 婷婷成人精品国产| 日本免费在线观看一区| 中文精品一卡2卡3卡4更新| 国产成人欧美| 久久99一区二区三区| 中文字幕av电影在线播放| 国产精品麻豆人妻色哟哟久久| 免费高清在线观看视频在线观看| 午夜91福利影院| 亚洲性久久影院| 中国三级夫妇交换| 亚洲五月色婷婷综合| 熟女电影av网| 黑人欧美特级aaaaaa片| 国产精品久久久久久久久免| 精品熟女少妇av免费看| 成人漫画全彩无遮挡| 国产成人精品一,二区| 欧美人与性动交α欧美精品济南到 | 97超碰精品成人国产| 男女国产视频网站| 熟女av电影| 免费大片18禁| av有码第一页| av卡一久久| 成人亚洲欧美一区二区av| 久久午夜福利片| 精品国产露脸久久av麻豆| av国产久精品久网站免费入址| 亚洲人成77777在线视频| 最后的刺客免费高清国语| 色网站视频免费| 最后的刺客免费高清国语| 你懂的网址亚洲精品在线观看| 亚洲四区av| 国产女主播在线喷水免费视频网站| 曰老女人黄片| 亚洲精品久久久久久婷婷小说| 国产精品一二三区在线看| 制服诱惑二区| 99久久人妻综合| 亚洲av男天堂| 精品视频人人做人人爽| 久久久久人妻精品一区果冻| 欧美日本中文国产一区发布| 精品国产国语对白av| 最近中文字幕2019免费版| 国产亚洲精品久久久com| 边亲边吃奶的免费视频| 麻豆精品久久久久久蜜桃| 只有这里有精品99| 三上悠亚av全集在线观看| 日韩制服骚丝袜av| 国产色婷婷99| 制服人妻中文乱码| 大香蕉久久网| 亚洲综合精品二区| 22中文网久久字幕| 亚洲成人一二三区av| 国产欧美日韩综合在线一区二区| 97在线人人人人妻| 亚洲av福利一区| 考比视频在线观看| 久久午夜综合久久蜜桃| 久久久久久久久久成人| 91精品国产国语对白视频| 99国产综合亚洲精品| 亚洲精品日本国产第一区| 日韩av不卡免费在线播放| 一级黄片播放器| 成人黄色视频免费在线看| 亚洲美女搞黄在线观看| 在线观看三级黄色| 热99久久久久精品小说推荐| 国产av国产精品国产| 欧美日韩综合久久久久久| 老司机亚洲免费影院| 视频在线观看一区二区三区| 久久久久久久大尺度免费视频| 亚洲国产av新网站| 久久狼人影院| 综合色丁香网| 国产av精品麻豆| 免费日韩欧美在线观看| 亚洲av中文av极速乱| 亚洲五月色婷婷综合| 两性夫妻黄色片 | 大话2 男鬼变身卡| 麻豆精品久久久久久蜜桃| 99香蕉大伊视频| videos熟女内射| 国产男人的电影天堂91| 亚洲精品一二三| 中文字幕av电影在线播放| 九九在线视频观看精品| 51国产日韩欧美| 国产极品天堂在线| 久热久热在线精品观看| 最近最新中文字幕免费大全7| 在线观看免费视频网站a站| 黑人欧美特级aaaaaa片| 久久国产精品大桥未久av| 国产片特级美女逼逼视频| 日韩av在线免费看完整版不卡| 婷婷成人精品国产| 亚洲一级一片aⅴ在线观看| 日韩精品免费视频一区二区三区 | 欧美97在线视频| 久久影院123| 久久久久国产网址| 春色校园在线视频观看| 汤姆久久久久久久影院中文字幕| 午夜91福利影院| 国产av精品麻豆| 97人妻天天添夜夜摸| 国产一区二区三区av在线| 国产在线一区二区三区精| 国产国拍精品亚洲av在线观看| 国产毛片在线视频| 好男人视频免费观看在线| 寂寞人妻少妇视频99o| 国产日韩欧美视频二区| 精品一区二区三区四区五区乱码 | 国产精品国产三级国产av玫瑰| 国产av一区二区精品久久| 亚洲 欧美一区二区三区| 99精国产麻豆久久婷婷| 久久精品夜色国产| 在线天堂最新版资源| 亚洲国产精品成人久久小说| 哪个播放器可以免费观看大片| 乱码一卡2卡4卡精品| 欧美另类一区| 久久久久国产网址| 久久久久网色| 欧美精品一区二区免费开放| 老女人水多毛片| 狂野欧美激情性xxxx在线观看| 女性生殖器流出的白浆| a 毛片基地| 制服诱惑二区| 国产成人精品一,二区| 欧美性感艳星| 亚洲成人av在线免费| 最近的中文字幕免费完整| 日本午夜av视频| 国产日韩欧美在线精品| 欧美日韩视频高清一区二区三区二| 欧美日韩综合久久久久久| 97精品久久久久久久久久精品| 国产极品粉嫩免费观看在线| 秋霞伦理黄片| 久久韩国三级中文字幕| 精品人妻偷拍中文字幕| 九九爱精品视频在线观看| 国产精品三级大全| 国产白丝娇喘喷水9色精品| 下体分泌物呈黄色| 国产极品粉嫩免费观看在线| 秋霞伦理黄片| 毛片一级片免费看久久久久| 日韩av不卡免费在线播放| 中文字幕免费在线视频6| 国产国拍精品亚洲av在线观看| 亚洲精品美女久久av网站| 在现免费观看毛片| 观看av在线不卡| 男人添女人高潮全过程视频| 亚洲色图综合在线观看| 交换朋友夫妻互换小说| 成年av动漫网址| 97在线视频观看| 90打野战视频偷拍视频| 亚洲精品成人av观看孕妇| 精品一区二区免费观看| 宅男免费午夜| 夜夜骑夜夜射夜夜干| 亚洲美女黄色视频免费看| 亚洲欧美色中文字幕在线| 校园人妻丝袜中文字幕| 亚洲国产精品一区二区三区在线| 女人被躁到高潮嗷嗷叫费观| 亚洲综合色网址| 免费大片黄手机在线观看| 免费日韩欧美在线观看| 国产一区二区在线观看日韩| 久久精品aⅴ一区二区三区四区 | 人妻少妇偷人精品九色| 搡女人真爽免费视频火全软件| 欧美变态另类bdsm刘玥| 欧美日韩国产mv在线观看视频| 超色免费av| 国产色爽女视频免费观看| 黑人欧美特级aaaaaa片| 大话2 男鬼变身卡| 国产欧美日韩一区二区三区在线| 少妇的逼好多水| 国产免费现黄频在线看| 麻豆乱淫一区二区| 爱豆传媒免费全集在线观看| 亚洲精品美女久久av网站| a 毛片基地| 亚洲国产av影院在线观看| 熟女av电影| 亚洲四区av| 久久精品国产自在天天线| 国产av一区二区精品久久| 久久精品国产综合久久久 | 精品人妻一区二区三区麻豆| 黄片播放在线免费| 午夜福利网站1000一区二区三区| 自线自在国产av| 久久ye,这里只有精品| 中文字幕另类日韩欧美亚洲嫩草| 久热久热在线精品观看| 日韩大片免费观看网站| 人妻 亚洲 视频| 午夜免费鲁丝| 欧美精品一区二区大全| 国产爽快片一区二区三区| 精品久久蜜臀av无| 亚洲精品一二三| 少妇猛男粗大的猛烈进出视频| 亚洲精品日韩在线中文字幕| tube8黄色片| xxxhd国产人妻xxx| 欧美精品一区二区大全| 日日啪夜夜爽| xxxhd国产人妻xxx| 男女边摸边吃奶| 久久久a久久爽久久v久久| 亚洲 欧美一区二区三区| 91午夜精品亚洲一区二区三区| 91成人精品电影| 国产av国产精品国产| 午夜日本视频在线| 欧美精品高潮呻吟av久久| 国产免费视频播放在线视频| 超色免费av| 亚洲三级黄色毛片| 久久午夜福利片| 成人黄色视频免费在线看| 两个人免费观看高清视频| 夜夜骑夜夜射夜夜干| 久久久久精品久久久久真实原创| 午夜免费男女啪啪视频观看| 亚洲四区av| 久久这里只有精品19| 亚洲久久久国产精品| 狂野欧美激情性bbbbbb| 一本色道久久久久久精品综合| 国产在线免费精品| 少妇人妻精品综合一区二区| 国产欧美另类精品又又久久亚洲欧美| 国产精品.久久久|