• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Real-Valued 2D DOA Estimation Algorithm of Noncircular Signal via Euler Transformation and Rotational Invariance Property

    2018-07-11 02:57:24ChenXueqiangWangChenghuaZhangXiaofei

    Chen Xueqiang,Wang Chenghua,Zhang Xiaofei

    1.Key Laboratory of Radar Imaging and Microwave Photonics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China;

    2.College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China

    Abstract:The problem of two-dimensional(2D)direction of arrival(DOA)estimation for double parallel uniform linear arrays is investigated in this paper.A real-valued DOA estimation algorithm of noncircular(NC)signal is proposed,which combines the Euler transformation and rotational invariance(RI)property between subarrays.In this work,the effective array aperture is doubled by exploiting the noncircularity of signals.The complex arithmetic is converted to real arithmetic via Euler transformation.The main contribution of this work is not only extending the NC-Euler-ESPRIT algorithm from uniform linear array to double parallel uniform linear arrays,but also constructing a new 2D rotational invariance property between subarrays,which is more complex than that in NCEuler-ESPRIT algorithm.The proposed 2D NC-Euler-RI algorithm has much lower computational complexity than 2D NC-ESPRIT algorithm.The proposed algorithm has better angle estimation performance than 2D ESPRIT algorithm and 2D NC-PM algorithm for double parallel uniform linear arrays,and is very close to that of 2D NC-ESPRIT algorithm.The elevation angles and azimuth angles can be obtained with automatically pairing.The proposed algorithm can estimate up to 2(M-1)sources,which is two times that of 2D ESPRIT algorithm.Cramer-Rao bound(CRB)of noncircular signal is derived for the proposed algorithm.Computational complexity comparison is also analyzed.Finally,simulation results are presented to illustrate the effectiveness and usefulness of the proposed algorithm.

    Key words:array signal processing;direction of arrival(DOA)estimation;noncircular signal;Euler transformation

    0 Introduction

    The problem of estimating the direction-ofarrival(DOA)of multiple sources in the field of array signal processing has received considerable attention for decades[1-3].Various DOA estimation algorithms have been developed and applied in many fields,including mobile communication system,radio astronomy,sonar and radar[4-6].Although the maximum likelihood estimator[7-8]provides the optimum parameter estimation performance,its computational complexity is extremely high.Suboptimal but simpler solutions can be achieved by subspace based approaches,which rely on the decomposition of observation space into signal subspace and noise subspace.For example,both multiple signal classification(MUSIC)method[9]and estimation of signal parameters via rotational invariance technique(ESPRIT)[10]are well-known subspace based directions of arrival estimation algorithm for their good angle estimation performance.

    Noncircular signals have received considera-ble attention in the field of spatial spectrum estimation[11].The amplitude modulation(AM)and binary phase shift keying(BPSK)modulated signals frequently used in communication systems are noncircular(NC)signals[12].The noncircularity of signal is investigated to enhance the performance of angle estimation algorithm by combing array output and its conjugated counterpart.Some noncircular DOA estimation methods of multiple signals have been reported,such as NCMUSIC algorithm[13],NC-ESPRIT algorithm[14],NC-propagator methods(NC-PM)[15-16],and NC-parallel factor(NC-PARAFAC)algorithm[17].These noncircular DOA estimation algorithms have better angle estimation performance and can estimate more sources.

    However,the arithmetic of the above mentioned DOA estimation algorithms is operated in complex field.Thus the corresponding computational complexity is very high.Huarng and Yeh have proposed real-valued MUSIC algorithm[18]and real-valued ESPRIT algorithm[19]by unitary transformation,respectively.A real-valued noncircular ESPRIT algorithm for uniform linear array has been proposed in Ref.[20],which has lower computational complexity than NC-ESPRIT[14]algorithm.Then this method is extended to PM algorithm for two-dimensional(2D)angle estimation by Zhang[21].

    In this paper,a computationally efficient 2D angle estimation algorithm of noncircular signal for double parallel uniform linear arrays via Euler transformation and rotational invariance property between subarrays(2D NC-Euler-RI)is proposed.The complex arithmetic in this work is converted to real arithmetic by Euler transformation.The main contribution of this work is not only extending the NC-Euler-ESPRIT algorithm[20]from uniform linear array to double parallel uniform linear arrays,but also constructing a new 2D rotational invariance property between subarrays,which is more complex than that in NC-Euler-ESPRIT algorithm.Moreover,the proposed 2D NC-Euler-RI algorithm needs to consider matching problem between elevation angles and azimuth angles.We also analyze the computational complexity of the proposed algorithm and derive the CRB of noncircular signal for double parallel uniform linear arrays.

    The proposed algorithm has the following advantages:(1)It has lower computational complexity than 2D ESPRIT[10]algorithm and 2D NCESPRIT algorithm[14]for double parallel uniform linear arrays.(2)It can estimate up to 2(M-1)sources,which is two times that of NC-Euler-ESPRIT algorithm.(3)It can achieve automatically paired elevation angles and azimuth angles.(4)It has better angle estimation performance than that of 2D ESPRIT algorithm[10],2D NC-PM algorithm[22]for double parallel uniform linear array,and close to that of 2D NC-ESPRIT algorithm[14].

    Notations:(·)-1,(·)*,(·)T,(·)H,(·)+denote inverse,conjugate,transpose,conjugate-transpose and pseudo-inverse operations,respectively.diag{v}stands for a diagonal matrix,whose diagonal elements are the elements in vector v.IKis a K×K identity matrix.E(·)is the expectation operator.angle(·)means to get the phase.Re[·]and Im[·]mean to get the real part and imaginary part of complex number,respectively.

    1 Data Model

    Assume that there are K uncorrelated narrowband sources impinging on double parallel uniform linear arrays,and each uniform linear subarray equipped with M sensors is shown in Fig.1.The distance d between adjacent sensors is equivalent to half of the wavelengthλ.The sources are far away from the subarrays,thus the incoming waves over the sensors are essentially planes.The noise is additive independent identically distributed Gaussian with zero mean and varianceσ2,which is uncorrelated with the signal.We denote the 2D DOAs of k th source asφk=[θk,φk],whereθkandφkdenote elevation angle and azimuth angle,respectively,and k=1,…,K.

    The output signals of subarrays along X axis at time t can be modeled as[23]

    where x1(t),x2(t)∈CM×1are the received signals of each subarray;A=[a1,…,ak,…,aK]∈CM×Kis the steering matrix,ak=[1,…,ej(m-1)τx,k,…,ej(M-1)τx,k]T,τx,k=2πd·cos(φk)sin(θk)/λ,m=1,…,M;s(t)∈CK×1;andΦYis a diagonal matrix

    whereτy,k=2πd sin(φk)sin(θk)/λ.

    Fig.1 Array geometry[23]

    A brief definition of noncircular signal is given in the following[24].Let s(t)be a complex random process with zero mean.The second order statistics of s(t)are defined as the covariance E{s(t)s*(t)}and conjugate covariance E{s2(t)},respectively.The relationship between these two covariance measures is

    whereψis the noncircular phase andρ(ρ∈[0,1])denotes the noncircular rate.It is defined that s(t)is circular whenρ=0 and is noncircular when 0<ρ≤1.

    Only the signals of maximum noncircular rateρ=1 are considered in this work.The noncircular signals s(t)with maximum noncircular rate can be expressed as

    where s0(t)∈RK×1,and

    whereψkis the noncircular phase of k th signal and is assumed to be in the range of[0,π].

    2 Angle Estimation Algorithm

    2.1 Euler transformation of array output

    According to Eq.(1),define the real-valued subarray output via Euler transformation[20]as follows

    where A1c,A1s,A2c,A2c∈ RM×K,n1c(t)=Re[n1(t)],n1s(t)=Im[n1(t)],n2c(t)=Re[n2(t)],n2s(t)=Im[n2(t)].

    Construct the extended real-valued array output as

    with L snapshots can be written as

    where Xr∈R4M×L,S0∈RK×L,Nr∈R4M×L.

    2.2 2D NC-Euler-RI algorithm

    Define

    where T1and T2∈R(M-1)×M.

    Let

    where J1,J2∈R4(M-1)×4M.

    Combining Eq.(7)and Eqs.(11),(12),we have

    where

    where D1∈RK×K.

    Define the covariance matrix of xr(t)as[25]

    where Rx∈R4M×4M,R0=E[s0(t)sT0(t)]∈RK×K.

    Rxcan be rewritten via Eigen value decomposition(EVD)as

    where Us∈R4M×K,Un∈R4M×(4M-K),Σs∈RK×K,

    For Usand Arcan span the same signal subspace,it can be obtained that

    whereΠ1is a nonsingular matrix,andΠ1∈RK×K.

    Combine Eq.(13)and Eq.(17),and we have

    Define

    where P1∈RK×K.

    According to Eqs.(18),(19),we have

    Perform the EVD of P1,which can be expressed as

    where V∈RK×K,γkis the k th diagonal element ofΛ.

    Combine Eq.(14)and Eqs.(20),(21),and we have

    Then reconstruct the extended real-valued array output data along Y axis as

    where yr(t),ny(t)∈R4M×1,Br∈R4M×K,and

    where dm,k=(m-1)τx,k,Dm,k=dm,k+τy,k.

    Define

    Let

    Combine Eqs.(29),(30)and construct J3,J4as follows

    where J3,J4∈R2M×4M.

    Combine Eq.(23)and Eqs.(31),(32),and we have

    where D2∈RK×K,and

    Define the covariance matrix of yr(t)as[25]

    where Ry∈R4M×4M.

    Rycan be rewritten via EVD as

    where Bs∈R4M×K,Bn∈R4M×(4M-K),Δs∈RK×K,

    For Bsand Brcan span the same signal subspace,it can be obtained that

    whereΠ2∈RK×Kis a noncircular matrix.

    Combine Eq.(33)and Eq.(37),and we have

    Define

    where P2∈RK×K.

    According to Eqs.(38),(39),we have

    Perform the EVD of P2,which can be rewritten as

    whereΗ∈RK×K,,ωkis the k th diagonal element ofΩ.

    Combining Eqs.(40),(41),it can be obtained that

    Note that the EVDs of P1and P2are performed,respectively.We should consider the column ambiguity and scale fuzzy betweenΛandΩ before estimating the DOAs.According to Eqs.(7),(23),yr(t)can be obtained by row elementary transformation of xr(t),so Bscan be achieved as follow

    where J0is the row elementary transformation matrix.

    Then replaceΠ2in Eq.(40)with

    The column ambiguity and scale fuzzy betweenΛ andΩcan be solved.

    Define that

    Thus the estimates ofμkandηkare

    Therefore,the azimuth angles and elevation angles can be estimated as follows

    2.3 Algorithm description

    The implementation of the proposed algorithm with finite array output data is summarized in this section.The sampled covariance matriceswith L snapshots are defined as[26]

    The procedure of the proposed 2D NC-Euler-RI algorithm for double parallel uniform linear arrays is presented in the following.

    (1)Initialize the sampled array output data of subarrays X1,X2,and define the matrices J0,J1,J2,J3,J4.

    (2)Construct the extended real-valued array output Xrvia Euler transformation.

    (3)Compute the corresponding sampled covariance matrix^Rx,and perform the EVD of^Rx.

    (4)Extract the signal subspace Us,and reconstruct Usto get Bsvia Eq.(43).

    (5)Compute the matrices P1and P2,and perform the EVD of P1and P2,respectively.

    (6)Estimate the elevation angles and azimuth angles via Eqs.(49),(50).

    Remark 1 It is assumed that the number of sources is pre-known,or it can be estimated by some methods shown in Refs.[27-29].

    Remark 2 The column ambiguity and scale fuzzy betweenΛandΩare solved via Eqs.(47),(48).Thus the elevation angles and azimuth angles can be obtained with automatic pairing.

    2.4 Analysis of complexity

    Regarding the computational complexity,only matrix multiplication operations are considered.The complexities of 2D ESPRIT algorithm[10],2D NC-ESPRIT algorithm[14]and the proposed 2D NC-Euler-RI algorithm for double parallel uniform linear arrays are analyzed in Table 1.Fig.2 is the simulation results of computational complexity comparison among 2D ESPRIT algorithm,2D NC-ESPRIT algorithm and 2D NC-Euler-RI algorithm with different numbers of snapshots L and sensors M.It can be seen that the proposed 2D NC-Euler-RI algorithm hasmuch lower computational complexity of than that of 2D NC-ESPRIT algorithm,and close to that of 2D ESPRIT algorithm.

    Table 1 Computational complexity of three methods for double parallel uniform linear arrays

    Fig.2 Simulation results of complexity comparison with different values of L and M

    Note that the dimension of array output data is doubled by exploiting the noncircularity of signal.The effective array aperture of the proposed algorithm is 2M,which is two times that of ESPRIT algorithm.Thus the proposed algorithm can estimate up to 2(M-1)sources.

    3 Cramer-Rao Bound

    We derive the CRB of noncircular signals for double uniform linear arrays in this section.There are some differences between the CRB of noncircular signals DOA estimation and that of circular signals DOA estimation[17].The parameters needed to estimate can be defined as

    where sR(tl)and sI(tl)denote the real and imaginary parts of s(tl),respectively.

    According to Eq.(1),the sampled array output with L snapshots can be rewritten as

    The meanμand covarianceΓof z are

    From Ref.[30],the(i,j)element of the CRB matrix P can be expressed as

    whereμ′iand?!鋓denote the first-order derivative ofμandΓwith respect to the i th element ofζ,respectively.

    For the covariance matrixΓis just related to σ2,the first term of Eq.(56)can be ignored.The(i,j)element of CRB matrix P can be simplified as

    According to Eqs.(52,54),we have

    where sk(tl)is the k th element of s(tl),and

    Define

    where

    Then we have

    Combining Eq.(52)and Eqs.(62)—(67),the first-order derivative ofμwith respect toζis

    Combine Eq.(55)with Eq.(68),and Eq.(57)can be rewritten as

    where

    Let

    where BRand BIare the real and imaginary parts of B,respectively.

    According to Eqs.(69)—(71),we have

    Thus,it can be demonstrated that

    Only the elements related to the angles are considered.According to Eq.(74),J-1can be expressed as

    whereκdenotes the parts unrelated to the elevation angles and azimuth angles.

    Thus,the CRB matrix can be obtained as

    After further simplification,the CRB matrix can be rewritten as

    4 Simulation Results

    The Monte Carlo simulations are adopted to evaluate the angle estimation performance of the proposed algorithm.The rootmean square error(RMSE)is defined as[31]

    In the following simulation results except Figs.4,7,8,we assume that there are K=3 sources located at angles of(θ1,θ2,θ3)=(15°,35°,55°)and(φ1,φ2,φ3)=(10°,30°,50°).The noncircular phases are(ψ1,ψ2,ψ3)=(20°,40°,60°),respectively.

    Fig.3 presents angle estimation result of elevation angles and azimuth angles of the proposed algorithm.M=8 and L=300 are used in the simulations,while SNR=10 dB.From Fig.3,the elevation angles and azimuth angles can be clearly observed.

    Fig.3 Angle estimation result over Monte Carlo simulations

    Fig.4 shows the angle estimation performance comparison among the proposed algorithm,2D ESPRIT algorithm[10],2D NC-ESPRIT algorithm[14],2D NC-PM algorithm[22],and CRB of noncircular signals for double parallel uniform linear arrays.M=6,K=2 and L=300 are used in the simulations.From Fig.4,it is indicated that the angle estimation performance of the proposed algorithm is close to that of 2D NC-ESPRIT algorithm and better than that of the other 2D angle estimation algorithms,since the effective array aperture is doubled by exploiting the noncircularity of signals.

    Fig.5 shows angle estimation performance of the proposed algorithm with L=300 and different values of M.From Fig.5,it can be seen that the increasing of M will lead to the improvement of angle estimation performance of the proposed algorithm.

    Fig.6 depicts angle estimation performance of the proposed algorithm with M=8 and different values of L.From Fig.6,the angle estimation performance of the proposed algorithm is enhanced with the number of snapshots increasing.

    Fig.7 presents angle estimation performance of the proposed algorithm with M=8,L=300 and different values of K.From Fig.7,it can be found that the angle estimation performance of the proposed algorithm degrades with the number of source increasing.

    Fig.8 displays the simulation result of the proposed algorithm with two closely spaced sources.In Fig.8,we assume that the two closely spaced sources are located at angles of(θ1,θ2)=(30°,32°)and(φ1,φ2)=(10°,12°).The corresponding noncircular phases are(ψ1,ψ2)=(20°,40°),respectively.M=10,L=500 and SNR=20 dB are used in the simulation.Fig.8 implies that the proposed algorithm works well when two sources are closely spaced.

    Fig.4 Simulation results of angle estimation performance comparison

    Fig.5 Angle estimation performances with different values of M

    Fig.6 Angle estimation performances with different values of L

    Fig.7 Angle estimation performances with different values of K

    Fig.8 Angle estimation result of two closely spaced sources

    5 Conclusions

    In this paper,we have proposed a real-valued 2D NC-Euler-RI algorithm of noncircular signals for double parallel uniform linear arrays.The proposed algorithm has the following advantages:

    (1)It has much lower computational complexity than that of 2D NC-ESPRIT algorithm[14]for double parallel uniform linear arrays.

    (2)It has better angle estimation performance than that of 2D ESPRIT algorithm[10]and 2D NC-PM algorithm[22]for double parallel uniform linear arrays,and very close to that of 2D NC-ESPRIT algorithm[14]for double parallel uniform linear arrays.

    (3)It can estimate elevation angles and azimuth angles with automatically pairing.

    (4)The maximum number of source estimated by the proposed algorithm is two times that of 2D ESPRIT algorithm,for the effective array aperture is doubled via utilizing the noncircularity of signal.

    We also analyze the computational complexity of the proposed algorithm.The CRB of noncircular signals for double parallel uniform linear arrays are also derived.It is well known that CRB expresses a lower bound on the variance of an unbiased estimator,which can be used to compare the angle performance of different algorithms.From Fig.4,it can be seen that the RMSE of the proposed 2D NC-Euler-RI algorithm is much closer to CRB compared with that of 2D ESPRIT algorithm and 2D NC-PM algorithm.It is also clearly indicated that the angle estimation performance of our algorithm is better than that of 2D ESPRIT algorithm and 2D NC-PM algorithm.Finally,the angle estimation performance and computational complexity of the proposed algorithm are evaluated by numerical simulations.Simulation results illustrate the effectiveness of the proposed algorithm in a variety of scenarios,even when the sources are closely spaced.

    Acknowledgements

    This work is supported by the National Science Foundation of China(No.61371169)and the Aeronautical Science Foundation of China(No.20120152001).

    黄色 视频免费看| 成在线人永久免费视频| 午夜精品久久久久久毛片777| 免费久久久久久久精品成人欧美视频| 色老头精品视频在线观看| 日韩免费av在线播放| 国产精品香港三级国产av潘金莲| 啪啪无遮挡十八禁网站| 久9热在线精品视频| 中文字幕人妻熟女乱码| 性少妇av在线| 久久精品国产99精品国产亚洲性色 | 叶爱在线成人免费视频播放| 国产伦人伦偷精品视频| 国产精品久久视频播放| 久久午夜亚洲精品久久| 精品久久久久久电影网| 国产激情久久老熟女| 两个人看的免费小视频| 国精品久久久久久国模美| 午夜福利影视在线免费观看| 国产亚洲精品久久久久久毛片 | 夜夜爽天天搞| 99香蕉大伊视频| 少妇的丰满在线观看| 久久国产精品人妻蜜桃| 成人精品一区二区免费| 男人舔女人的私密视频| 国产免费现黄频在线看| 精品久久久久久电影网| 欧美性长视频在线观看| 欧美黑人精品巨大| 久久精品91无色码中文字幕| 正在播放国产对白刺激| 日韩免费高清中文字幕av| 亚洲伊人色综图| 视频区欧美日本亚洲| 操出白浆在线播放| 精品国产国语对白av| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久久久99蜜臀| 最新的欧美精品一区二区| 国产片内射在线| 九色亚洲精品在线播放| 高清视频免费观看一区二区| 操出白浆在线播放| 国产在视频线精品| 日韩精品免费视频一区二区三区| a在线观看视频网站| 久久ye,这里只有精品| 欧美精品亚洲一区二区| 午夜福利,免费看| 欧美亚洲 丝袜 人妻 在线| 中文字幕最新亚洲高清| 12—13女人毛片做爰片一| 亚洲精品美女久久久久99蜜臀| 欧美成狂野欧美在线观看| 国产精品一区二区免费欧美| 成人av一区二区三区在线看| 黑丝袜美女国产一区| 精品国产一区二区久久| 成人永久免费在线观看视频| 亚洲精品久久成人aⅴ小说| 天天操日日干夜夜撸| 婷婷丁香在线五月| 国产精品亚洲一级av第二区| 国产一区二区三区综合在线观看| 老司机午夜十八禁免费视频| av不卡在线播放| 日韩成人在线观看一区二区三区| 麻豆av在线久日| 欧美日韩亚洲国产一区二区在线观看 | 欧美+亚洲+日韩+国产| 亚洲精品粉嫩美女一区| bbb黄色大片| 亚洲成人手机| 亚洲国产精品sss在线观看 | 女警被强在线播放| 亚洲自偷自拍图片 自拍| 日本欧美视频一区| 在线观看午夜福利视频| 日日夜夜操网爽| 大型黄色视频在线免费观看| а√天堂www在线а√下载 | 国产一区二区三区在线臀色熟女 | 成人永久免费在线观看视频| av视频免费观看在线观看| 亚洲精品自拍成人| 国产精品一区二区免费欧美| 国产亚洲av高清不卡| 久久久久久久国产电影| 亚洲一区二区三区欧美精品| 老司机午夜福利在线观看视频| 黑人操中国人逼视频| 国产精品综合久久久久久久免费 | 很黄的视频免费| 国产1区2区3区精品| 激情视频va一区二区三区| 国产xxxxx性猛交| 精品免费久久久久久久清纯 | 动漫黄色视频在线观看| 在线免费观看的www视频| 1024视频免费在线观看| 国产男女内射视频| 国产免费男女视频| 午夜免费成人在线视频| 深夜精品福利| 电影成人av| 国产精品免费大片| 99国产精品99久久久久| 一级a爱视频在线免费观看| 韩国精品一区二区三区| 热99久久久久精品小说推荐| 少妇裸体淫交视频免费看高清 | tube8黄色片| 中文字幕人妻丝袜一区二区| 亚洲视频免费观看视频| 国产精品.久久久| 啦啦啦 在线观看视频| 成年人黄色毛片网站| 午夜久久久在线观看| 国产亚洲精品久久久久久毛片 | 美女福利国产在线| 精品视频人人做人人爽| 两性夫妻黄色片| 男男h啪啪无遮挡| 国产精品久久久av美女十八| 午夜精品在线福利| 一本大道久久a久久精品| 国产又色又爽无遮挡免费看| 99香蕉大伊视频| 美国免费a级毛片| 午夜福利乱码中文字幕| 男人操女人黄网站| 欧美日韩瑟瑟在线播放| 啦啦啦 在线观看视频| 操美女的视频在线观看| 国产亚洲av高清不卡| 欧美日本中文国产一区发布| 成年女人毛片免费观看观看9 | 精品免费久久久久久久清纯 | 亚洲av日韩精品久久久久久密| 欧美丝袜亚洲另类 | 一级毛片精品| 欧美在线黄色| 国产av又大| 热re99久久国产66热| 欧美av亚洲av综合av国产av| 久久香蕉激情| 亚洲一区中文字幕在线| 在线天堂中文资源库| 夜夜夜夜夜久久久久| a级毛片黄视频| 国产精品免费一区二区三区在线 | 激情视频va一区二区三区| 久久久国产精品麻豆| 婷婷丁香在线五月| 精品一区二区三区视频在线观看免费 | 久久亚洲精品不卡| 国产麻豆69| www日本在线高清视频| 欧美黄色片欧美黄色片| 婷婷丁香在线五月| 成人国产一区最新在线观看| 十八禁人妻一区二区| 看免费av毛片| 在线观看免费视频网站a站| 成年人黄色毛片网站| 国产亚洲精品一区二区www | 中文字幕av电影在线播放| 中文字幕制服av| 欧美午夜高清在线| 久久精品国产亚洲av高清一级| 欧美日韩一级在线毛片| 亚洲情色 制服丝袜| 亚洲自偷自拍图片 自拍| 激情视频va一区二区三区| 久久亚洲精品不卡| 黑丝袜美女国产一区| 老司机午夜十八禁免费视频| 亚洲欧美日韩高清在线视频| 精品福利观看| 亚洲第一av免费看| 一个人免费在线观看的高清视频| 香蕉国产在线看| 丰满人妻熟妇乱又伦精品不卡| 老熟妇乱子伦视频在线观看| 国产淫语在线视频| 免费女性裸体啪啪无遮挡网站| 欧美乱妇无乱码| 丰满迷人的少妇在线观看| 黄色成人免费大全| 日韩欧美一区视频在线观看| 夜夜爽天天搞| 国产亚洲欧美精品永久| 激情在线观看视频在线高清 | 成人黄色视频免费在线看| 91老司机精品| 精品国产亚洲在线| 18禁国产床啪视频网站| 国产精品成人在线| 国产成人av激情在线播放| 老司机靠b影院| 国产一区二区激情短视频| 成人三级做爰电影| 亚洲 国产 在线| 99国产精品一区二区蜜桃av | 91av网站免费观看| 日日夜夜操网爽| 国产精品香港三级国产av潘金莲| 两人在一起打扑克的视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩中文字幕国产精品一区二区三区 | 少妇被粗大的猛进出69影院| 女人被狂操c到高潮| 9热在线视频观看99| 国产一区二区激情短视频| 夫妻午夜视频| 无遮挡黄片免费观看| 欧美成狂野欧美在线观看| 老司机深夜福利视频在线观看| 国产精品免费一区二区三区在线 | 18禁观看日本| 成年人黄色毛片网站| 免费日韩欧美在线观看| 黄色视频,在线免费观看| 正在播放国产对白刺激| 一a级毛片在线观看| 日本一区二区免费在线视频| 一二三四在线观看免费中文在| 午夜福利免费观看在线| 搡老乐熟女国产| 精品亚洲成a人片在线观看| 国产精华一区二区三区| 国产乱人伦免费视频| 久久精品人人爽人人爽视色| 夜夜躁狠狠躁天天躁| 国产xxxxx性猛交| 国产精品美女特级片免费视频播放器 | 一区福利在线观看| 亚洲aⅴ乱码一区二区在线播放 | 男女床上黄色一级片免费看| 这个男人来自地球电影免费观看| 精品久久蜜臀av无| 一级毛片高清免费大全| 日韩免费av在线播放| 露出奶头的视频| 天堂动漫精品| 1024视频免费在线观看| 最新美女视频免费是黄的| 久久久精品区二区三区| 91精品三级在线观看| 国产精品美女特级片免费视频播放器 | 下体分泌物呈黄色| 国产一区二区三区在线臀色熟女 | 欧美日韩黄片免| 亚洲av熟女| 国产激情欧美一区二区| 午夜福利一区二区在线看| 国产97色在线日韩免费| 久久精品国产a三级三级三级| 在线观看免费日韩欧美大片| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久男人| 久久青草综合色| 国产av一区二区精品久久| 日本vs欧美在线观看视频| 国产亚洲一区二区精品| 啪啪无遮挡十八禁网站| av一本久久久久| 欧美日韩瑟瑟在线播放| 麻豆成人av在线观看| 热99久久久久精品小说推荐| 在线看a的网站| www.精华液| 国产亚洲一区二区精品| 岛国毛片在线播放| e午夜精品久久久久久久| 下体分泌物呈黄色| 久久中文看片网| 国产极品粉嫩免费观看在线| 国产成+人综合+亚洲专区| avwww免费| 国产精华一区二区三区| 日日夜夜操网爽| 久久国产乱子伦精品免费另类| 日韩人妻精品一区2区三区| 精品第一国产精品| 国产精品影院久久| 国产精品久久久久久人妻精品电影| 久久国产亚洲av麻豆专区| 久久精品国产清高在天天线| 夫妻午夜视频| videos熟女内射| 最新的欧美精品一区二区| 91精品国产国语对白视频| 国产高清视频在线播放一区| 80岁老熟妇乱子伦牲交| 国产黄色免费在线视频| 我的亚洲天堂| 伊人久久大香线蕉亚洲五| 国产伦人伦偷精品视频| 国产人伦9x9x在线观看| 午夜精品国产一区二区电影| 大陆偷拍与自拍| 熟女少妇亚洲综合色aaa.| 一区二区三区激情视频| 国产精品一区二区在线观看99| 大码成人一级视频| 亚洲成人免费电影在线观看| 国产一区二区激情短视频| 精品久久蜜臀av无| 动漫黄色视频在线观看| 啪啪无遮挡十八禁网站| 亚洲午夜精品一区,二区,三区| 色94色欧美一区二区| 国产精品欧美亚洲77777| 天天躁夜夜躁狠狠躁躁| 大型av网站在线播放| 免费av中文字幕在线| 黄网站色视频无遮挡免费观看| av网站免费在线观看视频| 热99国产精品久久久久久7| 99精国产麻豆久久婷婷| 午夜91福利影院| 99re6热这里在线精品视频| 搡老乐熟女国产| 久久精品国产亚洲av香蕉五月 | 两个人免费观看高清视频| 国产单亲对白刺激| 国产xxxxx性猛交| 亚洲成国产人片在线观看| av线在线观看网站| e午夜精品久久久久久久| 国产精品影院久久| 操美女的视频在线观看| 色在线成人网| 国产精品亚洲av一区麻豆| av天堂在线播放| 精品无人区乱码1区二区| 三上悠亚av全集在线观看| 麻豆国产av国片精品| 一区二区三区激情视频| tocl精华| 老司机靠b影院| 如日韩欧美国产精品一区二区三区| 久热爱精品视频在线9| 电影成人av| 精品福利观看| 久久久久国内视频| 天堂俺去俺来也www色官网| 一级,二级,三级黄色视频| 久久久久国产精品人妻aⅴ院 | 精品一区二区三区视频在线观看免费 | 国产高清激情床上av| av超薄肉色丝袜交足视频| 久久影院123| av中文乱码字幕在线| 精品一区二区三区四区五区乱码| 男女午夜视频在线观看| 成年女人毛片免费观看观看9 | 国产国语露脸激情在线看| 久久久久久久国产电影| 亚洲欧美激情综合另类| 新久久久久国产一级毛片| 免费不卡黄色视频| 欧美av亚洲av综合av国产av| 亚洲第一欧美日韩一区二区三区| 成年动漫av网址| 校园春色视频在线观看| 国产精品国产av在线观看| 日韩欧美在线二视频 | 黄色毛片三级朝国网站| 国产免费现黄频在线看| 亚洲一区二区三区不卡视频| 日本a在线网址| 色婷婷久久久亚洲欧美| 69av精品久久久久久| 欧美日韩av久久| 亚洲五月天丁香| av不卡在线播放| 欧美日本中文国产一区发布| 91老司机精品| 国产三级黄色录像| xxx96com| 精品人妻在线不人妻| 大码成人一级视频| av视频免费观看在线观看| 一级作爱视频免费观看| 亚洲自偷自拍图片 自拍| 日韩欧美一区视频在线观看| 久久性视频一级片| 精品久久久精品久久久| 亚洲精品美女久久久久99蜜臀| 国产亚洲欧美精品永久| www.自偷自拍.com| 黄片大片在线免费观看| 757午夜福利合集在线观看| 国产亚洲欧美在线一区二区| 亚洲欧洲精品一区二区精品久久久| 精品亚洲成国产av| 别揉我奶头~嗯~啊~动态视频| 国产精品一区二区精品视频观看| 国产精品av久久久久免费| 777米奇影视久久| 成人特级黄色片久久久久久久| 亚洲国产精品一区二区三区在线| 一边摸一边抽搐一进一出视频| 久久亚洲真实| 久久久精品区二区三区| bbb黄色大片| 午夜免费成人在线视频| 色综合欧美亚洲国产小说| 久久亚洲精品不卡| 久久人人爽av亚洲精品天堂| 国产精品九九99| 亚洲欧美一区二区三区久久| 最近最新中文字幕大全免费视频| 变态另类成人亚洲欧美熟女 | 一夜夜www| 手机成人av网站| 这个男人来自地球电影免费观看| 一区二区三区激情视频| 18禁黄网站禁片午夜丰满| 亚洲伊人色综图| 中出人妻视频一区二区| 国产欧美日韩一区二区三| 黄色a级毛片大全视频| 美女高潮到喷水免费观看| 欧美乱码精品一区二区三区| 大型av网站在线播放| 精品少妇一区二区三区视频日本电影| 国产熟女午夜一区二区三区| 极品少妇高潮喷水抽搐| 日韩欧美在线二视频 | 午夜91福利影院| 亚洲精品中文字幕一二三四区| 97人妻天天添夜夜摸| 男人的好看免费观看在线视频 | 亚洲精品国产精品久久久不卡| 亚洲av成人一区二区三| 久久久久久久精品吃奶| 在线观看www视频免费| 国产极品粉嫩免费观看在线| 国产成人系列免费观看| 国产人伦9x9x在线观看| 国产精品九九99| 国产成+人综合+亚洲专区| av网站免费在线观看视频| 天堂俺去俺来也www色官网| 日韩有码中文字幕| 国产一区有黄有色的免费视频| 黄色片一级片一级黄色片| 久久精品国产综合久久久| videosex国产| 亚洲精品av麻豆狂野| 岛国毛片在线播放| 黄色a级毛片大全视频| 男女床上黄色一级片免费看| 国产aⅴ精品一区二区三区波| 精品视频人人做人人爽| 一级片'在线观看视频| 午夜福利欧美成人| 777米奇影视久久| 99re在线观看精品视频| 高清av免费在线| 国产精品香港三级国产av潘金莲| √禁漫天堂资源中文www| 他把我摸到了高潮在线观看| 国内久久婷婷六月综合欲色啪| 精品亚洲成国产av| 国产单亲对白刺激| 国产xxxxx性猛交| 777米奇影视久久| 国产一区有黄有色的免费视频| 中出人妻视频一区二区| 国产一区在线观看成人免费| 欧美黄色淫秽网站| 丝袜在线中文字幕| 欧美人与性动交α欧美精品济南到| 国产无遮挡羞羞视频在线观看| 成人手机av| 国产成人欧美| 国产精品美女特级片免费视频播放器 | 亚洲精品成人av观看孕妇| av网站免费在线观看视频| 成年人午夜在线观看视频| 精品免费久久久久久久清纯 | 久久人妻熟女aⅴ| 成人永久免费在线观看视频| 99精国产麻豆久久婷婷| 91在线观看av| 亚洲性夜色夜夜综合| 9191精品国产免费久久| 女人久久www免费人成看片| 亚洲 欧美一区二区三区| 十八禁网站免费在线| 一级毛片女人18水好多| 亚洲,欧美精品.| 久久人妻av系列| 深夜精品福利| 久久国产亚洲av麻豆专区| 满18在线观看网站| 999久久久精品免费观看国产| 日本vs欧美在线观看视频| 两个人免费观看高清视频| 亚洲精品av麻豆狂野| 亚洲欧美一区二区三区黑人| 久久久久久免费高清国产稀缺| 国产成人免费观看mmmm| 宅男免费午夜| 91九色精品人成在线观看| 中国美女看黄片| www.自偷自拍.com| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲欧美在线一区二区| 成年版毛片免费区| 欧美日韩福利视频一区二区| 日韩 欧美 亚洲 中文字幕| 精品少妇久久久久久888优播| 黄频高清免费视频| 国产一区二区三区视频了| 欧美丝袜亚洲另类 | 精品国产一区二区三区四区第35| 人妻丰满熟妇av一区二区三区 | 午夜日韩欧美国产| 中国美女看黄片| 久久精品国产a三级三级三级| 免费av中文字幕在线| 久久久久久久午夜电影 | 另类亚洲欧美激情| 99久久99久久久精品蜜桃| 视频在线观看一区二区三区| 国产深夜福利视频在线观看| 国产片内射在线| 亚洲av电影在线进入| 麻豆成人av在线观看| 国产精华一区二区三区| 飞空精品影院首页| 人人妻人人澡人人看| 大型黄色视频在线免费观看| 久久香蕉激情| 欧美日韩黄片免| 别揉我奶头~嗯~啊~动态视频| 美女视频免费永久观看网站| 两性夫妻黄色片| 一区二区三区激情视频| 亚洲熟女精品中文字幕| 好男人电影高清在线观看| 日本wwww免费看| 亚洲av成人不卡在线观看播放网| 一进一出抽搐动态| 日本五十路高清| 精品久久蜜臀av无| 久久精品aⅴ一区二区三区四区| √禁漫天堂资源中文www| 黄片小视频在线播放| 国产精品电影一区二区三区 | 日日夜夜操网爽| 黑丝袜美女国产一区| 亚洲va日本ⅴa欧美va伊人久久| 欧美在线一区亚洲| 一边摸一边做爽爽视频免费| 后天国语完整版免费观看| 久久人人97超碰香蕉20202| e午夜精品久久久久久久| 国产又色又爽无遮挡免费看| 伦理电影免费视频| 亚洲熟妇熟女久久| 亚洲成人手机| 亚洲av第一区精品v没综合| 欧美精品亚洲一区二区| 成年人黄色毛片网站| www.自偷自拍.com| 91麻豆av在线| 久久天堂一区二区三区四区| 久久人人爽av亚洲精品天堂| 久久中文字幕一级| 丝袜在线中文字幕| 午夜成年电影在线免费观看| 视频区欧美日本亚洲| 亚洲五月色婷婷综合| 久久久国产成人精品二区 | 精品熟女少妇八av免费久了| 精品人妻在线不人妻| 精品久久久精品久久久| 久9热在线精品视频| 人妻 亚洲 视频| 好看av亚洲va欧美ⅴa在| 午夜精品在线福利| 亚洲精品久久成人aⅴ小说| netflix在线观看网站| 午夜精品在线福利| 久久亚洲精品不卡| 精品久久久精品久久久| 午夜精品久久久久久毛片777| 80岁老熟妇乱子伦牲交| 成人永久免费在线观看视频| 中文字幕人妻熟女乱码| 亚洲视频免费观看视频| 不卡av一区二区三区| 人人妻人人澡人人看| 99热只有精品国产| 亚洲午夜精品一区,二区,三区| 精品久久久久久电影网| 99国产精品免费福利视频| 9热在线视频观看99| 女人精品久久久久毛片| 十八禁网站免费在线| 黄色成人免费大全| 中文字幕色久视频| 90打野战视频偷拍视频| 国产无遮挡羞羞视频在线观看| 法律面前人人平等表现在哪些方面| 精品国产一区二区三区久久久樱花|